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Abstract

Let $z=f(x,y)$ be a germ of a $C^{5}$ -surface at the origin in $\mathbb{R}^{3}$ containing several continuous families of
circles. Indeed, we have a usual torus with 4 such families and R. Blum’s cyclide with 6 such families.
Then, we get a system of fifth-order nonlinear partial differential equations for $f$. As an application, we
obtain the analyticity of $f$, and the finite dimensionality of the solution space of such system of differential
equations.

\S 1. A Surface Containing Several Continuous Families of Circles

In 1848, Yvon Villarceau [1] found that a usual torus includes 4 continuous families of cir-
cles passing through $evel\gamma$ point of the surface; of course, only two of them are new. These new
circles, so called Villarceau circles, are slanted against the rotation axis and are not perpendic-
ular to this axis. Further in 1980, Richard Blum [2] found that some special cyclides include
$4\sim 6$ continuous families of circles passing through every point of them. Here, a general cyclide
is defined by a quartic equation

(1.1) $\alpha(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}+2(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})\sum_{i=1}^{3}\beta_{i}x_{i}+\sum_{i,j=1}^{3}\gamma_{ij}x_{i}x_{j}+2\sum_{i=1}^{3}\delta_{i}x_{i}+\epsilon=0$

with real numbers $\alpha\neq 0,\beta_{i},\gamma_{ij},\delta_{i},\epsilon$ (Darboux $|$3]). Then a usual torus and a 6-circle Blum
cyclide correspond to the case $\alpha=1,$ $\beta_{*}=0,$ $\delta_{*}=0,$ $\gamma_{ij}=-2a_{i}\delta_{ij},$

$\epsilon=l^{2}$ with $0<\ell<a_{1}=$
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$a2,$ $a3=-l$, and to that with $0<l<a_{2}<a_{1},$ $-l\neq a_{3}<l$, respectively. At the same time,

Blum gave the following conjecture in [2]:

Conjecture (R.Blum) A closed $C^{\infty}$ -surface in $\mathbb{R}^{3}$ which contains seven circles through each
point is a sphere.

N. Takeuchi [4] solved this conjecture affirmatively for closed surfaces with genus $\leq 1$ by
using the intersection number theory for l-dimensional homotopy groups. Further, replacing
l-dimensional homotopy groups by l-dimensional homology groups with $\mathbb{Z}_{2}$-coefficients, we
can easily get the following extension:

Theorem 1.1. We have some positive integer $N_{g}(\leq 2^{2g+1}-1)$ for any $g=1,2,3,\ldots$ such
that, for $\forall g\geq 1$ , there is no closed surface with genus $g$ in $E^{3}$ which contains $N_{g}$ circles through
each point. In particular, we can take $N_{2}=11$ .

Proof. Let $M$ be a closed surface in $\mathbb{R}^{3}$ with genus $g\geq 1$ . Then it is well-known that the
intersection number Int$(C_{1},C_{2})$ for closed curves $C_{1},C_{2}\subset M$ is a skew-symmetric bi-additive
form

$H_{1}(M,\mathbb{Z})\otimes H_{1}(M,\mathbb{Z})\ni([C_{1}],[C_{2}])\mapsto Int(C_{1},C_{2})\in \mathbb{Z}$ .
Further the l-dimensional homology group of $M$ is given by

$H_{1}(M,\mathbb{Z})=\mathbb{Z}[\alpha_{1}]\oplus zw_{1}]\oplus\cdots\oplus \mathbb{Z}[\alpha_{g}]\oplus \mathbb{Z}\lceil\beta_{g}]\simeq \mathbb{Z}^{2g}$

with generators $\alpha 1,\ldots,\alpha_{g},\beta_{1},\ldots,\beta_{g}$ satisfying

