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ABSTRACT.We propose a ncw combinatoricstudyof Fractals

1. INTRODUCTION.

First, please look at the following figure.
This Figure 1 is made from two Apollonian gaskets. The Apollonian gasket
is one of well-known fractals as in Fig.2. m\‘ade from a circle packing. Make
a copy of Fig.2 of smaller size and attach it along the circle of some hole
of the original Fig.2; then we get Figure 1. The purpose of this lecture is
to investigate such Fractals as in Figure 1. We will focus on $i$ ‘ideas“ rather
than detailed proofs, wliich will be published later sometime somewhere.

FIG. 1. Fusion of two Apollonian gaskets.

First, you may wonder if this Fig.1 is really a new fractal ?, or it niay
happen that it is homeomorphic with Fig.2. We can show later that this is
really a new one.
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FIG. 2. The Apolloiii$\subset a\iota 1$ Gasket.

Before we go into details, let us see how we can produce new fractals just
by combinilig already well known fractals.

Example 1.
Consider in the plane the Sierpinski gasket $S$ (Figure 3) made from the

equilateral triangle of size ( $=side$ length) 1 with its base $[0,1]$ on the x-axis.

FIG. 3. The Sierpinski Gasket.

Let $S\cup\overline{S}$ be the join of $S$ with its reflection $\overline{S}$ in the x-axis.
This is Figure 4.

Rotate $S$ about the origin by degrees $k\pi/3(k<6)$ , then we get Figure 5
and this is called “the Hexagonal gasket” :

$H= \bigcup_{k<6}S_{k}$
where $S_{k}= \rho^{k}\cdot Sond\rho=\exp(i\frac{\pi}{3})$ .

This hexagonal figure seems to be well known, historically as old as the
Sierpinski gasket itself.
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FIG. 4. Fusion of two Sierpiriski gaskets.

FIG. 5. The Hexagonal gasket.

Next, consider the middle hole of $S$ , the upside-down trimgle of size 1/2.
Atta$(h$ here a copy of Sierpiuski gasket of size 1/2; tliis ii; Figure 6.

We can repeat this procedures of filling up boles by copies of the Sierpinski
gasket. If we do this infinitely many times, we will finally get a fractal set
without any holes of finite sizes, which we called the Sierpinski $($ Sheet” in
the paper [2]. Figure 7 illustrates an example on the way to the Sheet.

Further, applying this technique to the triangular grid of the plane, we
can get the “spread“ version of the sheet; tlie Sierpinski “ Spread Sheet.”
Figure 8 shows lrow it looks like on some intermediate step of its construc-
$ti_{01}i$ .

Observe tliat Figure 4 is very f1 $>i_{11}$ the sense that its homeo-
morphic copy is contained $ixl$ all of Figures 5.6,7,8.

Example 2. The Sierpinski carpet is a fractal made from the square
as in Fig.9. Figure 10 illustrates the fusion of two Sierpinski carpets along
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FIG. 6. Filling $np$ the middle hole.

FIG. 7. On the way to the Sierpinski Sheet.

FIG. 8. On the way to the Sierpinski Spread Sheet.
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FIG. 9. The Sierpinski Carpet.

FIG. 10. Fusion of two Sierpinski carpets.

their boumdary segments. In $contr_{c}^{r}ist$ with the above cases this space is
topologically the same with one Sierpinski carpet, because of the celebrated
theorem due to Whyburn that any two Sierpinski curves are homeomorphic.
(For the definition of the Sierpinski curve see Section 4.)

2. PACKING GASKETS AND FUSION.

For a umified approach to the hitherto $exa$liiples and constructions, it will
be very $natura$)$1$ to introduce the following notions we call “Packing Gaskets”
and $i\iota F\backslash \iota sior$l

$))$

(I) Packing Gaskets
Let $D_{0}$ be a homeomorph of the closed unit disc in the plane. In this $D_{0}$ we
consider a packing $\{D_{i}|i\in\omega\}$ such that each $D_{i}$ is a homeomorph of the
disc. Let $C_{i}’=\partial D_{i}$ denotes the boundary of $D_{i}$ so that $C_{i}$, is a simple closed
curve homeomorphic with the circle. We assume the following conditions:

(1) $\bigcup_{i>0}D_{i}$ is a dense subset of $D_{0}$ ;
(2) open discs $O(D_{i})=D_{i}\backslash C_{i}(i>0)$ are disjoint, and moreover,

$D_{i}\cap D_{j}=C_{i}\cap C_{j}$ is a firiite set for each $0\leq i<j<\omega$ ;
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(3) the diameter $|D_{i}|$ of $D_{i}$ tends to $0$ as $iarrow\infty$ .

