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Abstract

The semi-infinite program (SIP) is normally represented with infinitely
many inequality constraints, and has been much studied so far. However,
there have been very few studies on the SIP involving second-order cone (SOC)
constraints, even though it has important applications such as Chebychev-like
approximation and filter design.

In this paper, we focus on the SIP with a convex objective function and
infinitely many SOC constraints, called the SISOCP for short. We show
that, under a generalized Slater constraint qualification, an optimum of the
SISOCP satisfies the KKT conditions that can be represented only with a
finite subset of the SOC constraints. Next we introduce the regularization and
the explicit exchange methods for solving the SISOCP. We first provide an
explicit exchange method without a regularization technique, and show that it
has global convergence under the strict convexity assumption on the objective
function. Then we propose an algorithm combining a regularization method
with the explicit exchange method. For the SISOCP, we establish global
convergence of the hybrid algorithm without the strict convexity assumption.

1 Introduction
In this paper, we focus on the following semi-infinite program with an infinite number
of second-order cone constraints:

Minimize $f(x)$
(1.1)

subject to $A(t)^{T}x-b(t)\in \mathcal{K}$ for all $t\in T$
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where $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ is a continuously differentiable convex function, $A:\mathbb{R}^{\ell}arrow \mathbb{R}^{n\cross m}$

and $b$ : $\mathbb{R}^{\ell}arrow \mathbb{R}^{m}$ are continuous functions, $T\subseteq \mathbb{R}^{\ell}$ is a given compact set, and
$\mathcal{K}^{m_{i}}\subseteq \mathbb{R}^{m_{i}}(i=1,2, \ldots, s)$ is the second-order cone (SOC), that is, $\mathcal{K}$ $:=\mathcal{K}^{m_{1}}\cross$

$\mathcal{K}^{m}2\cross\cdots\cross \mathcal{K}^{m_{S}}$ with $m=m_{1}+m_{2}+\cdots+m_{s}$ and

$\mathcal{K}^{m:}:=\{\begin{array}{l}\{(x_{1},\tilde{x}^{T})^{T}\in \mathbb{R}\cross \mathbb{R}^{m_{i}-1}|x_{1}\geq\Vert\tilde{x}\Vert\} (m_{i}>1)\mathbb{R}_{+}=\{x\in \mathbb{R}|x\geq 0\} (m_{i}=1).\end{array}$

Throughout this paper, $\Vert\cdot\Vert$ denotes the Euclidean norm defined by $\Vert x\Vert$
$:=\sqrt{x^{T}x}$ ,

and $\tilde{v}$ denotes $(v_{2}, v_{3}, \cdots, v_{m_{i}-1})^{T}\in \mathbb{R}^{m_{i}-1}$ for $v=(v_{1}, v_{2}, \cdots, v_{m_{i}})^{T}\in \mathbb{R}^{m_{i}}$ . For
simplicity, we will often write $(x_{1},\tilde{x})^{T}$ for $(x_{1}, x^{T})^{T}$ .

We call the problem (1.1) a semi-infinite second-order cone problem (SISOCP).
One of typical applications for SISOCP (1.1) is a Chebychev-like approximation
with vector-valued functions. Let $Y\subseteq \mathbb{R}^{n}$ be a given compact set, and $\Phi$ : $Yarrow \mathbb{R}^{m}$

and $F$ : $\mathbb{R}^{\ell}\cross Yarrow \mathbb{R}^{m}$ be given functions. Then, how can we determine a parameter
$u\in \mathbb{R}^{\ell}$ such that $\Phi(y)\approx F(u, y)$ for all $y\in Y$? One relevant approach is to solve
the following problem:

Minimizeu $\max_{y\in Y}\Vert\Phi(y)-F(u, y)\Vert$ (1.2)

which can be rewritten as

$Minimu,r$ize $r$

subject to $(_{\Phi(y)-F(u,y)}r)\in \mathcal{K}^{m+1}$ for all $y\in Y$

by introducing the auxiliary variable $r\in \mathbb{R}$ . If $F$ is affine with respect to $u$ , then
the above problem reduces to SISOCP (1.1) with $\mathcal{K}=\mathcal{K}^{m+1}$ .