Int$(\alpha_{i},\alpha_{j})=Int(\beta_{i},\beta_{j})=0$, Int$(\alpha_{i},\beta_{j})=-Int(\beta_{j},\alpha_{i})=\delta_{ij}$ $(i,j=1, \ldots,g)$ .
According to [4], for two circles $C_{1},C_{2}$ on $M$ passing through a point $p$ , there are only two

possibilities; i) $C_{1}\cap C_{2}=\{p\}$ and they cross each other transversally at $p$ , ii) $C_{1}$ and $C_{2}$ have
two points in common, or $C_{1}$ is tangent to $C_{2}$ at $p$ . Then the value of Int$(C_{1},C_{2})$ is equal to $\pm 1$

in case i), and to $0$ in case ii). Therefore, the value $\tilde{Int}(C_{1},C_{2}):=[Int(C_{1},C_{2})]$ in $\mathbb{Z}_{2}$ is sufficient
to know this difference. Hence we can consider homology groups with $\mathbb{Z}_{2}$ -coefficients:

$\overline{Int}:H_{1}(M,\mathbb{Z}_{2})\otimes H_{1}(M,\mathbb{Z}_{2})\ni([C_{1}\rceil, [C_{2}])\mapsto[Int(C_{1},C_{2})]\in \mathbb{Z}_{2}$ .

On the other hand, since $G:=H_{1}(M,\mathbb{Z}_{2})=\mathbb{Z}_{2}^{2g}$ is a finite group of order $2^{2g}$ , we can divide
$G$ into a direct sum $G=S_{1}\cup\cdots\cup S_{\iota_{g}}$ of subsets $S_{j}\subset G(j=1, \ldots,n_{g})$ satisfying the following
conditions:

1. $S_{i}\cap S_{j}=\emptyset$ for $i,j=1,\ldots,n_{g}(i\neq j)$ ,

2. for any $i=1,\ldots,n_{g},\overline{Int}(c,c’)=0$ on $S_{i}\cross S_{i}$ .
In fact, we can take $n_{g}\leq 2^{2g}-1$ for any $g\geq 1$ because we have a trivial decomposition $G=$

$S_{1}\cup\cdots\cup S_{22g-1}$ satisfying the above-conditions; $S_{1}$ is chosen as a two-element subset containing
$0$ of $G$, and $S_{2},\ldots,S_{2^{2g}-1}$ as a one-element subset of $G$. Further for $g=2$, we can take $n_{2}=5(<$

$2^{4}-1)$ by setting
$S_{1}=\{OO, OA,AO,AA\},S_{2}=\{OB,BO,BB\},S_{3}=\{OC,CO,CC\}$ ,
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$S_{4}=\{AB,BC,CA\}$ , $S_{5}=\{BA,CB,AC\}$ .
Here, we use the following notation: $O=0,A=[\alpha],B=|\beta],C=[\alpha]+|\beta]$ for single letters
$O,A,B,C$, and double letters $AB,AC$ mean that

$AB:=[\alpha_{1}]+[\beta_{2}]$ , $AC=[\alpha_{1}]+([\alpha_{2}]+[\beta_{2}])$ .
Indeed, since $\overline{Int}(*,*)$ is calculated as $\overline{Int}(AB,BC)=A\cdot B+B\cdot C(mod 2)$ with an inner product

between $0,A,B,C$:
$O\cdot A=A\cdot O=O\cdot B=B\cdot O=O\cdot C=C\cdot O=A\cdot A=B\cdot B=C\cdot C=0$ ,

$A\cdot B=B\cdot C=C\cdot A=B\cdot A=C\cdot B=A\cdot C=1$ ,

we easily verify the condition 2 for $S_{i}$ . Suppose that $M$ contains $N_{g}:=2n_{g}+1$ circles through
each point of $M$. Since $M$ is not a sphere, nor a plane, there is a non-umbilical point $p\in M$;
that is, two principal curvatures at $p$ is different from each other. Take $N_{g}=2n_{g}+1$ circles
$C_{1},\ldots,C_{2n_{g}+1}$ through $p$ . Since $G=S_{1}\cup\cdots\cup S_{n_{g}}$ , some three circles $C_{i_{1}},C_{i_{2}},C_{i_{3}}(i_{1}<i_{2}<i_{3})$

must belong to some $S_{j}$ . By the condition 2 for $\{S_{i}\}_{i}$ we know that any two of $C_{i_{1}},C_{i_{2}},C_{i_{3}}$ have
two points in common, or are tangent to each other at $p$ . Therefore by Theorem 1 of [7] we
conclude that $p$ is an umbilical point. This contradicts that $p$ is a non-umbilical point. This
completes the proof. $\square$