This packing $\{D_{i}|i\in\omega\}$ naturally determines a compact nowhere dense
subset $A=D_{0} \backslash \bigcup_{i>0}O(D_{i})$ , which we call the Generalized Circle Packing
Gasket, or briefly, :‘Packing Gasket.” Each $C_{i}$ will be called the “boundary
Jordan circle“, or $briefl\}^{\gamma}$ , “boundary circle“. Note that a sphere minus one
point is homeomorphic with the plane, so that the above definition can
be done on a sphere rather than the plane. Also note that discs in the
definition need not be the stamdard ones. Hence almost $\dot{\subset}\iota 11$ examples we
presented above are our Packing Gaskets. Exceptional are the non-compact
Sheet or Spread Sheet (see Fig. $s7$ and 8), but even those are expressed as
the increasing union of (compact) packing $g_{t}\backslash sket\backslash$ .

Whyburn [6] [7] defined a term “E-continuurn:: : A plane continunm $M$ is
called an E-continuum provided that for any $\epsilon>0$ there are at most a finite
number of complementary domains of $M$ of diameter greater than $\epsilon$ . The
condition (3) above implies that our packing gasket is an E-continuum, and
so, all of Whyburn‘s results can be applied to the packing gaskets. Especially
we get from Theorem 4.4 in [7]

Fact 1. Every packing gasket $A$ is a Peano continuum, that is, compact,
connected and locally connected. Hence, everv two points of $A$ can be joined
by an $\iota rc$ in $A$ .

(II) Fusion
Given two packing gaskets $A_{1}$ and $A_{2},$ $identif\backslash ^{r}ing$ sonie parts of their bound-
ary circles, we can get a new packing $ga\sim sketA_{1}\# A_{2}$ , which we call fusion
of $A_{1}$ and $A_{2}$ . We always assiliie the identified parts are arcs or boundary
circles themselves. The idea of $(if\iota lsion$” will be clear if we see tlie hitherto
$e\backslash xa$lnples. $Figiu\cdot es1$ and 6 are tfie fusions by boundary circles, imd Figures
4 and 10 are the fusions by arcs. $I\mathfrak{i},$

$!I$) $e_{\dot{r}}\iota ti$l$lg$ fusions we get Figures 5, 7 and
8.

Inverting process of fusion will be called “fission.” A question that nat-
urally arises is:
What kind of packing gasket $A$ can be split into the form $A_{1}\# A_{2}$ ?
We will come back to this problem after introducing the notion o$f^{::}\deg$1 $ee$

”

by which we can distinguisli given fractals topologically.
Note that “fusion“ or $fissio\iota$1’ will also be consi(lere$(1$ on one gasket.

3. DEGREE.

Given a point $x$ in a topological space $X$ . How many disjoint arcs $c_{C}^{r}\iota n$ we
draw from the point $x$ ? The maximal number of such arcs is the ‘’degree“
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$\deg(x, X)$ and this is obviously the natural generalization of the notion of
“degree of a vertex” in the graph theory. At first glance it seems for exarnple
tha,$t$ every point of the Sierpinski gasket would liave axx infinite degree. On
the contrary, its degree does not exceed 4, which we want to show now.
Another basic notion in the continuum theory called “order” is helpful : the
order of a point $x$ in X, denoted ord$(x, X)$ , is the minimum of a cardinal $m$

such that for every neighborhood $U$ of $x$ in $X$ we can find an open set $V$

with $x\in V\subset U$ and $|\partial t/^{\gamma}|\leq 7?1_{\grave{J}}$ where $\partial V$ means the topological boundary
$c\cdot l_{\iota^{-}}(V)\backslash V$ of $T/^{\gamma}$ . Noting that an arc is a connected subset. it is easy to see
that the inequality (1$(_{\text{ノ}}^{1}g(x_{\grave{1}}X)\leq$ ord$(x, X)$ holds.