When $m=1$ and $\mathcal{K}=\mathbb{R}_{+}$ , SISOCP (1.1) is the classical semi-infinite program
(SIP) [3, 5, 8, 13, 15, 16], which has a wide application in engineering (e.g., the
air pollution control, the robot trajectory planning, the stress of materials, etc.[8,
13] $)$ . So far, many algorithms have been proposed for solving SIPs, such as the
discretization method [3], the local reduction based method [4, 11, 18] and the
exchange method [5, 6, 16]. The discretization method solves the relaxed SIP with
$T$ replaced by a finite set $T^{k}\subseteq T$ , and the sequence of index sets $\{T^{k}\}$ is generated
so that the distancel from $T^{k}$ to $T$ converges to $0$ as $k$ goes to infinity. While this
method is comprehensible and easy to implement, the computational cost tends to
be huge since the cardinality of $T^{k}$ grows unboundedly. In the local reduction based
method, the infinite number of constraints in the SIP is rewritten as a finite number
of constraints with implicit functions. Although the SIP can be reformulated as
a finitely constrained optimization problem by this method, it is not possible in
general to evaluate the implicit functions exactly in a direct manner. The exchange
method solves a relaxed subproblem with $T$ replaced by a finite subset $T^{k}\subseteq T$ . In

lFor two sets $X\subseteq Y$ , the distance from $X$ to $Y$ is defined as dist $(X, Y)$ $:= \sup_{y\in Y}\inf_{x\in X}\Vert x-$

$y\Vert$ .
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this method, $T^{k}$ is updated so that $T^{k+1}\subseteq T^{k}\cup\{t_{1}, t_{2}, \cdots, t_{r}\}$ with $\{t_{1}, t_{2}, \cdots, t_{r}\}\subseteq$

$T\backslash T^{k}$ .
Studies on the second-order cones (SOCs) have been advanced significantly in

the last decade. One of the most popular problems associated with SOCs is the
linear second-order cone program (LSOCP). The primal-dual interior-point method
[1, 12] is well known as an effective algorithm for solving LSOCP, and some software
packages implementing them [17, 19] have been produced. The nonlinear second-
order cone program (NLSOCP) [9, 10, 20] is more complicated and not studied
so much as LSOCP. The second-order cone complementarity problem (SOCCP) is
another important problem involving SOCs. The Karush-Kuhn-Tucker conditions
for LSOCP and NLSOCP are particularly represented as SOCCPs. The smoothing
method [2, 7] is one of useful algorithms for solving SOCCP.

The main purpose of the paper is threefold. First, we provide the optimality
conditions for SISOCP (1.1). The KKT conditions for SISOCP (1.1) could naturally
be described by means of integration and Borel measure since $T$ is infinite. However,
we show that, under Slater’s constraint qualification, the KKT conditions at the
optimum can be represented by using a finite number of elements in $T$ . Second,
we propose an explicit exchange method for solving the SISOCP (1.1) and show its
global convergence under the strict convexity of the objective function. Third, we
propose an algorithm that can solve SISOCP (1.1) without the strict convexity. This
algorithm is a hybrid of the explicit exchange method and the regularization method,
which is known to be effective in handling ill-posed problems. With the help of
regularization, a global convergence of the algorithm can be established for SISOCP
(1.1) without the strict convexity. As the notation used in this paper, $\mathcal{K}\ni x\perp y\in \mathcal{K}$

denotes the SOC complementarity condition, that is, $x^{T}y=0,$ $x\in \mathcal{K}$ and $y\in \mathcal{K}$ .

2 Karush-Kuhn-Tucker Conditions
In this section, we show that the KKT conditions for SISOCP (1.1) can be rep-
resented with finitely many second-order cone constraints. We first introduce the
Slater constraint qualification (SCQ).

Definition 2.1 (SCQ). We say that the Slater Constraint Qualification (SCQ) holds
for SISOCP (1.1) if there exists a point $x_{0}\in \mathbb{R}^{n}$ such that $A(t)^{T}x_{0}-b(t)\in$ int $\mathcal{K}$ for
all $t\in T$ .

Under the SCQ, the following theorem holds.

