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A Remainder Estimate of Stationary Phase Method
for Oscillatory Integrals over a Space of Large Dimension
and Its Application to Feynman Path Integrals

By

Daisuke FUJIWARA (BEJR K##)*

Abstract

This is an introduction to stationary phase method for oscillatory integrals over a space of large di-
mension. In particular, an estimate of the remainder term of stationary phase method is explained. As an
application, such estimate is used to give rigorous mathematical meaning to Feynman path integral if the
potential is smooth and of 0( |x|2) at the inﬁnity'. We do not discuss Feynman path integral thus obtained
is the propagatorz.

§1. Feynman Path Integrals.

In quantum mechanics, state of a particle in Euclidean space R is described by an element
¢ in Hilbert space L2(R?) with unit norm (cf. for example [2] or [19]). ¢ is represented by a
function ¢(x), called wave function, with the property

lel* = / lo(x)|?dx = 1.
R4

The integral of |¢(x)|? over a domain Q in R?

/ |p(x)[2dx
Q

gives the probability for the particle to be found in Q.
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IThe case with vector potential is treated in [12].

2That is given in [8].
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If a particle moves, state ¢, of particle changes as time ¢ changes. Motion of the particle
is one parameter family {¢,};cr parameterized by time . The family ¢, is represented by a
function (¢, x) of (¢,x) € R!*?, with

] lo(t, x)|2dx = 1.
R4

Assume that the motion occurs under the influence of given force with potential V (¢, x). Then
there is a mapping U(t,s): L*(R?) 3 ¢ — ¢, € L*(RY) and U(z, s) is a unitary operator called
the evolution operator. Since U(¢, s) is a linear operator, it is represented, at least formally, by
an integral transformation:

(1.1 o(t,x) = / k(t, x; s, y)p(s,y)dy.
R4

The function &(¢, x; s,y) is called the propagator.
Quantization is the process to determine the evolution operator U(¢,s) or equivalently the

propagator from the potential V(z, x).
There exist two ways of quantization. One is Schrodinger’s method and the other is Feyn-
man’s method. Schrodinger’s method is to obtain U(t, x) and Feynman’s method is to obtain

propagator.

§1.1. Schrodinger’s Quantization — Schrédinger Equation.

In classical mechanics the motion of a particle is described by a curve (p(z),4q(#)) in the phase
space T*(R%) = R, q(1) is the position of the particle at time # and p(¢) is the momentum.
(p(2),q(2)) is the solution of Hamilton’s equation. cf. for example [20]:

d i,
Zq(t) = 5H(t,p,q),

d 0

—p(t) = _—H ta 1Y)y

dtp( ) 9 (t.p.9)
here H(¢, p,q) is Hamilton’s function

1
(1.2) H(p.g) = — P+ Vg,

if physical unit system is suitably chosen.
To make notations simpler we always assume that d = | in the following. d, denotes partial

differentiation by x. i.e. 8, = F
Now we summarize Schrodinger’s quantization (cf. for example [ 9] and [2]).

h
Replace g and p in H(t, p,q) by x and by partial differential operator -8, respectively. Here
i
i=+/—1 and /i is a very small positive constant, which plays an important role in quantum

mechanics®. Then we obtain the partial differential operator, Hamiltonian operator,

H@) = —%(ﬁa‘.)z +V(1,x).

3% = h/2n, here h is Planck constant,
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Then Schrodinger’s quantization is the following rule:

d —i
—, = — H(t)p;.
dt‘Pt I (0)r

This means that the wave function ¢(t, x) is the solution of the partial differential equation, the
Schrodinger equation,

A 1A
(1.3) —=0ip(t,x) = 5(;6x)2<p(t, x) + V{2, x)(t, %).
If initial condition ¢(s,x) is given, ¢(t,x) is determined uniquely. This correspondence is the
evolution operator U(z, s).

§1.2. Feynman’s Quantization — Feynman Path Integral.

Feynman’s quantization introduced by [3] is a method to construct propagator k(t,x;s,y)
using Lagrangian of classical mechanics L(#, x,x) = Exz —V(t,x). Here V(t.x) is the potential
field and x is the position of the particle and x is the velocity. L(t, %, x) is a function on T(R%).

Let [a,b] be a time interval. A motion of a particle during this period of time is a curve, or
apath,y: [a,b] 2t —y() € R?. To any path y we define its action S(y) by

b
S(y) = / L(t 30, YD),

S(y) changes as y changes, in other words, S(y) is a functional ofy. Let x,y be arbitrary points
of RY. Let Q be the set of all paths y: [a,b] — R¥ such that
v(a) =y, y(b) = x.
Although Q contains a huge number of paths, Hamilton’s least action principle of classical
mechanics (cf. for example, [20]) states that the only path yq that is realized under Newton’s
law of motion is the solution of the variational problem,
68(v0) =0, 7yo@ =y, 7vo(b)==x.

We call such path as the classical path.

Feynman’s quantization is the following formal formula.

1 i
(14) Kb xiag) =5 Y exp(S0)-
vYEQ
Here k(b, x;a,y) is the integral kernel of (1.1), S(y) is the action of path y, summation Z is

YEQ
summation over all paths in Q and N is a normalizing factor.

Since Q is a continuum, it is better to replace Y by symbol of integration over €, i.e.
YEQ

i
(1.5) k(b, x;a,4) = /Q exp (ﬁS(y))D[y].

The right-hand side is an integration over the path space €. This is called Feynman path integral.
More generally, one can discuss integration of the form

i
| Parexe(350) i
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for functional F(y) of y. This integration is also called Feynman path integral.

§2. Feynman’s Original Formulation of the Path Integral.

The formula (1.4) or (1.5) is quite formal. Feynman gave more solid formulation in [3] and
we follow him. We assume that d = 1 for simplicity.
Let [a,b] be an interval of time. Let A be an arbitrary division of [a, b}

2.1 Ara=TH<T1 < <Tj<Tj41 =b.
Wesett;=T;—Tj—1 (j=1,2,....J+ 1)and |A| = ]Srysajxﬂ{'rj}.

For j=1,2,...,J, choose an arbitrary point x; € R. We set xo =y, x;+1 = x. We have
thus J + 2 points {(T},x;)} in time-space R x R. Consider classical path y; starting from
(To, Xo) and ending at (77, x;). If such a classical path is not unique, then we choose the one for
which the action is the smallest. Similarly we consider classical path v, starting from (7}, x;)
and ending at (73, x2). Continuing this process we obtain classical path y;,(j = 1,2,...,J + 1)
starting (T;—1,xj—1) and arriving at (Tjy1,x;41) in time-space. Finally we connect all of these
J + 1 classical paths and obtain a path connecting (7p,x0) and (Ty41,x;41) in time-space. We
name this long path ya(xs41,Xs,...,%1,x0) because it depends on the division A and points
(x0,X1,...,%741). Although this is a continuous curve, it is not, in general, a smooth one. It may
have edge at (T}, x;) ,j = 1,2,...,J. We call such a path a piecewise classical path. Some time
we use 7y as an abbreviation of ya(xy41,X7,...,X1,X0).