James A. Montaldi [8], by using infinitesimal analysis, proved that there is an open dense
set of immersions $g:Xarrow \mathbb{R}^{3}$ , such that at any point $x\in X$ , there will be at most 10 circles
with at least 5-point contact with the surface at $x$. Here, “a circle has 5-point contact to $X$ at
$x$
” means that $g(X)$ includes a circle infinitesimally up to $(5-1)$-th derivatives at $x$. On the

other hand, Takeuchi [5] proved the following theorem concerning general cyclides by using
conformal transformations; that is, translations, rotations, and inversions (for example, $\vec{x}=$

$\vec{y}/|\vec{y}|^{2})$ , which transform a circle into a circle or a line in $\mathbb{R}^{3}$ .
Theorem 1.2. A non-singular cyclide is conformally equivalent to a cyclide ofBlum’s type

which is homeomorphic to a torus, a sphere or two spheres; that is, a cyclide with parameters
$\alpha=1,\beta_{*}=0,\delta_{*}=0,\gamma_{ij}=-2a_{i}\delta_{ij},\epsilon\neq 0$ for some $01,O_{2},a3\in \mathbb{R}$ . Further, A cyclide contains
$n$ circles through each non-umbilical point and $n-1$ circles through each isolated umbilical
point unless it is a sphere or a pair oftwo spheres, where $n=1,2,3,4,5$ or 6.

In [6], Takeuchi gave some explicit expressions of continuous families of circles for 5-circle
Blum cyclides. Our purpose in this paper is to find all the surface germs $z=f(x,y)$ at the origin
for given integer $n(\geq 2)$ which contain $n$ continuous families of circles.

\S 2. The System of Fifth-Order Non-Linear Partial Differential Equations
and the Results

Let $z=f(x,y)$ be a $C^{4}$-class function defined in a neighborhood of $(0,0)\in \mathbb{R}^{2}$ . For a surface
germ $z=f(x,y)$ at (0,0), we can normalize it by suitable translations and rotations as follows:
(2.1) $f(O,0)=0,f_{r}(0,0)=0,f_{y}(0,0)=0,f_{Xl},(0,0)=0$.
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Then, if $(x,y)=(0,0)$ is not an umbilical point $($that is, $f_{XX}(0,0)\neq f_{yy}(0,0))$ , we can define
polynomials in $T$ and $t$ of degree 10, the key polynomial $Z(T)$ , and the characteristicpolynomial
$P(t)$ for the germ $z=f(x,y)$ at (0,0). As we see in Theorem 2.3, any non-zero simple real root
of $P(t)=0$ corresponds to a continuous family of circles contained in $\{z=f(x,y)\}$ .

Definition 2.1. (the key polynomial $Z(T)$ and the characteristic polynomial $P(t)$) Let $z=$

$f(x,y)$ be a $C^{4}$-class function defined in a neighborhood of $(0,0)\in \mathbb{R}^{2}$ satisfying condition (2.1).

Put the Taylor coefficients $a,b,c0,l,2,d_{0},d_{1},d_{2},d_{3},eeee$ at $(x,y)$ of $f$ as follows:

(2.2) $\{\begin{array}{l}a:=f_{X}(x,y), b:=f_{y}(x,y),c0:=f_{X.\mathcal{K}}(x,y)/2, c_{1}:=f_{xy}(x,y), c_{2}:=f_{yy}(x,y)/2,d_{0}:=f_{XXX}(x,y)/3!, d_{1}:=f_{xxy}(x,y)/2!,d_{2};=f_{xyy}(x,y)/2!, d_{3}:=f_{yyy}(x,y)/3!,e0:=f_{XXXX}(x,y)/4!, e\iota:=f_{xxxy}(x,y)/3!, e_{2}:=f_{xxyy}(x,y)/2!^{2},e_{3}:=f_{xyyy}(x,y)/3!, e4^{;=f_{yyyy}(x,y)}/4!.\end{array}$