Theorem 2.2 (Theorem 2.12 [14]). Let $x^{*}\in \mathbb{R}^{n}$ be an optimum of SISOCP (1.1)
and suppose that the $SCQ$ holds for SISOCP (1.1). Then, there exist $p$ indices

$t_{1},$ $t_{2},$
$\ldots,$

$t_{p}\in T$ and Lagmngian multipliers $y^{1},$ $y^{2},$
$\ldots,$

$y^{p}\in \mathbb{R}^{m}$ such that $p\leq n+1$ ,

$\nabla f(x^{*})-\sum_{i=1}^{p}A(t_{i})y^{i}=0$ ,

$\mathcal{K}\ni y^{i}\perp A(t_{i})^{T}x^{*}-b(t_{i})\in \mathcal{K}$ for $i=1,2,$ $\ldots,p$ .
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3 Explicit Exchange Method

In this section, we propose an explicit exchange method for solving SISOCP (1.1).
Moreover, we show that the algorithm has a global convergence property under mild
assumptions. The algorithm proposed in this section requires solving second-order
cone programs (SOCP) with finitely many constraints as subproblems. Let SOCP
$(T’)$ denote the relaxed problem of SISOCP (1.1) with $T$ replaced by a finite subset
$T^{f}$ $:=\{t_{1}, t_{2}, \ldots, t_{p}\}\subseteq T$ . Then, the SOCP $(T^{f})$ can be formulated as follows:

Minimize $f(x)$

SOCP $(T’)$
subject to $A(t_{j})^{T}x-b(t_{j})\in \mathcal{K}(j=1,2, \ldots,p)$ .

We suppose that the subproblem SOCP $(T’)$ can be solved by any suitable existing
algorithm. Let $\overline{x}$ be an optimal solution of SOCP $(T’)$ . Then, $\overline{x}$ satisfies the following
KKT conditions under some constraint qualification [1, 12]:

$\nabla f(\overline{x})-\sum_{t_{j}\in T’}A(t_{j})y_{t_{j}}=0$
,

$\mathcal{K}\ni y_{t_{j}}\perp A(t_{j})^{T}\overline{x}-b(t_{j})\in \mathcal{K}(j=1,2, \ldots,p)$ , (3.1)

where $y_{t_{j}}$ is a Lagrange multiplier vector corresponding to the constraint $A(t_{j})^{T}\overline{x}-$

$b(t_{j})\in \mathcal{K}$ for each $j$ .
Now, we propose the following algorithm.

Algorithm 1 (Explicit exchange method)

Step $0$ . Choose a positive sequence $\{\gamma_{k}\}\subseteq \mathbb{R}_{++}$ such that $\lim_{karrow\infty}\gamma_{k}=0$ . Choose a
finite subset $E^{0}$ $:=\{t_{1}^{0}, \ldots, t_{p}^{0}\}\subseteq T$ and solve SOCP $(E^{0})$ to obtain an optimal
solution $x^{0}$ . Set $k:=0$ .

Step 1. Set $r:=0,$ $T_{0}:=E^{k}$ and $v^{0}:=x^{k}$ . Do the following $(a)-(c)$ :

(a) Find a $t_{new}^{r}\in T$ such that

$A(t_{new}^{r})^{T}v^{r}-b(t_{new}^{r})\not\in-\gamma_{k}e+\mathcal{K}$ . (3.2)

If such a $t_{new}^{r}$ does not exist, i.e.,

$A(t)^{T}v^{r}-b(t)\in-\gamma_{k}e+\mathcal{K}$ (3.3)

for any $t\in T$ , then set $x^{k+1}$ $:=v^{r},$ $E^{k+1}$ $:=T_{r}$ , and go to Step 2.
Otherwise, let

$\overline{T}_{r+1}:=T_{r}\cup\{t_{new}^{r}\}$ ,

and go to (b).

(b) Solve SOCP $(\overline{T}_{r+1})$ to obtain an optimum $v_{r+1}$ and Lagrange multipliers
$y_{t}^{r+1}$ , for $t\in\overline{T}_{r+1}$ .

(c) Let $T_{r+1}$ $:=\{t\in\overline{T}_{r+1}|y_{t}^{r+1}\neq 0\}$ . Set $r:=r+1$ and return to (a).
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Step 2. If $\gamma_{k}$ is sufficiently small, terminate. Otherwise, set $k:=k+1$ and return
to Step 1.

In Step l-(a), $e\in \mathbb{R}^{m}$ is defined as $e:=(e^{1}, e^{2}, \ldots, e^{s})^{T}$ and $e^{i}$ $:=(1,0, \ldots, 0)^{T}\in$

$\mathcal{K}^{m_{i}}$ . To verify (3.3), we have to solve a certain optimization problem on $T$ and check
the nonnegativity of the optimal value. For a detail, see [14]. Since this problem
is not necessarily convex, it is not easy to solve it. But, in this paper, we suppose
that we can obtain a global optimum of this problem every Step 1. In Step l-(b),
SOCP $(\overline{T}_{r+1})$ can be solved by applying an existing method such as the primal-dual
interior point method, the regularized smoothing method, and so on [1, 2, 7, 10, 12].
In Step l-(c), SOCP $(T_{r+1})$ is obtained from SOCP $(\overline{T}_{r+1})$ by removing only the
constraints with zero Lagrange multipliers, then the optimal values of those two
problems are equal. In addition, the feasible region of SOCP $(\overline{T}_{r+1})$ is contained in
that of SOCP $(T_{r})$ . Therefore, we have