The action S(ya) of ya(xs+1,%7,...,%p) is a function of (x;41,xy,...,x1,x0) if A is fixed.

b J+1 T
@) S = [ L= [ Loy
43 Jj=1 j=1

Similarly if a functional F(y) of v is given, F(ya) is a function of (x71,x7,...,x1,X0). For the
sake of brevity we often write F(y5) by Fa and S(ya) by Sa.

Piecewise classical path ya approaches to any y € Q as close as one like, if [A| and {x;} are
suitably chosen. Taking this fact in mind, Feynman formulated:

. J+1 1/2 . J
1 i ) 1 i
52 F(y)exp;S(y) = |A11T0H (27"571) /Rj F(ya)exp (ES(YA)) jl;[ldxj'-

YEQ j=1

In other words, with v =h"! y

2.3) / F)expivSO)DIyI = lim 1F1(A;%.b,2,x,9),
Q —_

where

(2.4) I[FA)(A;v,b,a,x,y)

J+1 1/2 ;
V .
= H ( ) /, FOYa) (X741, %15, X1, %0) xp (ivS(ya) (X141, X1, - .-, X1, X0)) dej'
j=1 R

27T ;
J j=1
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We shall name I[FA](A;v, b, a, x,y) time slicing approximation of path integral.

Does the right hand side of (2.3) give a finite number ? The following questions should be
answered.
Q1 Does I[FAl(A;v,b,a, x,y) exist for fixed |A] >0?
Q2 Does the limit limj) o /[FAl(A; v, b,a, x,y) exist ?
We will answer these questions under certain assumptions for V (¢, x) which will be given later
in §5.

§ 3. Oscillatory Integrals.

First we discuss question Q1.
Once the division A is fixed, I[Fal(A;v, b, a, x,y) is a special case of the following type of inte-
grals:

3.1) / a(x,y)e™?Ydy,

where ¢(x,y) is a real valued function of (x,y) € R” x R" and a(x,y) is a function of (x,y).

Among others, a(x,y) = | is the most important case. In this case the integral (3.1) does not
converge absolutely. How can one give definite meaning to it ?

Heuristic explanation is the following. The value ¢(x,y) changes and hence e oscillates
as y changes from one place to another in R” and they cancel each other. As a result the
integral (3.1) give finite value. So integral of the type (3.1) is called an oscillatory integral (with
parameter x). ¢(x,y) is called phase function and a(x,y) is called amplitude function.

If parameter v goes to oo, then e*#(¥) oscillates very rapidly and hence as a result of can-
cellation main contribution to (3.1) comes from the critical,in other words, stationary points of
#(x,y) with respect to y, i.e.,we expect good approximation formula: cf. [16]

(3.2) I(x) o Y " a(x,yp)e™ 4P + 0.
P
where, {y,} are the solution to

%¢(X’ yp) =0.
Approximate evaluation formula (3.2) is the stationary phase method.
The precise meaning of oscillatory integral (3.1) is the following. Consider arbitrary family
of smooth functions {we(y) }e>0 With the following properties:
. Forany y
limwe(y) = 1.
e—0

2. For any multi index a

a a
lim (5;) we(y) = 0.
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3. If € is fixed, for any multi-index @ and for any positive integer N there exists a positive
constant C, such that

d\% N
I(a—y) wen)] < C1 + .

Definition 3.1. Let
1(x) = / welp)atx, y)e D dy.

If

lim =1
iy =109

exists and does not depend on choice of family of functions {we}, /(x) is called oscillatory
integral (3.1). And we write

/ a(x, )" Wdy = I(x).

Now we give a sufficient condition for oscillatory integral (3.1) to exist.
Assume x € R”,y € R™ and the following conditions.
A1l Phase function ¢(x,y) € C®°(R™ x R") is real valued. For any multi-indices «,8 with || +
|B| > 2 there exists a positive constant Cyg such that

10268¢(x, y)| < Cap.

A2 Let (9, jayk:ﬁ(x, y)) be the n x n square matrix with (j, k) element Byjﬁykqb(x, y). Assume that
there exists a positive constant C such that

ldet(ayjaykgb(x,y))l >C>0

for any (x,y) € (R™ x R"). Here det means the determinant.
A3 The amplitude function a(x,y),together with its all derivatives, is uniformly bounded on
R™ x R".
Theorem 3.2 (cf. [1]). Under conditions Al, A2 and A3, the oscillatory integral I(x) exists.
Moreover there exist a positive constant C such that

[I(x)] < Cv™? max sup |0%(x,y)|.
|0|5n+lyeR" ’

Assumptions Al and A2 assure that the value expivé(x,y) actually oscillates. This fact
follows from the following Global implicit function theorem of Hadamard. cf. [18]

Theorem 3.3. Let {j(x,y) = 8y,6(x,y), j=1,2,...,n. Consider for any fixed x the map
@, :R"3y=(1.y1,....4n) = {(y) = ({1(x,Y), L2(x%,Y), ..., {n(x,y)) € R". Then @ is a global
diffeomorphism. y*(x) = ®;'(0) is the unique critical point of ¢(x,y) with respect to y. More-
over there exists a positive constant C independent of x such that for any points y,y' € R" there
holds inequality

C7y—y'| < 1®x(y) — Ox() < Cly—y/|.
For any non zero multi-index « there exists constant C, such that

10y¢1 10gyl < Co-
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§4. Stationary Phase Method.

Assume A1,A2 and A3. Then stationary phase method is also valid. Let H(x,y*(x)) be the
Hessian matrix of ¢(x,y) with respect to y at y = y*(x), i.e.,H(x,y*(x)) is the n X n symmetric
matrix of which the (j,k) element is Byjaykqﬁ(x,y*(x)).

Theorem 4.1 (Stationary phase method). Assume the assumptions A1, A2 and A3. We have
the following asymptotic formula as v — 00:

n/2 .
I(x)= (27”) |detH(x,y"(x))|_I/2 exp%
x "Plny™ () (a(x, y*(x) + v r(, x)) .
Here Ind(H(x,y*(x))) is the number of negative eigenvalues of matrix H(x,y*(x)). The remain-
der term r(v,x) satisfies the following estimate: For any non-negative integer k, there exist
positive number K(k) and positive constant Cy such that for any multi-index a with |a| < k there
holds inequality

4.1) 16%r(v,x)| < Cr max sup | (932a(x,y)|.
1811 <K(k) yeRn
B2 | <K (k)

cf. [13] and [1] for more information.