Let $S$ be the $Sie$1 $I$)$inski$ gasket ma$(le$ from the triangle $\triangle$ of verticeb
$\alpha_{1}$ . $\alpha_{2},$ $()_{3}’’$ . Since $ea(\}1$ vertex $\zeta,1_{i}^{1}$ ha.s $aI1$ arbitrary small neighborhood $\ddagger/\nu$

such that $\partial_{6}V$ consists of two points, we have $\deg(\alpha_{i}, S)\leq ord(\alpha_{i}, S)\leq 2$ .
Obviously. the $t\backslash \iota^{r}\prime 0$ edges of $\triangle$ starting at $\alpha_{i}$ show $\deg(\alpha_{i}, S)\geq 2$ . Hence we
get $\deg(\alpha_{i}, S)=2(i=1,2,3)$ . Any vertex other than $Ct_{1}’,$ $\alpha_{2},$ $\alpha_{3}$ is a local
cut point of $S$ , cmd it is easy to see that $\deg(x_{:^{l}}9)=4$ for such a vertex
$x$ . Now let $x$ be any non-vertex point. Suclt a point is either a point on
some edge or a point on no edge: we c\‘all the former point irrational and
$th_{h}e$ latter inner. We will show tliat $\deg(x, S)=3$ . Since $x$ is not a vertex,
we can choose a decreasing sequence of triangle-shaped neighborhoods of $\prime x$

buch that
$\triangle=\triangle_{0}\supset\triangle_{1}\supset\triangle_{1}^{O}\supset\triangle_{2}\supset\triangle_{\mathring{2}}\supset\triangle_{3}\supset\cdots$

where $\Delta_{\mathring{n}}$ is the triamgle $\triangle_{n}$ without its three vertices $a_{1}^{n},$ $\alpha_{2}^{n},$ $\alpha_{3}^{n}$ . There-
fore, ord$(x, S)\leq:^{-}\}$ . For each $i=1,2,$ $.3$ let $L_{i}(x)$ be a path that traces points
$\alpha_{i}^{0},$ $\alpha_{i}^{1}.0_{?}^{2}’\cdot\cdots$ consecutively by edges.

FIG. 11. Degrees of vertices.
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FIG. 12. $x$ “inner“.

FIG. 13. $x$ :‘irrational“.

See Figures 12 and 13. Since these three paths $L_{1}(x)$ . $L_{2}(x),$ $L_{3}(x)$ are
disjoint and reaching to $x$ , we get the result that $\deg(x, S)=3$ . Thus we can
conclude that the degrees of points of the Sierpinski gasket does not exceed
4. Since tlre Apollonian gasket is made froni two homeomorphic copies of
$SieI\cdot i1’iski\backslash ^{\backslash }kets$ with tlie ( $(I^{\cdot}I^{\cdot}es\iota)OIl(lir$l$g$ three vertices identified, the points
of degree 2 disappear. and so, the degrees of points of the Apollonian gasket
are 3 or 4. Sunimarizirig the above results, we get
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Property 1. The degrecs ofpoints of the $Sie\prime^{\tau}pi_{7?}.ski$ gasket or the Apollonian
gasket do not excced 4.

Now let us consider the exarnple $S\cup\overline{S}$ of Figure 4 $Wl($ l is a fusion of two
Sierpinski gaskets by the edge [0,1]. By directly counting the number of arcs
starting a point, it will be easy to see that in this fusion the points $0$ and
1 have degree 3, the vertices on (0,1) (that is, binary rationals between $0$

and 1) have degree 6, and that the non-vertex points on [0,1] have degree 4.
Hence the points of big degree 6 appear on the identified edge densely. Note
that in general the degree does not decrease by a homeomorphic embedding.
So, combining with Property 1 we get

Property 2. In the fusion $S\cup\overline{S}$ of two Sierpinski gaskets the identified
edge $[0,1]$ has a dense subset of points of degree 6. Consequently, $S\cup\overline{S}$ is
not $e\tau\gamma ibe(ldable\cdot into$ either the Sierpinski gasket or the Apollonian gasket,
and any homeomorphic embedding of $S\cup\overline{S}$ into itself maps the edge $[0_{\dot{t}}1]$

into itself.
We can now examine Fig. 1, the fusion of two Apollonian gaskets $A_{1}\cup A_{2}$

along souie boundary circle. By the same reason as above, any embedding
of this fusion into itself maps the identified boundary circle into itself. Since
any homeomorpfiic ernbedding of the circle into itself is an onto holneomor-
phism. we crm $con(,1n(le$ that

Property 3. In the fusion (Figure 1) of two Apollonian gaskets along some
boundary circle $ar\iota y$ homeomorphic embedding of this fusion into itself maps
the identified boundary circle onto itself.