$V_{P}(T_{0})\leq V_{P}(\overline{T}_{1})=V_{P}(T_{1})\leq\cdots\leq V_{P}(T_{r})\leq V_{P}(\overline{T}_{r+1})=V_{P}(T_{r+1})\leq\cdots\leq V_{P}(T)<+\infty$,
(3.4)

where $V_{P}(T’)$ denotes the optimal value of SOCP $(T’)$ .
For the proposed method to be welld-defined, Step 1 have to terminate in finitely

many iterations. To ensure this, we suppose the assumptions as follows:

Assumption A. i) Function $f$ is strictly convex over the feasible region of SISOCP
(1.1). ii) In Step $1-(b)$ of Algorithm 1, SOCP $(\overline{T}_{r+1})$ is solvable for each $r.\ddot{\dot{m}}$ )
A sequence generated $\{v^{r}\}$ in every Step 1 of Algorithm 1 is bounded.

Under the Assumption $A$ , the following theorem holds.

Theorem 3.1. [14, Theorem 4.1] Let that Assumption A hold. Then, the inner
iterations in every Step 1 of Algorithm 1 terminate finitely.

Moreover, we have the following theorems for the globally convergent property.

Theorem 3.2. [14, Theorem 4.2] Let Assumption A hold. Let $x^{*}$ be the optimum2of
SISOCP (1.1), and $\{x^{k}\}$ be the sequence generated by Algorithm 1. Then, it follows
that

$\lim_{karrow\infty}x^{k}=x^{*}$ .

4 Regularized Explicit Exchange Method
In the previous section, we proposed the explicit exchange method for SISOCP (1.1)
and analyzed the convergence property. However, to ensure the global convergence,
the strict convexity of the objective function was required (Assumption A). In this
section, we propose a regularized explicit exchange method, and establish global
convergence of the method without assuming the strict convexity.

2From the strictly convexity of $f$ , SISOCP (1.1) has a unique solution.
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Let $\epsilon$ be a positive number, and $T’:=\{t_{1}, t_{2}, \ldots, t_{p}\}$ be a finite subset of
$T$ . The regularized explicit exchange method solves the following SOCP, denoted
SOCP $(\epsilon, T’)$ , in each iteration.

Minimize $\frac{1}{2}\epsilon\Vert x\Vert^{2}+f(x)$

SOCP $(\epsilon, T’)$ (4.1)
subject to $A(t_{j})^{T}x-b(t_{j})\in \mathcal{K}(j=1,2, \ldots,p)$ .

When the function $f$ is convex, $\frac{1}{2}\epsilon\Vert x\Vert^{2}+f(x)$ is strongly convex. Then, if we solve
SOCP $(\epsilon_{k},\overline{T}_{r+1})$ with $\epsilon_{k}>0$ instead of SOCP $(\overline{T}_{r+1})$ in Step l-(b) of Algorithm 1, it
is ensured by Theorem 3.1 that the inner iterations terminate3 finitely. Moreover,
by choosing positive sequences $\{\epsilon_{k}\}$ and $\{\gamma_{k}\}$ both converging to $0$ , the generated
sequence is expected to converge to a solution of SISOCP (1.1). Now we propose
the following algorithm for SISOCP (1.1).

Algorithm 2 (Regularized Explicit Exchange Method)

Step $0$ . Choose positive sequences $\{\gamma_{k}\}\subseteq \mathbb{R}_{++}$ and $\{\epsilon_{k}\}\subseteq \mathbb{R}_{++}$ such that $\lim_{karrow\infty}\gamma_{k}=$

$0,$ $\lim_{karrow\infty}\epsilon_{k}=0$ and $\gamma_{k}=O(\epsilon_{k})$ . Choose a finite subset $E^{0}$ $:=\{t_{1}^{0}, \ldots, t_{l}^{0}\}\subseteq$

$T$ . Set $k$ $:=0$ .