[n—2Ind(H(x,y*(x)]

§5. Property of Classical Action.

Let [a,b] be an interval of time. We now discuss Feynman path integral. Our assumption
for potential V(z,x) is the following (cf. W. Pauli [17]).
Assumption 5.1. 1. V(z,x) is a real valued function of (¢, x) which is continuous in (2, x)
and infinite differentiable with respect to x.
2. For any non-negative integer m there exists a positive constant v,, such that

max sup |82V, x)| < v(1 + |x|)mex {2=m0},
lal=m x»ei0,T)1xRe
First we discuss piecewise classical path y,. For the sake of simplicity we assume thatd = 1.
We can discuss the case of d > 2 similarly, but notation will become cumbersome.

Classical path satisfies Euler equation.
2

d
Y0+ 0 V(nLy@) =0,
yb)=x, y(a)=y.
One can prove the following
Theorem 5.2. Let yig be a positive number which satisfies
3d
Kpan2

8
If |b—a| < po, then for any x,y € R there exists a unique classical path y starting from y at

time a and reaching x at time b.

(5.1 <L
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We always assume |b —a| < ug below. Let y be classical path y starting from y at time a and
reaching x at time b. The action of classical path y is a function of (b,a,x,y), and we denote it
by S(b, x,a,y). It is called the classical action.

b b1 /d 2
S(b,a,x,y)=/ L(M"(t),)’(t))dt=/ > (EYU)> = V(t,y(®))dr.

One can prove the following Proposition, cf. [4].

Proposition 5.3. If |b— a| < uo, the classical action S(b,a, x,y) is of the following form.:
x—yl?
2(b—a)
The function ¢(b,a, x,y) is a function of (b,a, x,y) of class C' and estimated with some constant
C

S(b,a,x,y) = + (b—a)¢(b,a,x,y).

|6, x,9)| <C(1+ |x2 + [y,
Moreover, for any fixed a and b ¢(b,a, x,y) is a C* function of (x,y) and for any positive integer

m > 2 we have

max su 6“66 b,a,x,y)| = ky < 00.
2<|al+|8)| <m(t y)epkz l ¢( y)l m

In particular, we know
2 -1
1) v
<2 ( {— _z_ﬂ_o> _

Proof is banal.

§ 6. Time Slicing Approximation in the Case J = 1.

Let A; be the following simple division of [a,b] with J = 1.
(6.1) A:a=Th<Ti <T, =b.
Then for this division A

I[Fp )AL v, b,a,x,y)

b \Y2/ o, 12 e k)
— F , , IV Al X,X1,.Y4 d .
(27!’!"1']) (27ri72> /R & (%31, i

2 2
X— X] x| —
Sm(x,xl,y)=——| > | +Tz¢(b,T1,x,x1)+———| 1| + 116(Th,a,x1,Y).
T2 211

The phase is

The critical point x¥ is the solution of equation
p 1 q
TIX+T1Y
T+ T2

+7T
(=2

o
O—xl-—

al’|¢(Tlaa xl’y) + + 6t1¢(b T, x, Xy ))
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At the critical point x] the Hessian Hess Xt Sais

T1+T *
Hessyr Sa = —— + 110% 6(T1,a, 11 ,y) + 1202 $(b, Ty, x, x7)
1+ T2 T 2 " T2 2 *
= l a y Uy ’ 6 va, ’ .
TIT2 ( +T'TZ{11 + 12 5 #Ta,x1.y) + T+ T2 0 6T x xl)})

We define D,»(A1;0,a,x,y) by

Dx(A1;b,a,x,y) = T2 Hess,x Sp
: TI+ T2 ‘
=1 + 11T { —2— 2 §(T1,a,x},y) + —=—02, B(b, Ty, x,x])}.
T1+1 M T +12
We write
(6.2) Dx;‘ (A;0,a,x,y) =1+ T112d(A1;b,a, %, y),
where

T1 2 x Ly
d(Ay;b,a,x,y) = oy ¢(Ty,a,x7,
(A *Y) T+ 12 w010, y)+71+72

For any K > O there exists a positive constant Cx such that if ||, |8| < K, then we have the
estimate
(6.3) |0208d(Ay;b,a,x,y)| < C.

We apply the stationary phase method then we have the following important fact:

02 ¢(b, Ty, x,x}).

Lemma 6.1. Let Ay be the division (6.1). Using stationary phase method, we have

(6.4 I[F5, 1(Ay;v,b,a,x,y)
v 1/2
= —— wSb.ax)y (A1 b -1/2
(2ﬂi(b—a)> e Xl( 1s ’a,x’y)

g ‘rzail Fa, (x, x],9)
ZV(b - a)Dx:‘(AI’b’aa-x,y)
Moreover, for any nonnegative integer m, there exist positive constant Cp, and a natural number

M(m) such that as far as ||, |ao| < m there holds the estimate:

(6.5) 6§§6§8b(A1;y;x,y)| < C, max sue{]&%&ﬁfagg&l(x,xl,yﬂ.
X1€

Here max is taken for all B with |81| < M(m) and 32 < a3, Bo < ap.
Corollary 6.2. IfF(y) =1,

X I:FAI(X,XT,y)‘f' +v“11'1‘rzb(A1;v,x,y) .

(6.6) I[11(A1;v,b,a,x,y)
v 1/2
— ivS(b,a,x.y) N —1/2 -1 .
= (_—Zni(b—-a)) e D, (Ay,b,a,x,y) [1 + v TiT2b(A ,V,x,y)] .
Here b(A1,v, x,y) satisfies the following estimate: for any a,f there exists a positive constant

Cap such that
10305b(A1;v,%,9)| < Cap.
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§7. Time Slicing Approximation is Oscillatory Integral.

We will discuss time slicing approximation corresponding to general division of [a,b].
We assume that V (2, x) satisfies the Assumption 5.1. We assume that
(7.1) |b—al < po.
Let A be the division of time interval [a, b]
Aia=Th<Ti<---<Ty<Tjy1 =b.
Assumption 7.1. We assume that for any {c;} there exists positive constant C such that

J+1
T8 Fatxrsv 21, x1,%0)| < C.
j=0
Here C may depend on {a;} and on A.
We discuss the time slicing approximation of path integral.

(7.2) I[FAX(A;v,b,a,x,y)

J+1 v 172 J

= I I . Fa(X741, X7, ., X1, X0) €XP (iVSA(X)41, X1, .., X1, X0)) I Idxj-
iy 27t R/ =1
— J=

We claim this satisfies conditions Al, A2 and A3 of §3.
Condition A3 is clearly satisfied. We check condition Al.