We define polynomials $C(T),$ $D(T),$ $E(T),$ $R(T),$ $S(T),$ $K(T),$ $W(T)$ in $T$ in the following way,
where $C’(T)=\partial_{T}C(T),$ $R’(T)=\partial_{T}R(T)$ etc.:

(2.3) $C(T)=c0+c_{1}T+c_{2}T^{2}$ ,

(2.4) $D(T)=d_{0}+d_{1}T+d_{2}T^{2}+d_{3}T^{3}$ ,

(2.5) $E(T)=e0+e_{1}T+e2T^{2}+e3T^{3}+e4T^{4}$ ,

(2.6) $R(T)=(b^{2}+1)T^{2}+2abT+a^{2}+1$ ,

(2.7) $S(T)=D(T)R(T)-2(bT+a)C(T)^{2}$ ,

(2.8) $K(T)=R’(T)C(T)-R(T)C’(T)$

$=((b^{2}+1)c_{1}-2abc_{2})T^{2}+2((b^{2}+1)c0-(a^{2}+1)c2)T$

$+2abc0-(a^{2}+1)c_{1}$ ,

(2.9) $W(T)=bS(T)+C(T)K(T)$.
Then the key polynomial $Z(T)$ for $f$ is defined by

(2.10) $Z(T)=K(T)^{2}(R(T)E(T)-C(T)^{3})+R(T)K(T)D(T)(D’(T)R(T)-3(b^{2}+1)TD(T))$

$+D(T)^{2}R(T)[-ab(2K(T)+TK’(T))-2(a^{2}+1)(b^{2}+1)C(T)$

$+((a^{2}+1)c_{2}+(b^{2}+1)c_{0})R(T)]+2R(T)C(T)\lceil(bT+a)\{D(T)K’(T)C(T)$

$+D(T)K(T)C’(T)-D’(T)K(T)C(T)\}-bD(T)C(T)K(T)|+4C(T)^{4}(bT+a)$

$\cross\{((a^{2}-1)c2+(b^{2}+1)c_{0})(bT+a)-\frac{1}{2}ac_{1}R’(T)+2a(c_{2}-co)-bc_{1}\}$ .
It is easy to verify that (the degree of $Z(T)$ in $T$ ) $\leq 10$ . Further, the characteristic polynomial
$P(t)$ at (0,0) is defined by

(2.11) $P(t)$ $:=[ \frac{Z(t)}{c0^{-C}2}]_{x=y=0}$
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$=[(t^{2}+1)D(t)\{2t(t^{2}+1)D’(t)-(5t^{2}+1)D(t)\}$

$+4(c0^{-C}2)t^{2}\{(t^{2}+1)E(t)-C(t)^{3}\}]_{x=y=0}$

$=$

し

$-d_{0}^{2}+(-4c_{0}^{3}(c0-c_{2})-6d_{0}^{2}+d_{1}^{2}+2d_{0}d_{2}+4(c0-c_{2})eo)l^{2}$

$+(-8d_{0}d_{1}+4d_{1}d_{2}+4d_{0}d_{3}+4(c-c)e_{1})t^{3}$

$+(2$
$-4d_{0}d_{2}+3d_{2}^{2}+6d_{1}d_{3}+4(c-c)e0+4(c0^{-c)e}22)t^{4}$

$+(-8d_{0}d_{1}+8d_{2}d_{3}+4(c-c)e_{1}+4(c-c)e_{3})t^{5}$

$+(-12c_{0}(c0-c_{2})c_{2}^{2}-3d_{1}^{2}-6d_{0}d_{2}$

$+2d_{2}^{2}+4d_{1}d_{3}+5d_{3}^{2}+4(c-c_{2})e_{2}+4(c-c2)e)t^{6}$

$+(-4d_{1}d_{2}-4d_{0}d_{3}+8d_{2}d_{3}+4(c0^{-c_{2})e}3)t^{7}$

$+(02024$
when the origin is not an umbilical point of $z=f(x,y)$ .