Step 1. Set $r:=0$ and $T_{0}$ $:=E^{k}$ . Solve SOCP $(\epsilon_{k}, T_{0})$ and let $v^{0}$ be an optimum.
Do the following $(a)-(c)$ :

(a) Find $t_{new}^{r}\in T$ such that

$A(t_{new}^{r})^{T}v^{r}-b(t_{new}^{r})\not\in-\gamma_{k}e+\mathcal{K}$ . (4.2)

If such a $t_{new}^{r}$ does not exist, i.e.,

$A(t)^{T}v^{r}-b(t)\in-\gamma_{k}e+\mathcal{K}$ (4.3)

for any $t\in T$ , then set $x^{k+1}$ $:=v^{r}$ and $E^{k+1}$ $:=T_{r}$ , and go to Step 2.
Otherwise, let

$\overline{T}_{r+1}:=T_{r}\cup\{t_{new}^{r}\}$ ,

and go to (b).

(b) Solve SOCP $(\epsilon_{k},\overline{T}_{r+1})$ to obtain an optimum $v^{r+1}$ and Lagrange multipliers
$y_{t}^{r+1}$ , for $t\in\overline{T}_{r+1}$ .

(c) Let $T_{r+1}$ $:=\{t\in\overline{T}_{r+1}|y_{t}^{r+1}\neq 0\}$ . Set $r:=r+1$ and return to (a).

Step 2. Both $\epsilon_{k}$ and $\gamma_{k}$ are sufficiently small, then terminate. Otherwise, set $k:=$

$k+1$ and return to Step 1.

3We can verify Assumption A as follows. Assumption A i) is obvious from the definition of
strict and strong convexity. Assumption A ii) holds, since argmin$\{g(x) |x\in X\}$ is nonempty if $g$

is strongly convex and $X$ is closed. Assumption A m) also holds, since the sequence $\{v^{r}\}$ generated
in Step 1 is contained in the set $L:=\{x|f(x)\leq V_{P}(T)\}$ from (3.4), and $L$ is bounded due to the
strong convexity of $f$ .
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The following theorem shows that a generated sequence globally converges to a
solution of SISOCP (1.1).

Theorem 4.1. [14, Lemma 5.1, Thereom 5.2] Suppose that the $SCQ$ holds for
SISOCP (1.1). Let $\{x^{k}\}$ be a sequence genemted by Algorithm 2. Then, $\{x^{k}\}$ is
bounded, and every accumulation point of $\{x^{k}\}$ solves SISOCP (1.1).

5 Numerical Experiment
In this section, we report some numerical results with Algorithm 2. The program
was coded in Matlab $2008a$ and run on a machine with an $IntelOCore2$ Duo E6850
3. $00GHz$ CPU and $4GB$ RAM. In the experiments, we solve the following SISOCP
with a linear objective function:

Minimize $c^{T}x$

(5.1)
subject to $A(t)^{T}x-b(t)\in \mathcal{K}(\forall t\in T)$

with the index set $T=[-1,1],$ $c\in \mathbb{R}^{15},$ $A_{ij}(t)$ $:=\alpha_{ij}^{0}+\alpha_{ij}^{1}t+\alpha_{ij}^{2}t^{2}+\alpha_{ij}^{3}t^{3}(i=$

$1,2,$
$\ldots,$

$15,$ $j=1,2,$ $\ldots,$
$30)$ and $b_{j}(t)$ $:=\beta_{j}^{0}+\beta_{j}^{1}t+\beta_{j}^{2}t^{2}+\beta_{j}^{3}t^{3}(j=1,2, \ldots, 30)$ . The

second-order cone $\mathcal{K}\subseteq \mathbb{R}^{30}$ is chosen to be one of the following four cases: (i) $\mathcal{K}=$

$\mathcal{K}^{30},$ $(ii)\mathcal{K}=\mathcal{K}^{10}\cross \mathcal{K}^{20},$ $(\ddot{\dot{m}})\mathcal{K}=(\mathcal{K}^{10})^{3}=\mathcal{K}^{10}\cross \mathcal{K}^{10}\cross \mathcal{K}^{10},$ $(iv)\mathcal{K}=(\mathcal{K}^{5})^{6}=\mathcal{K}^{5}\cross$

$\mathcal{K}^{5}\cross \mathcal{K}^{5}\cross \mathcal{K}^{5}\cross \mathcal{K}^{5}\cross \mathcal{K}^{5}$ . In (5.1), all components of $c\in \mathbb{R}^{15}$ are chosen randomly from
[-2, 2]. $\beta_{j}^{0}$ $(j=1,2, \ldots , 30)$ are determined so that $(\beta_{1}^{0}, \beta_{2}^{0}, \ldots, \beta_{30}^{0})^{T}=e\in \mathbb{R}^{30}$ ,
where $e$ is defined as $e=(e^{1}, e^{2}, \ldots, e^{s})^{T}\in \mathcal{K}^{m_{1}}\cross\cdots\cross \mathcal{K}^{m_{s}}$ and $e^{j}$ $:=(1,0, \ldots, 0)\in$