SA(X7 41, X155 X1,%0) = S(YANXI+1, X7, - -+, X1, X0)
J+1 J+1 2
|xj—xj—1
=Y ST T, xj-1) = (_15}4 + 1T Tj-t,xjsx-1) |
J=1 j=1 J :
Note that

o Xj—Xjel  Xj—Xjl
(7.3) Bx,Sa(Xs41, X1, X1, %0) = L= + = I+

Tj Tj+1
+ 70x;@j(xjs Xj-1) + Tjr10x,@ jr 1 (Xjig 1, X))
Here we used abbreviation:
i(xjxj1) =T, Tj—1,xj, X j—1)-
It follows from (7.3) and Proposition 5.3 that condition Al is satisfied.
Now we check condition A2. Consider J x J matrix ¥ whose (j, k) element is

lek = axj'akaA(xJ—}—l’x]vn ey X] sxO)'

Then
(1 1 U
— 4 —— + 707 8(x; xj1) + T 0% G (K1, x)) 0 =k
le Tj+| :
— 4 T8 0x, (X, X 1) if k=j—1
P = < 'r,-] JOx; x/¢j( Jorj—1 J
T_k + Tkanaxk¢k(xk’xk—!) if k= j+ l
|0 if  |j—k|>2.
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We can divide the matrix ¥ into two parts.

¥ = Hp + Wh,
where | | |
(—+— —— 0 0---0 0 \
T
m o mTn mo0 0
2 2 3 3
Hy=1 o -1 0
T3
S _1
- 1 TJ]
1
\ o0 0 0 o0 -Llycb

and W, is a matrix whose (j.k) element is

( . .
O (Tidj+Tiridjer) if =k
0:,0x,Tid; if k=j—1
(7.4) wig=1{ *H g . g
(’)xjaxk‘rk(]ﬁk if k=j+1
|0 if |j—kl>2.
The matrix Hy is a constant matrix with determinant
detHAle-f-‘r2+~--+TJ+1= b-a
T1T2...Tj41 TIT2...TJ41

It has it inverse H, L Regarding W, as an perturbation, we write

¥ = Ho(I + Hy 'Wy).
We will prove that H, 'W, is very small. Since Hy W, is a J x J square matrix, it defines a
linear map from R’ into itself. For any & = (£1,£2,...,&)) let

€lloo = max {|¢{}.

1<j<J
Then ||¢||oo is a norm in R’. Hy 'Wj is very small in the following sense. For any £ we have
IHy ' Walloo < ka(t1 + -+ + 7)€l oo

The following proposition states that condition A2 is satisfied for I[Fpl(A;v,b,a,x,y). cf.
[6].

Proposition 7.2. Let 0 < u; be so small that uy < pg and that kop? < 1. Let |b—a| < yy.
Then for any (xj4+1,%J,...,X1,X0) € R7*2 we have estimates

(1 = kopd) < det(l + Hy 'Wp) < (1 + ko}y’,

and

b— ' b—
(1= ko) =279 < det® = det(Hy + Wa) < (1 + oy — 29D
TiT2...TJ41 Ti7T2...TJ41

As a conclusion, conditions Al, A2 and A3 of §3 are satisfied, I[FAl(A;v,b,a,x,y) has a
definite value if A is fixed in the case |b —a| < ;. We answered Q1 of §2.
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§8. stationary point of the phase function

Let 1 be as in Proposition 7.2. We assume that |b — a| < y; in the following. The stationary
point (x7,---,x}) of the phase function Sx(xy41,xs,...,Xp) exists uniquely. It is the solution of
system of equations:

aijA(xJH,xj, .-+, Xx],x0) =0,foranyj=1,2,...,J.
This equations mean that
6ij(7},T}_1,x;,x}_1) + aij(TjH,Tj,xjH,x;) =0 forany j=12,..,J.
Here we set xj, | = x, x5 = xo. These x;\ J=12,...,J are functions of (x;41,x9) = (x,¥%).

Let v, be the piecewise classical path which connects (T}, x7). Then the following proposi-
tion is well known.

Proposition 8.1. The piecewise classical pathy} coincides with the classical path y* which
starts xo = y at time a and reaching xj,\ = x at time b. The piecewise classical path vy} is a
smooth path.

Corollary 8.2. The value of the phase function at the stationary point equals

Sa(xy41,%7,+ -, x1,%0) = S(b,a, x,y).

We can apply stationary phase method to the oscillatory integral I[FAl(A;v,b,a,x,y), if |b—
a| < uy. Since IndHy = 0, stationary phase method gives

Theorem 8.3. If |b— a| < w1, we obtain

I[FA)(A;v,b,a,x,y)

1/2 —-1/2
14 ivS(b,a,x, — L yr*
— (m) P (b.a,x.y) (det(1+ HA WA)) p(A,v,b,a,x,y)

with some function p(A,v,b,a, x,y). Here Wy is Wy evaluated at y = y*(x).

How does p(A,v,b,a, x,y) behave as |A| — 0 ? This is the core of the problem.

The next theorem was known earlier. cf. [14].

Theorem 8.4 (Kumano-go,H. & Taniguchi,K.). Assume |b— a| < pg. Assume that F, sat-
isfies the following property: For any non negative integer K there exits a positive constant Ag
such that as long as |ao| < K, || £ K,...,|as+1| < K one has

iagﬁ:: 6(:,; ...agOFA(XJ_,_] voens X0)| < Ag.

Then we have
v
ITFA)(A;v,b,a,x,y) = | ——————
[Fal( Y) (Zm(b—a)
Moreover for any nonnegative integer k there exist positive integer K(k) and positive constant
Cx such that as long as |ao| < k,|@j+1| < k, there holds estimate

(8.1) 18551 8% p(A; v, b,a, x, )| < Ch Ak

XJ+1

Here K(k). Cy are independent of A and of J.

172
> eV p(A;v,b,a, x, ).
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If we let J — oo then the bound C,{AK(k) obtained by (8.1) may go to co. In order to answer
Q2 of §2 we have to improve the above Kumano-go, H.& Taniguchi Theorem.

§9. Stationary phase method for integrals over a space of large dimension

We can improve stationary phase method so that we can let |A| — 0.
First we improve estimate in Proposition7.2 by using result of §6.
Assume |b —a| < 1. Let y* be the unique classical path starting from y at time a and
reaching x at time b. Let xjf =vy*(Tj) for j=0,1,2,...,J + 1. We set |
D(A;b,a,x,y) = det(I + Hy 'Wy)
— T1T2...TJ+1
(b—a)
Here HCSSx;,x;_l,...x;‘ SA(XJ41,XJ5...,X1,X0) is the Hessian matrix of Sa(xj4+1,XJ,...,X1,X0) at

(X7, X7 _15---X7)
Now we have

Theorem 9.1. The function D(A;b,a, x,y) is of the following form:
(9.1) D(A;b,a,x,y) = | + (b—a)*d(A;b,a,x,y).
Here for any K > 0 there exists a positive constant Ck independent of A such that if |a|, |B| < K,
then
92) |0268d(A;b,a,x,y)| < Ck.