Example 2.2. We consider the Blum 6-circle cyclide (the roles of $y,z$ are interchanged with
each other, and $a_{3}$ is replaced $by-a3$ ):

$S:(\nearrow+y^{2}+z^{2})^{2}-2(a_{1}l+a2z^{2})+2a_{3}y^{2}+l^{2}=0$,

where $a_{1}>a2>l>0,a3>l$ . Then the characteristic polynomial at $(0,0,\sqrt{a_{2}\pm m})(m=$

$\sqrt{a_{2}^{2}-\ell^{2}})$ for $S$ reduces to th$e$ following polynomial of degree 8:
$P(t)=4(c-c)t^{2}\{(a_{2}+a_{3})t^{2}-(a_{1}-a_{2})\}\{(a_{3}+l)t^{2}-(a_{1}-l)\}\{(a_{3}-l)t^{2}-(a_{1}+l)\}$ .

Therefore $P(t)=0$ has 6 non-zero simple real roots

$t=\pm\sqrt{\frac{a_{1}-a_{2}}{a+a}}$ , $\pm\sqrt{\frac{a_{1}-\ell}{a3+l}}$, $\pm\sqrt{\frac{a_{1}+l}{a3-l}}$ .
In the degenerate case ($a_{1}=a2>a_{3}=\ell>0$ : a usual torus), Villarceau circles correspond to

two simple roots $\pm\sqrt{\frac{a_{1}-l}{2l}}$.
The first main result is the following theorem conceming the equivalency of one-circle prop-

erty and a fifth-order partial differential equation.
Theorem 2.3. Let $z=f(x,y)$ be a $C^{5}-firnction$ defined in a neighborhood $U_{\delta_{0}}=\{F+y^{2}<$

$\delta_{0}^{2}\}(\delta_{0}>0)$ satisfying the normalization condition (2.1) at $(0,0)$ . Assume that the origin is not
an umbilicalpoint of$M:=\{z=f(x,y),(x,y)\in U_{\delta_{0}}\}$ , that is, $c_{2}-c0= \frac{1}{2}(f_{yy}(0,0)-f_{XX}(0,0))\neq$

$0$ . Let $P(t)$ be the characteristic polynomial (2.11) at the origin for $M$, and $t_{0}\neq 0$ be a real
number such that $P(t_{0})=0,P’(t_{0})\neq 0$ . Then we have the following (i), (ii).

(i) Let $t(x,y),s(x,y)$ be real-valued continuousfunctions defined in a neighborhood of (0,0)

such that, for any $\delta>0$ and any $(x0,y_{0})\in U_{\delta}$ , the set

(2.12) $M\cap\{y-y_{0}=t(x_{0},y_{0})(x-xo)+s(x_{0},yo)(z-f(x0,y_{0}))\}$
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coincides with a circle in a neighborhood of $(x0,y_{0},f(x0,y_{0}))$ . Then, $t(O,0)$ is a real root

of$P(t)=0$. In particular, when $t(0,0)=t_{0},\cdot$ that is, $t(0,0)$ is a non-zero real simple root of
$P(t)=0$, we consider a continuousfunction
(2.13) $T(x,y):= \frac{t(x,y)+f_{X}(x,y)s(x,y)}{1-f_{y}(x,y)s(x,y)}$

defined in a neighborhood of (0,0). Then, $T(x,y)$ is a $C^{1}$ -function satisfying

(2.14) $Z(T(x,y))=0$.
Moreover, if$t(x,y),$ $s(x,y)$ are constant on each circle (2.12), we have the following equa-
tion:

(2.15) $( \partial_{X}+T(x,y)\partial_{y})T(x,y)=\frac{2s(x,y)C(T(x,y))}{l-b(x,y)s(x,y)}=\frac{2S(T)}{K(T)}$

$= \frac{2D(T)R(T)-4(bT+a)C(T)^{2}}{2((b^{2}+1)T+ab)c0+((b^{2}+1)T^{2}-a^{2}-1)c1-2T(abT+a^{2}+1)c2}$ .

