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NEW FRACTALS WOVEN BY OLD ONES

AKIO KATO

ABSTRACT. We propose a new combinatoric study of Fractals.

1. INTRODUCTION.

First, please look at the following figure.
This Figure 1 is made from two Apollonian gaskets. The Apollonian gasket
is one of well-known fractals as in Fig.2. made from a circle packing. Make
a copy of Fig.2 of smaller size and attach it along the circle of some hole
of the original Fig.2; then we get Figure 1. The purpose of this lecture is
to investigate such Fractals as in Figure 1. We will focus on “ideas” rather
than detailed proofs, which will be published later sometime somewhere.

Fi1G. 1. Fusion of two Apollonian gaskets.

First, you may wonder if this Fig.1 is really a new fractal 7, or it may
happen that it is homeomorphic with Fig.2. We can show later that this is
really a new one.
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Fic. 2. The Apollonian Gasket.

Before we go into details, let us see how we can produce new fractals just
by combining already well known fractals.

Example 1.
Consider in the plane the Sierpinski gasket S (Figure 3) made from the
equilateral triangle of size (=side length) 1 with its base [0,1] on the x-axis.

Fi1Gc. 3. The Sierpinski Gasket.

Let SU S be the join of S with its reflection S in the x-axis.
This is Figure 4.

Rotate S about the origin by degrees kxn/3 (k < 6), then we get Figure 5
and this is called “the Hexagonal gasket” :

H= U Sk where Sg = p*-S and p:exp(i%).
k<6 :

This hexagonal figure seems to be well known, historically as old as the
Sierpinski gasket itself.
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F1G. 5. The Hexagonal gasket.

Next, consider the middle hole of S, the upside-down triangle of size 1/2.
Attach here a copy of Sierpinski gasket of size 1/2; this is Figure 6.

We can repeat this procedures of filling up holes by copies of the Sierpinski
gasket. If we do this infinitely many times, we will finally get a fractal set
without any holes of finite sizes, which we called the Sierpinski “ Sheet” in
the paper [2]. Figure 7 illustrates an example on the way to the Sheet.

Further, applying this technique to the triangular grid of the plane, we
can get the “spread” version of the sheet; the Sierpinski “ Spread Sheet.”
Figure 8 shows how it looks like on some intermediate step of its construc-
tion.

Observe that Figure 4 is very fundamental in the sense that its homeo-
morphic copy is contained in all of Figures 5,6,7,8.

Example 2. The Sierpinski carpet is a fractal made from the square
as in Fig.9. Figure 10 illustrates the fusion of two Sierpinski carpets along
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Fi1G. 8. On the way to the Sierpinski Spread Sheet.
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F1G. 10. Fusion of two Sierpinski carpets.

their boundary segments. In contrast with the above cases this space is
topologically the same with one Sierpinski carpet, because of the celebrated
theorem due to Whyburn that any two Sierpinski curves are homeomorphic.
(For the definition of the Sierpinski curve see Section 4.)

2. PACKING GASKETS AND FUSION.

For a unified approach to the hitherto examples and constructions, it will
be very natural to introduce the following notions we call “Packing Gaskets”
and “Fusion.”

(I) Packing Gaskets
Let Dy be a homeomorph of the closed unit disc in the plane. In this Dy we
consider a packing {D; |7 € w} such that each D; is a homeomorph of the
disc. Let C; = 9D; denotes the boundary of D; so that C; is a simple closed
curve homeomorphic with the circle. We assume the following conditions:

(1) U;so Ds is a dense subset of Dy;
(2) open discs O(D;) = D;\C; (i > 0) are disjoint, and moreover,
D; N D; = C;NCj is a finite set for each 0 <7 < j <wj
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(3) the diameter |D;| of D; tends to 0 as i — oc.