) detHessx;,x; Lk SA(X 4+1:X75. -+ X1,X0)-

Proof. First we use the following property of Hessian, of which proof is omitted here. cf.
for ex. [6]. ,

Proposition 9.2. Assume that ¢(x,y) is a real valued function of (x,y) € R™ x R” of class
C®. Assume further that there exists a C*® map y" : R™ 3 x — y*(x) € R" such that

0y9(x, ) =0, detHess, ¢(x, y)lyzy#(x) # 0.
Furthermore assume that
" R" 5 x — ¢(x,y*(x)) €R
is critical at x = x*, i.e.,
08" (x)] .= v = 0.
Then (x*,y*) = (x*,y*(x*)) € R™ x R" is a critical point of function ¢(x,y) and the following
equality holds:
detHess(yx ,+) ¢ = detHess ¢" x det Hess, ¢(x, y)](x,y)=( Xy

In order to use the proposition, we introduce notations. For k > j let Sk, j(x,x;) be abbrevi-

ation of classical action S(Tk, T}, xx, x;). For 0 < k < mlet (x;,_y,...,x;, ) be the critical point

of the function

(Xm—1s- v s Xk+1) = Smmn—1ms Xin—1) + + oo + Sk 1,4 (Xk-1, Xk)-
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(Xpm—15+++Xg41) is a function of (x,, x¢) and equality

Sk (Xm» Xk) = Smun—1(Xm, x:n-l) + ..+ Sk+l,k(-xz+| » Xk)
holds.
We define Dys xx (Smm—1 + *** + Skte1,k3 %m: Xe) by

det[Hess(x,",',_1,...,x;+1)(sm,m—1 + . 4 Sk-H,k)]
Tktl T+ Tm

- s xr (Smm—1 o+ Skt 1,45 Xms Xk)-
TmTm—1""°Tk41 Tm—1 xk+l( m,m—1 k+1,k>*m k)

In this notation
D(A;b,a,x,y) = Dyxx_ ..xt(Ss41,0 + -+ + S1,0, X741, X0)-
Applying proposition 9.2 repeatedly, we can prove the following fact:
Theorem 9.3. The following equality holds:

J+1

9.3) D(A;b,a,x741,%0) = [ ] Dxp_, (k=1 + St=1.0:%k,%0) 5y -

As aresult of (6.2) and 6.3 in §6, v:e—ibtain the following’
94 Dyr  (Ski—1+ Sk—1,03%k%0) = 1 + T(T1 + -+ + Ti—1)di0( Xk, X0),
where for any , there exists a positive constant C, g such that
(9.5) |03 3 di0(xx, %0)| < Cag.
(9.1) follows from (9.3) and (9.4). (9.2) follows from (9.3) and (9.5). Theorem 9.1 is now
proved. (W]

Assuming a new assumption about the amplitude F(y), now we improve stationary phase
method so that we can let |A| — O.

Assumption 9.4. The functional F(y) satisfies the following condition: For any nonneg-
ative integer K there exist positive constants Ax and Xy such that for any division A and ¢;
satisfying |aj| <K (0 < j<J+ 1) we have
(9.6) laﬁgail' ...aﬁ,’j,’ FA(Xj41,%75 .-, X1, %0)| < AKXIJ(H.

Here Ax, Xx may depend on K but are independent of A and of J.

Remark. F(y) =1 satisfies the above assumption 9.4.

The next theorem states that the stationary phase method is valid even in the case |A| — 0.
cf. [6] and

Theorem 9.5. * Assume that F(y) satisfies the above Assumption 9.4. Further we assume
|b—a| < uy. Then

I[FAl(Asv,b,a,x,y)

12
— v VS
2ri(b—a)

x D(A;b,a,%,y) "2 (F(y*) + v~ (b— a)r(A;v,b,a, x,y)).

“A sharper result is given in [10].
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The following estimate for r(A;v,b,a,x,y) holds: For any integer K > 0 there exist M(K) > 0
and a constant Cx > 0 such that
9.7) |0305r(A;v,b,a,%,1)| < CxAmx)
if |e|,|8] < K. Both M(K) and Cx may depend on K but are independent of A and of J.
Theorem 9.6. As a particular case, we have
I111(A;v,b,a,x,y)

1/2
_ v )
2ri(b — a)

x D(A;b,a,%,y)~ 2 (1 + v~ (b—a)*r(8;v,b,a,x,9)).
Here r(A;v,b,a, x,y) satisfies the same estimate as (9.7) with Ag = 1.
Corollary 9.7. Under the same assumption as in Theorem9.5, we can have
I[FA)(A;v,b,a, x,y)
y 172
_- —_— SO )p(A: b —12,¢A: v b )
(27ri(b—a)> e (A;b,a,x,y)" "“g(A;v,b,a,x,y)
Here g(A;v,b,a,x,y) is a function with the following property: For any integer m > 0 there
exists M(m) and C,, independent of A,J such that if &, < m then
(9.8) 10208g(A;v,b,a,x,y)| < CkAm)-
The right hand side of (9.8) remains bounded if |A| — 0. Hence this corollary improves
Kumano-go& Taniguchi theorem.
Now we prove Theorem 9.5. In order to get I[Fpl(A;v,b,a, x,y) we successively perform
integration by xi, x2, x3 ...,x; on the right hand side of (7.2). At each step we apply stationary
phase method. In doing so, we use a small trick in treating remainder terms, which is explained

below. :
First we treat integration by x;. The part of the right hand side of (7.2) which is related to

X1 is
1/2 1/2
99 I =(-— 4 / Fa(Xp41, X7, .., X2, X1, xp)e” 521 0220 +510000.%0) g
2miTy 2miT) R

Aswedidin §6, we regard V(Tl—l + 75 !y as a large parameter and apply stationary phase method
to this integral. Then
1/2
Vv .
9.10 L= —m8 —— 1vS2,0(42,%0)
®-10) ! (27ri(‘rl +T2)) ¢
(PULFY(x7415%75 - -1 X2, %0) + Ri[F)(X741, %7, .., X2, X0)) -

Here P [F1(xj+1,XJ,...,X2,X0) is the main term and R{[F(xy+1,Xs,...,X2,X0) is the remainder.
Let A, be the division of [a, ] such that

(9.11) AM:ia=Th<h <[z - <Tp<Tiy1 =b.
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Then the main term can be expressed as