Further, $s(x,y),t(x,y)$ are also $C^{1}$ -functions written by using $T(x,y)$ as follows:
(2.16) $s(x,y)= \frac{S(T)}{W(T)}=\frac{D(T)R(T)-2(bT+a)C(T)^{2}}{2TC(T)^{2}+(bD(T)-C(T)C(T))R(T)}$ ,

(2.17) $t(x,y)=(1-b(x,y)s(x,y))T(x,y)-a(x,y)s(x,y)= \frac{TK(T)C(T)-aS(T)}{W(T)}$ .

(ii) Conversely, let $T(x,y)$ be a real-valued $C^{1}$ -flnction defined in a neighborhood of (0,0)

satisfying $T(0,0)=t_{0}$ and equations (2.14), (2.15). Then, $t(x,y),s(x,y)$ defined by (2.17),

(2.16) belong to $C^{1}(U_{\delta})$ for a small $\delta>0$, and satisfj that, for any $(x_{0},y_{0})\in U_{\delta}$, the set

$M\cap\{y-y_{0}=t(x0,y_{0})(x-xo)+s(x0,y_{0})(z-f(x_{0},y_{0}))\}$

coincides with a circle in a neighborhood of $(x_{0},y_{0},f(x0,y_{0}))$ , and that $t(x,y),s(x,y)$ are
constant on this circle.

Since $T$ is a function of fourth order derivatives of $f$, the equation (2.15) is a nonlinear
partial differential equation of fifth order. Indeed, applying the implicit function theorem to
$Z(T)=0$, we have

$( \partial_{x}+T(x,y)\partial_{y})T(x,y)=-\frac{Z_{X}(T)+T(x,y)Z_{y}(T)}{Z(T)}$

$= \frac{-R(T)K(T)^{2}\sum_{j=0}^{5}(\begin{array}{l}5j\end{array})T(x,y)^{j}\partial_{X}^{5-j}\partial_{y}^{j}f+G(T)}{24Z(T)}$ .

Here, $G(T)$ is a polynomial in $T$ of degree 10 whose coefficients are polynomials in $a,$ $b,$ $c_{*}$ ,

$d_{*},$ $e_{*}$ . Noting the non-vanishing coefficient $R(T)K(T)^{2}|_{x=y=0}=(t0+1)(c-c)t_{0}\neq 0$ for the
fifth order part of $(\partial_{X}+T\partial_{y})T$ , we set

(2.18) $N(T):=-K(T)(Z_{X}(T)+TZ_{y}(T)- \frac{K(T)^{2}R(T)}{24}\sum_{j=0}^{5}(\begin{array}{l}5j\end{array})T^{j}\partial_{X}^{5-j}\partial_{y}^{j}f)-2S(T)Z’(T)$.
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Then $N(T)$ is a polynomial in $T$ of degree at most 14 whose coefficients are also polynomials

In $a,b,c_{*},d_{*},e_{*}$ . Hence the equation (2.15) is rewritten as follows:

(2.19) $\sum_{j=0}^{5}(\begin{array}{l}5j\end{array})T^{j}\partial_{X}^{5-j}\partial_{y}^{j}f(x,y)=\frac{24N(T)}{R(T)K(T)^{3}}$ .

Since $T$ satisfying $Z(T)=0$ is an analytic function of $a,b,c_{*},d_{*},e_{*}$ in a neighborhood of a
simple root $T=t_{0}$ , we have the following proposition:

Proposition 2.4. Equation (2.15) is a quasilinear analytic partial differential equation for
$f$ withfifth order principal symbol

$(\xi+T(x,y)\eta)^{5}$ ,

where $\xi,\eta$ are the symbols for $\partial_{X},\partial_{y}$ , respectively.