This packing {D; | ¢ € w} naturally determines a compact nowhere dense
subset A = Dg \ ;5 O(D;), which we call the Generalized Circle Packing
Gasket, or briefly, “Packing Gasket.” Each C; will be called the “boundary
Jordan circle”, or briefly, “boundary circle”. Note that a sphere minus one
point is homeomorphic with the plane, so that the above definition can
be done on a sphere rather than the plane. Also note that discs in the
definition need not be the standard ones. Hence almost all examples we
presented above are our Packing Gaskets. Exceptional are the non-compact
Sheet or Spread Sheet (see Fig.s 7 and 8), but even those are expressed as
the increasing union of (compact) packing gaskets.

Whyburn [6] [7] defined a term “E-continuum”™: A plane continuum M is
called an E-continuum provided that for any € > 0 there are at most a finite
number of complementary domains of M of diameter greater than €. The
condition (3) above implies that our packing gasket is an E-continuum, and
s0, all of Whyburn’s results can be applied to the packing gaskets. Especially
we get from Theorem 4.4 in [7]

Fact 1. Every packing gasket A is a Peano continuum, that is, compact,
connected and locally connected. Hence, every two points of A can be joined
by an arc in A.

(II) Fusion

Given two packing gaskets A; and A,, identifying some parts of their bound-
ary circles, we can get a new packing gasket A; ff Ag, which we call fusion
of A, and Az. We always assume the identified parts are arcs or boundary
circles themselves. The idea of “fusion” will be clear if we see the hitherto
examples. Figures 1 and 6 are the fusions by boundary circles, and Figures
4 and 10 are the fusions by arcs. Repeating fusions we get Figures 5, 7 and
8.

Inverting process of fusion will be called “fission.” A question that nat-
urally arises is:
What kind of packing gasket A can be split into the form A;f Ag ?
We will come back to this problem after introducing the notion of “degree”
by which we can distinguish given fractals topologically.
Note that “fusion” or “fission” will also be considered on one gasket.

3. DEGREE.

Given a point z in a topological space X. How many disjoint arcs can we
draw from the point z ? The maximal number of such arcs is the “degree”

10
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deg(z, X) and this is obviously the natural generalization of the notion of
“degree of a vertex” in the graph theory. At first glance it seems for example
that every point of the Sierpinski gasket would have an infinite degree. On
the contrary, its degree does not exceed 4, which we want to show now.
Another basic notion in the continuum theory called “order” is helpful : the
order of a point x in X, denoted ord(x, X), is the minimum of a cardinal m
such that for every neighborhood U of z in X we can find an open set V
with € V C U and |0V| < m, where 8V means the topological boundary
cx(V)\V of V. Noting that an arc is a connected subset, it is easy to see
that the inequality deg(x, X) < ord(z, X) holds.

Let S be the Sierpinski gasket made from the triangle A of vertices
a1, a2, ag. Since each vertex a; has an arbitrary small neighborhood V
such that gV consists of two points, we have deg(a;, S) < ord(ay, S) < 2.
Obviously, the two edges of A starting at «; show deg(«;, S) > 2. Hence we
get deg(w, S) = 2 (i = 1,2,3). Any vertex other than a1, ag, a3 is a local
cut point of S, and it is easy to see that deg(x,S) = 4 for such a vertex
z. Now let  be any non-vertex point. Such a point is either a point on
some edge or a point on no edge; we call the former point érrational and
the latter inner. We will show that deg(x, S) = 3. Since x is not a vertex,
we can choose a decreasing sequence of triangle-shaped neighborhoods of x
such that

A=20AgD A DA?DAQDA%DA:}D"'
where A} is the triangle A, without its three vertices af, af, af. There-
fore, ord(z, S) < 3. For each i = 1,2, 3 let L;(z) be a path that traces points

a?, ol of;;z -+« consecutively by edges.

Fic. 11. Degrees of vertices.

11
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Avxu AV, xv.' 2

Fic. 12. x “inner”

AVA AVA

2 N AV’AVA Avxu AV"‘ AVXVA AVAvAVA A"VA N2

Fi1c. 13. x “irrational”.