Pi[F1(xp41,%7, .-, X2, X0) = Fpy (X541, %7, .-, X2, X0) D (S2,1 + S1.05%2,%0) 2.
As a result of (6.4) and (6.5) in Lemma 6.1, the remainder R [F](xy+1,XJ,...,%2,%0) can be
written

912)  Ry[FYxy41,%2- .., X2,%0) = Dyr(S2,1 + S1.05%2,%0) '/

S L : —152 .
X (2v(n gy Dt (21 + 510322207 O FaAGRr 41,37, 12,37, %0))

(t172)

b(V,x_]+|,.x_[,...,x2,x0)> .
Ri[F1(xj41,%J,...,X2,X0) is a complicated function with respect to x, but is relatively simple

with respect to variables (xs41,xJ,...,X3,%p). In fact, we have the following fact. Forany m > 0
there exist positive constant Cp, and positive integer M(m) such that as long as |ao|, |@2| < m,

we have for any 8541,87,...83

(9.13) 18005168 .. 853 0%20%0b(¥, Xy 41, X1, X2, X0)|
! /
< Cpn max sup |a§j¢}a‘;; . ..6?;6%6:36; F(ya)|.

Iy]SM(m),algao,af;Scrz x1€R
Here we must note that the differential operator with respect to x; for j > 3 is the same on both
sides of the above (9.13).

Remark. The magnitude of the remainder term (9.12) is small, roughly speaking, of order
O(v~'min{ty,72}). In particular if F(y) = 1 the remainder term is O(v~'7172).

Next we treat integration with respect to variable x;. In doing so, we use the following
trick. The main term P;[F] is a relatively simple function of x,. We integrate it by x2 and apply
stationary phase method.

On the other hand the remainder term R|[F] is a complicated function with respect to x; but
is a relatively simple function with respect to x3. Thus we postpone integration of R [F] with
respect to x; until later and we do integrate it with respect to x3 beforehand.

We integrate P;[F] by x; and apply stationary phase method. Then we obtain the main term
and the remainder:

172 1/2
(9.14) Y v / £/V(53.2(x3,42)+52,0(¥2.%0))
2nit3 2ni(T) + 12) R
(9.15) PIF)(xs415%75- -, X3, X2, X0) dX2
v 1/2
9.16 = ivS3,1(x3,%0)
( ) (2711'(1’] +T2+T3)> ¢

(PPI[F1(xs 410 X3,%0) + R2PUIF1(Xs 415, X3, X0)) -

Let Az be the division
As:a=To<BG<Th<- - <Tyqg.
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Then the main term is
BP [FI(xj+1,...,%3,X0)
=Dy (532 + 82.0:%3,%0) 2P IF)(X1 415 - -» X3, X3, X0)-

=Dy (S32 + 520X, %1) 7D (Sa.1 + 81,0355, %0) T2 F (Yag (X741, -+ X3, %0)-
Here x; = ya,(T2) is the critical point with respect to x; for fixed (x3, xp). Using (9.3), we have
D5 (83,2 + S2,0,%3, X0)Dxx (S2,1 + 81,03 %3, X0) = Dz s+ (532 + 52,1 + 51,05%3, %0)-
Therefore,
PP [F)(xy415--.5%3,%0) = Dyr 2 (S32 + S2,1 + 81,0523, %0) " 2 Fp, (X741, X3, X0).
The remainder term
RoP[F](xs41,...,%3,%0)

is a function which is very complicated with respect to x3 but relatively simple with respect to
X4.

When we treat integration by x3, we perform integration of the terms PP [F] and R;[F]. But
we postpone integration of Ry P[F] by x3 until later and integrate it with respect x4 beforehand.

In this manner, we successively perform integration by x; (j = 1,2,...,J) in equality (7.2)
which define I[F](A;v,b,a,x,y). In integrating by x; we apply stationary phase and get main
term and the remainder. We perform integration of the main term by x;.;. But as to the
remainder, we skip integration of it by x;;.| and perform integration of it by x;, beforehand.

Repeating this operation, I[FA}(A;v,b,a, x,y) is expressed as a sum of many terms.

(9.17) IIFY(A;v,b,a,x,y) = Ao(Aiv,0,a,%,5) + D Aj jur_ s,
Here Ag(A;v,b,a, x,y) is the main term through all steps, i.e.
Ao(A;v,b,a,x,y) = PiPr_1...P[F].

The sum Z' is the sum over sequences {j,, js;_,»---»Js, } Which is a subsequence of the se-
quence {J,J—1,J—2,...,1} and A Jsgrisg_y sy 18 the term which came from skipping integra-
tion with respect to variables xj, ,xj, ..., xj; .

By Proposition 9.2, P;Py_; ... P|[F] coincides with the main term of stationary phase method
of I[FAl(A;v, b,a, x,y) with respect to variables (xy,x7—1,...,%1). Thatis

PiPy_1 ... PiFI(Ab,a,x,y) = HD(S,H 1+ S0l L) = Dbsb.a,x)F(r').
J=1
The term Ajg, j,, ....Js, 18 of the following form:

)1/2

Meseein =7 TL
oo deg—rr 27i(Tj, 1 = Tiy,)

viS;. i i (Xjo W Xio gy ) :
IspsJsp_y e /s Jsp >t dsp_ I8 L, . R R .
></R£e erse—yrdsy s sp Qjsyfsyvemdsy T4 X jopr e es Xjg, 5 X0) | Idxhk.
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Here
¢

Sjst,j;(_] ..... j’l (-x.l+l ’xjxt RN} xj,ql ’ XO) = E : (Sj‘k+l ’j-‘k (xjxk+| ’ 'xjsk) + Sj.\'kaj.vk__l (xj.\'k ’xj:k_l )) .
k=1

.....

any integer m > O there exists a positive integer K(m) and a positive constant C(m) such that as
long as |e,, | < m,(k=1,2,...,£) and |ao| < m,|ay41| < m we have

¢
@J+1 na ll sy , _
(9.18) laxj_'_]axg aijkajSe,jst_l ,,,, j“](x‘].*.],xh[,...,xhl,x0)|
k=1

¢
S C(m) (H Tj’k) AK(m)XIt;(m).

k=1
Now we apply Kumano-go & Taniguchi theorem to the right hand side of (9.18). We can prove
that

1/2
o R & S A vS(baxy)y . (A
Assgrisg—yin =7 <27ri(b——a)) ¢ bjspuisg_yisy (B3 V50,0, %, ),

and we have the estimate

£
1050t 0%0b oy iy (B3V2 by 8, 2,9)| < LMY COM ARGy Xy [ [ T
k=1

From here we have

/ 1/2
. AR S S ivS(baxy) o A-
ZA]kaij_la--wJSl - (27ti(b _ a)) e C(A1V’ b9 a, x’ y)’

where

/
c(A;v,b,a,x,y) = ZV—[bjgt, Js_ s, B3V b0, %, Y),
and we have that
/ ¢
05+ 50c(Asvib,a,x,9)] < Y vECH M) COm)AkomXkemy | [ 7
k=1
J
< CmAken | [T (1 +v7'CLrim)XkmyT)) — 1
j=1
< v (m)Akmy Xk my(b — a).
with some constant C’(m) independent of A and of J.
Theorem 9.5 is now proved. Similarly we can prove Theorem 9.6.