$\mathbb{R}^{m_{j}}$ . In addition, $\alpha_{ij}^{k},$ $\beta_{i}^{l}(i=1,2, \ldots, 15, j=1,2, \ldots , 30, k=0,1,2,3, l=1,2,3)$

are chosen randomly from [-2, 2] so that the origin is an interior feasible point of
(5.1). By using $A(t)$ and $b(t)$ generated in this way, (5.1) satisfies the SCQ.

In Step $0$ of Algorithm 2, we set $\{\epsilon_{k}\}$ and $\{\gamma_{k}\}$ such that $\epsilon_{k}=\gamma_{k}=2^{-k}$ for
each $k$ . Moreover, we choose 10 points $t_{1}^{0},$ $t_{2}^{0},$

$\ldots,$
$t_{10}^{0}\in T$ randomly, and set $E^{0}:=$

$\{t_{1}^{0}, t_{2}^{0}, \ldots, t_{10}^{0}\}$ . In Step l-(a), to find $t_{new}^{r}$ satisfying (4.2), we first check whether
or not (4.2) is satisfied at $t=-1.0,$ $-0.9,$ $-0.8,$ $\ldots,$ $0.9,1.0$ . If we fail to find
$t_{new}^{r}$ among them, then we solve a certain nonconvex problem (For a detai, see
[14] $)$ and check whether or not its optimal value is nonnegative. In Step l-(b), we
solve SOCP $(\epsilon_{k}, \overline{T}_{r+1})$ by the smoothing method [2, 7]. In Step 2, we terminate the
algorithm if $\max(\epsilon_{k}, \gamma_{k})\leq 10^{-6}$ , which means that we always stop the algorithm
when $k=20$ since $\epsilon_{20}=\gamma_{20}=2^{-20}<10^{-6}$ .

The obtained results are shown in Table 1, Table 2, Table 3 and Table 4, in
which cpu(s), $t_{add}$ and $Efin$ denote the CPU time in seconds, the cumulative number
of times $t_{new}^{r}$ is added to $T_{r}$ in Step 1, and the value of $E^{k}$ at the termination of the
algorithm, respectively.

From the tables, we can observe that the computational cost tends to be higher
as the number of SOCs in $\mathcal{K}$ gets larger. For example, in the case of $\mathcal{K}=\mathcal{K}^{30}$ (one
SOC in $\mathcal{K})$ , the cpu time is only 5 seconds or so, whereas it becomes around 20
seconds when $\mathcal{K}=(\mathcal{K}^{5})^{6}$ (six SOCs in $\mathcal{K}$ ). We also note that both $t=-1$ and 1
(the extreme points of $T$ ) belong to $Efin$ for all the test problems. This implies that
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the constraints $A(t)^{T}x-b(t)\in \mathcal{K}$ with $t=-1$ and 1 are both active at the optimal
solutions. For the problems with $E_{Rn}=\{-1,1\}$ , the values of cpu(s) and $t_{add}$ seem
relatively small. In fact, for such problems, the active sets at the optima can often
be identified in a small number of iterations. On the other hand, if $Efin$ has elements
other than-l or 1, then the values of cpu(s) and $t_{add}$ tend to be larger. Especially,
problems A4, B3, C2 and D9 yield the largest values among the test problems with
$\mathcal{K}=\mathcal{K}^{30},$ $\mathcal{K}=\mathcal{K}^{10}\cross \mathcal{K}^{20},$ $\mathcal{K}=(\mathcal{K}^{10})^{3}$ , and $\mathcal{K}=(\mathcal{K}^{5})^{6}$ , respectively. Indeed, for
those four problems, $Efin$ has the third element that could not be identified at an
early stage of the iterations.

Table 1: Results for $\mathcal{K}=\mathcal{K}^{30}$

Table 2: Results for $\mathcal{K}=\mathcal{K}^{10}\cross \mathcal{K}^{20}$
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Table 3: Results for $\mathcal{K}=(\mathcal{K}^{10})^{3}$

Table 4: Results for $\mathcal{K}=(\mathcal{K}^{5})^{6}$
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