See Figures 12 and 13. Since these three paths Li(z), La(x), L3(z) are
disjoint and reaching to x, we get the result that deg(x, S) = 3. Thus we can
conclude that the degrees of points of the Sierpinski gasket does not exceed
4. Since the Apollonian gasket is made from two homeomorphic copies of
Sierpinski gaskets with the corresponding three vertices identified, the points
of degree 2 disappear, and so, the degrees of points of the Apollonian gasket
are 3 or 4. Summarizing the above results, we get

12
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Property 1. The degrees of points of the Sierpinski gasket or the Apollonian
gasket do not exceed 4.

Now let us consider the example SUS of Figure 4 which is a fusion of two
Sierpinski gaskets by the edge [0,1]. By directly counting the number of arcs
starting a point, it will be easy to see that in this fusion the points 0 and
1 have degree 3, the vertices on (0,1) (that is, binary rationals between 0
and 1) have degree 6, and that the non-vertex points on [0,1] have degree 4.
Hence the points of big degree 6 appear on the identified edge densely. Note
that in general the degree does not decrease by a homeomorphic embedding.
So, combining with Property 1 we get

Property 2. In the fusion S U S of two Sierpinski gaskets the identified
edge [0,1] has a dense subset of points of degree 6. Consequently, SU S is
not embeddable into either the Sierpinski gasket or the Apollonian gasket,
and any homeomorphic embedding of S U S into itself maps the edge [0,1]
into itself.

We can now examine Fig.1, the fusion of two Apollonian gaskets A; U A,
along some boundary circle. By the same reason as above, any embedding
of this fusion into itself maps the identified boundary circle into itself. Since
any homeomorphic embedding of the circle into itself is an onto homeomor-
phism, we can conclude that

Property 3. In the fusion (Figure 1) of two Apollonian gaskets along some
boundary circle any homeomorphic embedding of this fusion into itself maps
the identified boundary circle onto itself.

4. SIERPINSKI CURVE OR CARPET.

Now we consider the Sierpinski curve or carpet, and this is topologically
quite different from the Sierpinski gasket; for example, we will see that in a
Sierpinski curve any point has the degree c, the cardinal of the continuum.

A Sterpinski curve is, by definition, a compact, connected, locally con-
nected, nowhere-dense subset of the plane that has the property that any two
boundaries of complementary domains are pairwise-disjoint simple closed
curves. The most well known example of a Sierpinski curve is the Sierpinski
carpet made from the square in the plane. Whyburn showed that

Fact 2 (Whyburn [4]). Any two Sierpinski curves are homeomorphic.

Let A = Do\ ;50 O(D;) be a Sierpinski curve so that the boundary
circles C; = 9D; (i € w) are disjoint.

Collapse each C; (i > 0) to a point ¢;, then we get a quotient space home-
omorphic with the standard disc where points ¢; (i > 0) form a countable
dense subset. That this quotient space is Hausdorff is ensured by our con-
dition (3) of Packing Gaskets in Section 2 that the diameter |D;| decreases
to 0 as ¢ — oo. Since in the standard disc it is easy to find c-many disjoint
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arcs avoiding any given countable set, we get the following result. (For the
detailed proof see [3].)

Property 4. Every point of the Sierpinski curve has the degree c,
the cardinal of the continuum.

From this result we know that the Sierpinski carpet can not be embedded
into any packing gaskets of finite degrees such as the Sierpinski gasket or
the Apollonian gasket. But the converse is true; namely,

Fact 3. Any packing gasket is embeddable into the Sierpinski carpet.

This is due to the well-known universal property of the Sierpinski curve or
carpet that any compact nowhere dense subset in the plane is embeddable
into it. Without recourse to this general property, we can give an alternative,
very geometric proof by using fusions:

Proof. Let A = Dy \J;5o O(D;) be an arbitrary packing gasket with the
boundary circles C; = dD; (i € w), and place it on the sphere. Attach along
every boundary circle C; (¢ € w) a Sierpinski curve B;. Then the resulting
fusion A = At Bol B1ff Bo - -+ is another Sierpinski curve, because all the
boundary circles of A are melted away in A O

As for “fusion” of Sierpinski curves, due to Fact 2, nothing new is pro-
duced by fusion, and this is what we pointed out at the end of Section 1.
Figure 9 is homeomorphic with Figure 10 ! In spite of this fact, if we repeat
fusions infinitely many times, we can get a new topological object, called “the
universal 1-dimensional pseudo-boundary of the Euclidean plane”, which is
introduced by Geoghagen and Summerhill and well studied in the field of
infinite-dimensional topology (see [1],[2]).