§10. Convergence of Feynman Path Integral.

ll]ll 1 1 A"’k’cz,'IQy
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exists. cf. [8] and also [5]. Existence of limja_,o /[F1(A;v,b,a,x,y) for more general F(y) is
proved in [15]. See also [9].
We begin with

Theorem 10.1. The limit

(10.1) D(b,a,x,y) = 1Ai|m 0D(A,b,a, x,Y)
exists and
(10.2) D(b,a,x,y) = 1 + (b— a)*d(b,a, x,y).

For any K > O there exits constants Cg > 0 such that for any «,p with |e|,|8| < K there holds
estimate.
|6585d(b,a, %,y)| < Ck.
Remark. As one can see from next Theorem, D(A, b, a, x,y) converges uniformly together
with its all derivatives with respect to (x, y).
To prove Theorem 10.1, we have only to prove the following Theorem. cf. [7], [12] or [8].
Theorem 10.2. Assume |b— a| < uy. Let A be an arbitrary division of [a,b). Let A’ be an
arbitrary refinement of A. We define d(A,A’; x,y) by the following equality.
D(A';b,a, x,y)
D(A;b,a,x,y)
Then for any a and B, there exists a positive constant Cq g which is independent of A,A" and of
(a,b,x,y) such that

(10.3) |0208d(A, A x,y) < Cag.

=1 4 |A|(b—a)d(A, A5 x,y).

Proof. We prove Theorem 10.2 through several steps. Let A be
Aia=To<Ti<Th< - <Ty<Try =b
and its refinement A’ be
ANia=Ty=Tio<T) < hp<:-< Tp <Tip+1=Th =T < h)<...
< Dp <Dpt1 =h=To<:-<T7<Trp1,1 <Tj412<...
< Titrpr <Trvippp+1 =Trv1 =0
Sett;j=T;j—Tj_1 Tj) =Tjx — Tjx—1.
The piecewise classical path corresponding to division A’ is denoted by
'}’AI(X_]+|,)CJ+LPJ+I,...,.XJ,...,X],)C]‘pl,...,x1,|,x0)([),
which will be abbreviated to y,/(¢). The action of ya/(?) is
SA/(xJ+1,xJ+],pj+l,...,x;,...,xl,xl,m,...,xl,l,xo). :

In the following, we use a special sequence of refinements {A(k)}k=0,1,2,...,.]+1 of A such that
A = A AUTD = A’ and A® is a refinement of A®—D,
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We define AD by
AD a=T=To<N,1<Np< - <TNp <TNip+1 =" << <Tj<Tji =b.

AW is different from A only in [Ty, 7;] where A() and A’ has the same division points. We write
by Yam (X741, X7, .., X1, X1,p,5- -, X1,1, X0) the piecewise classical path corresponding to division
AD,

We define A® so that A@ is different from A() only in [T}, 73] and it has the same division
points as A’ in [T}, T3]. A@ is

(10.4) AP a=Ty=Tig<Ti < <Tip <Tip+1=Ti=To<Di<...
< <Tp, <TDpy+1 =h<---<Th<Tyy1 =b.

Similarly , AV is defined for j = 3,4,...,J.
We compare D(A; b, a, x,y) and DAY b, a, x, Y).
Let &; be the division of [Tg, T} ] defined by

(10.5) 61:a=Ty=Tio<T,<T2<:--<Tp <Tp+1 =T.

Let ¥5,(X1,p,+1,X1,p,»---» X1,1,X1,0) be the piecewise classical path which pass x;,; at time Tj,;
for j=0,1,...,ps + 1. We write its action by

n+l
(10.6) S6,(X1,p, 41, X1,pgr -2 X1,1, X1,0) = Z S(T s Th k=15 X1 ko X1,k —1)-
k=1
The action of S(yxw) is written
(10.7) S(Yam) = SAOXI41,XT5 e s X1 X1 py s+ + - X1,1,X0)
J+1 P+l
= ZS(Tj’Tj—]sxj,xj—l) + ZS(Tl.k,Tl,k—l,xl,k,xl,k-l)
j=2 k=1
J+1
= ZS(Tj,Tj—l,xj,xj—l) + 86, (X1, py+1>XL,pss+-+»X1,1, X1,0)-
=2

In calculating det(HessS,)), we first fix (xj41,X7,...,%1,X0) and consider critical point
(xf,ps,...,xil) with respect to (x1 p,,...,x1,1). Then

(10.8) det (Hess(x;-ps x'l"l)SA(l)(XJ+|,XJ, ey X] ,xf,pl,. N ,XO))

.....

T
= TD(dl ;T],TO,X],XO)~

k=1 Tlj
Since
Sél (xl’pl+l’xT,P.r" ..,XT",X]‘O) = S(T'],T(),X] ,xO)a
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we know that for fixed (x;41,...,X1,X0)

SAO(XT4 15X 5o X1, XT s e s X115 X0)

J+1
= Y ST Tim1.xjxj21) | + ST, To, x1, %0)
=2

= SA(xj-{-],XJ, . 'sxlax())'
Therefore using Proposition 9.2, we obtain

det (Hessx; ,...,xt ’xr,p; ,...,x’]"'l SA(l) )

..........

It follows from this and Theorem 9.1 applied to d; that
(10.9) DAY b,a, x,y) = D(A;b,a,x,y)D(1;Ti, To, XT, y)
= D(A;b,a,x,y) (1 + 11d(61;T1, To, ©.p)) -
For any e, there exists a positive constant such that
(10.10) |0268d(61; T, To, x,y)| < Cop.
Similarly we can proVe that
(10.11) D(AY;b,a,x,y) = D(AY™Y;b,a,x,y)D(6 ; T}, Tj—1, X}, X_1)
=D(AY"Y;b,a,x,y) (1 + 72d(6; T}, Tj-1,%.Y)) -
For any any a,f there exists a positive constant such that
(10.12) 10206d(8j; Tj, Tj—1,%,9)| < Cag.
Here 6; denotes the division of [T;_;,T}]
(10.13) 0j:Tj—1=Tio<Tj1 < <Tjp, <Tjp;+1 = Tjy1.
Finally it follows from (10.11) that
J+1

D(A';b,a,x,9) = D(&;b,a,x.) [ [ (1 +73d65 T Tj-1,%.9)
j=1

We define d(A,A’;b,a, x,y) by
J+1
(10.14) [T (1 +73d@,: T, Ty-1, x.p)) = 1 + |Al(b — @)d(A, A3 b,a, x.Y).
Jj=1
Then estimate 10.3 holds. Theorem 10.2 is proved.
a

Next we prove existence of |Ai|mol[1](A;v’ b,a,x,y). Existence of ' [lki'mOI[F 1(A;v,b,a,x,y)

for more general F(y) is proved in [15]. See also [9].
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Theorem 10.3. > The limit
K(v,b,a,x,y) = |Ai|m01[l_](A, v,b,a, x,y)

exists. Moreover K(v,b,a, x,y) is of the form.