4. SIERPINSKI CURVE OR CARPET.

Now we consider the Sierpinski curve or carpet, and this is topologically
quite different from the Sierpinski gasket; for example, we will see that in a
Sierpinski curve any point $ha^{\gamma}>$ the degree $c$ , the cardinal of the continuum.

A Sierpinski curve is, by definition, a compact, connected, locally con-
nected, nowhere-dense subset of the plane that has the property that any two
boruidaries of complementary domains are pairwise-disjoint simple closed
curves. The most well known example of a Sierpiiiski curve is the SierpiIiski
(:arpet made from the square in the plane. Whyburn showed that

Fact 2 (NWhyburn [4]). Any two $S\cdot iery,ir\iota ski$ curves are homeomorphic.

Let $A=D_{0} \backslash \bigcup_{i>0}O(D_{j})$ be a Sierpinski curve so that the boundary
circles $C_{i}=\partial D_{i}(i\in\omega)$ are disjoint.

Collapse each $C_{i}(i>0)$ to a point $c_{i}$ . then we get a quotient space home-
omorphic with the standard disc where points $q(i>0)$ forin a countable
dense subset. That this quotient space is Hausdorff is ensured by our (,on-

dition (3) of $Pac^{\backslash }ki$1$lgG_{i\lambda S}kets$ in Section 2 tlaat the diameter $|D_{i}|$ decreases
to $0_{\epsilon\lambda_{\{}^{t}}\prime iarrow\infty$. Since in the standard disc it is $ea_{\backslash )}^{1}y$ to find c-many disjoint
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arcs avoiding amy given countable set, we get the following result. (For tlie
detailed proof see [3]. $)$

Property 4. Every point of the Sierpinski curve has the de.qree $c$ ,
the cardinal of the continuum.

From this result we know that the Sierpinski carpet can not be embedded
into any packing gaskets of finite degrees suclr as thc Sierpinski $g_{\dot{c}\lambda}:^{\backslash },ket$ or
the Apollonian grmsket. But the coriverse is true; namely,

Fact 3. Any packing gasket is embeddable into the Sierpinski $c$arpet.

This is due to the well-known universal property of tlie SierpiIiski curve or
carpet that any compact nowhere dense subset in the plane is embeddable
into it. Without recourse to this general property, we can give an alternative,
very geometric proof by using fusions:

Proof. Let. $A=D_{0} \backslash \bigcup_{l>0}O(D_{i})$ be an arbitrary packing gasket with the
boundary circles $C_{i}=\partial D_{i}(i\in\omega)$ . and place it on the sphere. Attach along
every boundary circle $C_{i}(i\in\omega)$ a Sierpinski curve $B_{i}$ . Then the resulting
fusion $\hat{A}=A\# B_{0}\# B_{1}\# B_{2}\cdots$ is another Sierpinski curve, because all the
boundary circles of $A$ are nielted away in A. 口

As for $ftlS$]$on$
” of Sierpinski curves, due to Fact 2, nothing new is pro-

duced by fusion, $\dot{\zeta}md$ this is what we pointed out at the end of Section 1.
Figure 9 is homeomorphic with Figure 10 ! In spite of this fact, if we repeat
fusions infinitely many times, we cam get a new topological object, called “the
universal l-dimensional pseudo-boundary of the Euclidean plane’:, which is
introduced by Geoghagen and Summerhill and well studied in the field of
infinite-dimensional topology (see [1].[2]).

5. $SPLI^{r}1^{\urcorner}TING$ OR FISSION.

Now let us exarniiie the inverting process of fusion which we may call
fission. Given a packing $g_{\dot{c}i_{\kappa^{\tau}}},ketA$ , cem we split it into two packing gaskets
$A=A_{1}\# A_{2}$ ?
For the Sierpinski curve or carpet the answer is definitely Yes, as illustrated
in Example 2, thanks to Fact 2. We will show that the answer is No for the
Sierpinski gasket. Before going into the proof, we need to clarify the notion
of our splitting or fission.

Let $A=D_{0} \backslash \bigcup_{i>0}O(D_{i})$ be a packing gasket with the $b_{ot1}nd_{c1I}’\cdot y$ circles
$C_{i}=\partial D_{i}(i\in\omega)$ . Let $l$ be a curve in $A$ that is a simple closed curve or a
finite union of disjoint arcs. If $A$ is split into two packing gaskets $A=A_{1}\# A_{2}$

in such a way as $A_{1}\cap A_{\underline{J}}=l$ , we call this splitting $i$ ‘fission“ amd the curve $l$

as its $i(fission$ curve.” In case $l$ is a finite union of disjoint arcs, we further
assume that the end points of the $ar(:s$ belong to some boundary circles.
Note that, because of the condition (2) of packing gasket (see Section 2),
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this fission curve $l$ must satisfy the following condition:

$(*)l\cap C_{i}$ is a finite set for each $i\in\omega$ .