5. SPLITTING OR. FISSION.

Now let us examine the inverting process of fusion which we may call

fission. Given a packing gasket A, can we split it into two packing gaskets
A=A1fAx?
For the Sierpinski curve or carpet the answer is definitely Yes, as illustrated
in Example 2, thanks to Fact 2. We will show that the answer is No for the
Sierpinski gasket. Before going into the proof, we need to clarify the notion
of our splitting or fission.

Let A = Do\ ;50 O(D;) be a packing gasket with the boundary circles
C; = 0D; (i € w). Let | be a curve in A that is a simple closed curve or a
finite union of disjoint arcs. If A is split into two packing gaskets A = A; § A,
in such a way as A; N Ay = [, we call this splitting “fission” and the curve [
as its “fission curve.” In case [ is a finite union of disjoint arcs, we further
assume that the end points of the arcs belong to some boundary circles.
Note that, because of the condition (2) of packing gasket (see Section 2),

14
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this fission curve [ must satisfy the following condition:

(*) 1N Cjis a finite set for each i € w.

Property 5. The Sierpinski gasket does not contain any arc l as in the
above (x). Consequently, neither the Sierpinski gasket nor the Apollonian
gasket can be decomposed as the fusion of two packing gaskets.

Proof. Let S be the Sierpinski gasket made from the triangle A of vertices
ay, o2, a3, and let V' denote the set of all vertices other than «q, a9, a3,
that is, the set of all points of degree 4. Suppose there exists an arc [
satisfying the above condition (*). Let a, b be the end points of . Since in
the Sierpinski gasket any two points are separated by some finite subset of V,
we can find a vertex v € V N[ which separates a and b. Let ¢; (i = 1,2, 3,4)
be the four edges starting from v. Then our condition (%) implies that
IN(e1UesUesUey) is a finite set. By shortening the length of the edges
e; we can make that [N (e; Ueg UegUeq)\{v} is an empty set. Then [ and
e; (i =1,2,3,4) form six disjoint arcs starting from v. Hence deg(v, S) > 6
and this contradicts Property 1. O

The notion of “fission” will be closely related with that of “percolation.”

6. APPENDIX.

With respect to fusion or fission the Sierpinski gasket and the Sierpinski
carpet are the extremes. The former can not be split, but the latter can be
very easily. We may consider various packing gaskets which are in-between
these two extremes. Let us call a sequence Si, So, - - - S, of distinct boundary
circles as a loop of size n if each S; N S;,1 is non-empty for each 1 < i < n,
where 5,41 = S;. Then we can define the loop size of a packing gasket as
a minimal number of sizes of such loops in the gasket. The loop size of the
Apollonian gasket is 3. The construction of the Apollonian gasket was al-
ready generalized to make packing gaskets of loop size > 4, by geophysicists;
they call “space-filling bearings.” See for example, G.Oron, H.J.Herrmann
“Generalization of space-filling bearings to arbitrary loop size” J.Phys.A:
Math. Gen. 33(2000), 1417-1434.

We can also consider an example which is almost a Sierpinski curve except
that some boundary circles are tangent on the outmost circle. See Fig.14.
Precisely speaking, consider a packing gasket A = Dg \ {J;50 O(D;) with two
kinds of boundary circles C; = 8D; (¢ € w\{0} = Ay @ Ay) such that

(1) each C; (i € Ag) is tangent at one point to the outmost circle Cy, and
those tangent points form a dense subset of Cy;

(2) each C; (i € Ay) is disjoint from others C; (5 € w\{i}).

Researches on this kind of packing gaskets will be our future task.

15



16

AKIO KATO

FiG. 14. C; (‘i € Ao)

Finally, please enjoy the following picture, Fig.15.

F1Gg. 15. The Apollo, Pyramids and the Nile.
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