By this proposition and the well-known elliptic regularity theorem due to Petrowsky and
Morrey, we get the following theorem on a surface containing two continuous families of cir-
cles:

Theorem 2.5. Let $M:z=f(x,y)$ be a $C^{5+\theta}$-class surface satisfying the condition (2.1),

where $\theta(0<\theta<1)$ is an exponent for Holder continuity. Assume that the origin is not an
umbilical point of $M:=\{z=f(x,y),(x,y)\in U_{\delta_{0}}\}$ . Let $P(t)$ be its characteristic polynomial at

(0,0). Suppose that $M$ contains two continuousfamilies ofcircles in the sense of (i) ofTheorem
2.3, where these families correspond to two distinct non-zero real simple roots $t_{1},t_{2}$ of$P(t)=0$,

respectively. Then, $f$ is analytic at $(0,0)$ .
Hereafter we may assume $z=f(x,y)$ is analytic for surfaces containing several continuous

families of circles by this theorem.

Theorem 2.6. Let $M:z=f(x,y)$ be a $C^{5+\theta}$ -class surface satisfying the condition (2.1),

where $\theta(0<\theta<1)$ is an exponent for Holder continuity. Assume that the origin is not an
umbilical point of $M:=\{z=f(x,y),(x,y)\in U_{\delta_{0}}\}$ . Let $P(t)$ be its characteristic polynomial at

(0,0). Suppose that $M$ contains six continuous families ofcircles in the sense of (i) ofTheorem
2.3, where thesefamilies correspond to six distinct non-zero real simple roots $t_{1},$ $\ldots,t_{6}$ of$P(t)=$

$0$, respectively. Then, $f$ is uniquely determined only by the partial derivatives at (0,0) up to

fourth-order. In particular, such surfaces are classified by 11 real parameters.

Indeed, let $M:z=f(x,y)$ be such a surface, and $\{T_{k}(x,y)\}_{k=1}^{6}$ be the functions $T$ corre-
sponding to $\{t_{k}\}_{k=1}^{6}$ , respectively. Then, $f$ is a solution of the following system:

(2.20) $\{\begin{array}{l}Z(T_{k}(x,y))=0,\sum_{j=0}^{5}[Matrix] T_{k}(x,y)^{j}\partial_{X}^{5-j}\partial_{y}^{j}f(x,y)=\frac{24N(T_{k}(x,y))}{R(T_{k}(x,y))K(T_{k}(x,y))^{3}},\end{array}$ $(1\leq k\leq 6)$ .

The system (2.20) is solvable with respect to

$(\begin{array}{l}5j\end{array})\partial_{x}^{5-j}\partial_{y}^{j}f(x,y)$ $(j=0,1,\ldots,5)$
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by using the formula

$\det(T_{k}(x,y)^{j-1})_{j,k=1,\ldots,6}=\prod_{j<k}(T_{j}-T_{k})$
.

Consequently we have an equivalent system to the system (2.20):

(2.21) $\{\begin{array}{l}Z(T_{k}(x,y))=0 (k=1,2,\ldots,6),\partial_{X}^{5-j}\partial_{y}^{j}f(x,y)=G_{j}(\nabla f,\nabla^{2}f,\nabla^{3}f,\nabla^{4}f,T_{1},\ldots, T_{6}) (j=0,1,\ldots,5),\end{array}$

where $G_{j}(j=1,\ldots,6)$ are analytic functions of $\nabla f,\nabla^{2}f,\nabla^{3}f,\nabla^{4}f,$ $T_{1},$ $\ldots,T_{6}$ . However, the
complete integrability of this system is not obtained until now. Instead, we have the following
theorem conceming the finite dimensionality of surfaces containing two continuous families of
circles.

Theorem 2.7. Let $M:z=f(x,y)$ be a $C^{5+\theta}$-class surface satisfying the condition (2.1),

where $\theta(0<\theta<1)$ is an exponent for Holder continuity. Assume that the origin is not an
umbilical point of $M:=\{z=f(x,y),(x,y)\in U_{\delta_{0}}\}$ . Let $P(t)$ be its characteristic polynomial at
(0,0). Suppose that $M$ contains two continuousfamilies ofcircles in the sense of(i) ofTheorem
2.3, where these families correspond to two distinct non-zero real simple roots $t_{1},t_{2}$ of$P(t)=0$,

respectively. Then, $f$ is uniquely determined only by the partial derivatives at (0,0) up to tenth-
order. In particular, such surfaces are classified by 21 real parameters.

The details including calculations and proofs which are not written in this paper will be
published elsewhere.
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