Property 5. The Sierpinski gasket does not contain any are $l$ as in the
above $(*)$ . Consequently, neither the $S\prime ie\eta^{r}inski$ gasket nor the Apollonian
gasket $ca7?$. be decomposed as $thc$ fusion of two packing gasket,$\backslash$ .

Proof. Let $S$ be the Sierpinski gaskert made from the triangle $\Delta$ of vertices
$\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ , and let $t/^{\gamma}dei_{1}ote$ the set of all vertices ot$h_{h}er$ than $\alpha_{1},$ $\alpha_{2},$ $\alpha\gamma_{\dot{l}}$

that is, the set of all points of degree 4. $S_{11}p\iota$)$osc)$ there exists $\dot{\mathfrak{c}}111$ arc $t$

satisfying the above coridition $(*)$ . Let $a,$ $b$ be the end points of $l$ . Since in
the Sierpinski gasket any two points are separated by some finite subset of $V_{J}$.
we can find a vertex $v\in\nu\cap l$ which separates $a$ and $b$ . Let $e_{i}(i=], 2,3,4)$

be the four edges starting from $v$ . Then our condition $(*)$ implies that
$l\cap(e_{1}\cup e_{2}\cup e_{3}\cup e_{4})$ is a finite set. By shortening the length of the edges
$e_{i}$ we can make that $l\cap(e_{1}\cup e_{2}\cup e_{3}\cup e_{4})\backslash \{v\}$ is an empty set. Then $l_{\dot{C}^{-}}111d$

$e_{i}(i=1,2,3,4)$ form six disjoiiit arcs starting from $v$ . Hence $\deg(v, S)\geq 6$

and this contradicts Property 1. $\square$

The notion of “fission“ will be closely related with that of 4“percolation.”

6. APPENDIX.

With respect to fUsion or fission the Sierpinski gasket and the Sierpinski
carpet are the extremes. The former can not be split, but the latter can be
very easily. We may consider various packing gaskets which are in-between
these two extremes. Let $tlS$ call a sequence $S_{1},$ $S_{2},$ $\cdots S_{\gamma p}$ of distinct boundary
circles as a loop of size $n$ if each $S_{i}\cap S_{i+1}$ is non-empty for each $1\leq i\leq n$ ,

where $S_{n-\{-\cdot 1}=S_{1}$ . Then we can define the loop size of a packing gasket as
a minimal mimber of sizes of such loops in the gasket. Tlie loop size of the
Apollonian gasket is 3. The construction of the Apollonian gasket $wa_{A}^{\backslash }$ al-
ready generalized to make $pa(king$ gaskets of loop size $\geq 4$ , by geophysicists;
they call “space-filling bearings.” See for $extAmple$ , G.Oron, H.J.Herrmann
“Generalization of spaco-fillilig}$)e_{r\mathfrak{R}1}\cdot ings$ to arbitrary loop size“ J.Phys. $A$ :
Math. Gen. 33(2000), 1417-1.434.

We can also consider an example which is almost a Sierpinski curve except
that some boundary circles are tangent on the outmost circle. See Fig.14.
Precisely speaking, consider a packing gasket $A=D_{0} \backslash \bigcup_{i>0}O(D_{i})$ with two
kinds of $bou$1$1d_{\dot{c}iJ}\cdot y$ circles $C_{i}=\partial D_{i}(i\in\omega\backslash \{0\}=\Lambda_{0}\oplus\Lambda_{1})$ such that

(1) eacli $C_{i}(i\in\Lambda_{0})$ is tangent at one point to the outmost circle $C_{0}$ , and
those tangent points forrn a (lense subset of $C_{0}:$

,

(2) each $C’?\cdot(i\in\Lambda_{J})$ is disjoirit from others $C_{j}(j\in\omega\backslash \{i\})$ .

Researches on this kind of packirig gaskets wilJ be our future task.
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FIG. 14. $C_{i}(i\in\Lambda_{0})$ .

Finally, please enjoy the following picture, Fig.15.

FIG. 15. $T1_{1}e$ Apollo, Pyramids and tlie Nile.
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