Y
27i(b — a)

For any a,p there exist a positive constant Cqp such that we have

16285r(v,b,a,x,y)| < Cap.

1/2
K(v,b,a,x,y) = ( ) ¢S 6a N D(b,a,x,y)” 21 + v~ r(v,b,a,x,p)).

Remark. Moreover I[1](A,v,b,a, x,y) converges uniformly together with it all derivatives

with respect to (x,y). See the next theorem.
We have only to prove that I{1](A;v,b,a, x,y) is a Cauchy sequence with respect to |A|.

Theorem 10.4. ¢ Assume that |b— a| < p;. Let A be an arbitrary division of the inter-
val [a,b] and A’ be its arbitrary refinement. Let S’ be an abbreviation of the phase function
corresponding to A'. Then

1[1](Al;vyb’aax’y) _I[l](A;V»b,a,X,!/)

1/2
v .
=(s=7—=) DW@ibaxy) gl A, vb,axye” b,
(M(b_a)) (A;b,a,x,y)” '“q( v,b,a,x,y)e

Moreover, for arbitrary a.B there exists positive constant Co g such that there holds the estimate

(10.15) |0268a(A,A'3v,b,a,x,y)| < CaplAl(b—a).

Proof. The proof is along the same line as the proof of Theorem 10.2. We use the notations
A, A, AD 8,y etc. given in the proof of Theorem 10.2.
First we compare I[11(A(;v,b,a, x,y) with I[1](A;v,b,a, x,y). Using (10.7), we have

(10.16) 111AY;v,b,a, x,y)
~ Al l/thul oy e
B 1'1;[2(57?"—77) kI;II (27Ti7'1,k) /RJ CXP(IV;S(T!" Tj—1,%j,Xj~1))
Pt Pi J
X [./Rf’l exp(iv kZ:I S(Tl.k,Tl,k—],xl‘k,xl,k_l))II_['dxl’k] ].-—Ildxj'
= - i

Let xf,k =vya(Tix) for | <k < py. Thenitis the critical point with respect to (x p,,...,X1,})
of action S(Yawm) = SAO(XJ4 15 X7, X1, X1 pyse -2 X1,15X0)-
We fix (xj,...,x1) and integrate with respect to (x1 p,,...,x1,1) in (10.16) and we apply The-

SFor more information see [8] and [11].
b¢f.{7] and [12]
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orem 9.5 in which [a,b] and A are replaced by [Ty, 71] and 6|, respectively. Then we have

1111(AY;v,b,a, x,y)
J+1 J

_ V_\1/2 ; .
—jI_Il(Zni‘rj) /I;JFA(I)/A(XJ+I,---,XO)CXP(WSA(XJ-D-stj,«--sxl,xo))jI—Ildxj

= I[Fpm 7 1A v, 0,0, x, ),
with
F a0 %1415+, %0) = D615 T1, To, x1,9) ™72 (1 + fVirAm/A(v, Tl,To,xl,y))> :
Here D(61;Ti, Ty, x1,y) is given by (9.1) and used in (10.9). So we know that it is of the follow-
ing form :
(10.17) D(61; T, T, x1,y) = | + 13d(61; Th, To, X1, %0).
This means that we have
FA(I)/A(V,XJ+1,.XJ,...,x1,x0) =1+ T%fA(l)/A(V,Tl,T(),X],xo).

And we have the estimate for fym (v, T1, To, x1, X0): For any a,f3 there exists a positive constant

Co,p such that
105,85, ;a0 T To, %1, X0)| < Cap.

Now we can write
(10.18) 111AY; v,b,a, x,y) — I111(A; v, b, a, x, )
= I[Fpm/a — (A%, b,a,x,y) = T1 [ fa s )(As v, b,a, X, ).
Now we can apply the stationary phase method Theorem 9.5 to the right hand side of above
equation and obtain

v
T%I[fA(I)/A](A, v,b,a,x,y) = (m

Here g(A!), A;v,b,a, x,y) has the following property: For any a,f there exists a positive con-
stant Cp g such that
(10.19) |02 & a(AD, A;v,b,a,x,9)| < Capri.

1/2
) e"SGaxN DA b, a, x,y) " 2g(AN, A;v, b, a, x,y).

This means that
(10.20) 1AW, v,b,a,x,y) — I111(48;%,b,a,x, )
1/2
_ v ivS(b,a,x.y) b -1/2 A(l) A:v.b
(————zm(b_ a)) e D(A;b,a,x,y)” '“q(A"”, A;v,b,a, X, Y).
Similar discussion as above gives for k = 2,3,...,J + |

(10.21) MNIAR; v, b,a,x,y) — I[11 (A% D; v, b,a,x,y)

1/2
_ v vS(b,axy) Py A- =172, AB) Ak=D).}, p
(27ri(b—a)) e D(A;b,a,x,y)~ "“q(A™, v, b,a,x,Y).
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For any a,f there exists a positive constant Cq g such that
& g(A® A*=D:y b a,x,y)| < Caﬂ'ri.

I X1 X0
Consequently, we have

(10.22) INA ;v,b,a,x,y) — I[1)(A; v, b,a, x, 1)

J+1
= (1111a%;v,b,a,x,p) - 1111(A%D;v,b,a,x,))
k=1
J+1 1/2
iVS(b.a,x,y)D Ab -1/2 A(k) A(k—l).
; (27r1(b a)) e (A;b,a,x,y)” '“q(A™, v, b,a,x,Y)
Y 1/2
= — vS(b.a,xy) (A - =112,0A A" _
(27ri(b——a)> e (A;b,a,x,y)" '“q(A, A% v, b,a, x,y)
Where
J+1
q(A Ay, b,a,x,y) =D q(b®, A% Dy, b,a,x,p).
k=1
For any a,f3 there exists a positive constant C, g such that
J+1
(10.23) 102 & q(A, A3, b,a,x,9)| < Cap D T3
k=1
This proves Theorem 10.4. O
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