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1 Introduction

In this note, we consider the initial-boundary value problem on the half line for a
damped wave equation with a nonlinear convection term:

Ut — Uy + U + f(u)z =0, x>0,1t>0,
u(0,t) = u_, t>0,
(1.1)
lim u(z,t) = ug, t>0,
—00
u(z,0) = up(x), w(z,0)=u;(x), z >0,

where the function f(u) is a given C? function satisfying f(0) = 0 and uy are given
constants u_ < uy = 0 and we assume that

If/(0)] <1, f(u)>0 for wuc€]u_,0). (1.2)

In Ueda-Kawashima [8], it is pointed out that by applying the Chapman-Enskog ex-
pansion to (1.1), the viscous conservation law

wy + f(w)z = (“(w)ww):ca 4 (1'3)
is derived as the second order approximation of the expansion, where pu(w) = 1 —
(f'(w))?. They also pointed out that the sub-characteristic condition | f'(w)| < 1 implies
the parabolicity of (1.3) and this means that the dissipative structure for ¢ — oo of
(1.1) is similar to the one for viscous conservation laws. Actually, they showed in [8]
that in the level of diffusion waves, the asymptotic behavior of the solution of damped
wave equation with convection term is well approximated by the one of the viscous
conservation law of the form (1.3).

The purpose of this note is to show that in the level of stationary waves, behavior of
the solution for damped wave equation is well approximated by the viscous conservation
law. ;

The asymptotic stability of stationary waves for viscous conservation law in the
half space is investigated by Liu-Matsumura-Nishihara [3], Liu-Nishihara [4], Ueda-
Nakamura-Kawashima [9] and Hashimoto-Matsumura [1]. Liu-Matsumura-Nishihara
[3] deal the case that the flux f(u) is convex (f”(u) > 0) and showed not only the
stability of stationary waves but also the one of superposition of stationary waves and
rarefaction wave. On the other hand, Liu-Nishihara [4] treated the case that the flux
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is not necessarily convex and showed the asymptotic stability of non-degenerate sta-
tionary waves. The asymptotic stability of higher order degenerate stationary waves
are investigated by Ueda-Nakamura-Kawashima in [9] and they dealt the case where
the flux is convex except for infinite direction. Hashimoto-Matsumura [1] showed the
asymptotic stability of degenerate stationary waves under the condition where the flux
is not necessarily convex.

According to the investigation of Ueda-Kawashima (8], we can expect that the so-
lution of (1.1) and (1.2) with the following flux of three types (I), (II), (III):

M £ >0 |F(0)] <1,
(I f(u) =2 ()" + O(|u**?), foru—0,(g€N),

(II) 0 < |f(0)] < 1.

U_ uy =0 T u,= 0

figure of (I) and (II) figure of (III)

is also tends to the stationary wave as time tends to infinity. Indeed, Ueda [7] showed
that if the flux f(u) satisfies

f"(uw) >0, |f(w)]<1 for we[u-,0], (1.4)

then the solution of (1.1) tends toward the stationary solution ¢, provided that the
initial perturbation is suitably small. Here, the stationary solution ¢ = ¢(z) is defined
by the solution of the stationary problem corresponding to (1.1):

f(¢) = ¢:E’ > 0»
#O) = u-, lim ¢(a) =0.

This note is direct consequence of Ueda (7] and Hashimoto-Matsumura [1]. That is,
we apply the result of Ueda [7] to the general convection term (I), (II), (III). We also
clear that for the asymptotic stability of stationary waves, it is enough to assume the
sub-characteristic condition only at the far field, that is | f'(0)| < 1.

The second purpose of this paper is to derive the time decay estimate of the dif-
ference u(z,t) — ¢(z), by employing the space-time weighted energy estimate used in
Kawashima-Matsumura [2] and Nishikawa [6].

Before closing this section, we give some notations used in this note. For 1 < p < oo,
We denote by L? = L2(R,) the usual Lebesgue space over R, with the norm || - ||z,
and H! = H'(R,) the corresponding first order Sobolev space with the norm || - || 1.
Moreover, H} = H}(R,) denotes the space of functoins f € H! with f(0) = 0, as
a subspace of H'. For o > 0, L2 = L2(R,) denotes the polynomially weighted L?
space with the norm || f||zz == |(1 + 2)*f(z)||z>, while L ., = L2 .., (R,) denotes the
exponentially weighted L? space with the norm ||f||zz = |[e**f(z)||12. Let HS =

o,exp

(1.5)



H;(R, ), which denotes the weighted Sobolev space corresponding to L2, that is
H: ={ue L% 0fueL? for 0 <k < s}

al ™~z

2 Main results and Reformulation of the problem

In this section, we give the statement of our main theorems. We state results separately
in terms of the convection condition (I), (II) and (III). To complete this procedure, we
first review the fundamental properties of the stationary solution ¢(z) which satisfies
(1.5). For its proof, we refer the reader to [3, 4, 7].

Lemma 2.1. Suppose that (1.2). Then the stationary problem (1.5) has a unique
smooth solution ¢(z) satisfying u_ < ¢(z) < 0 and ¢,(x) > 0 for x > 0. Moreover, for
the non-degenerate case f'(0) < 0, we have

|056(z)| < Ce™, 220

for each nonnegative integer k. On the other hand, for the degenerate case f'(0) = 0,
we obtain

Bzb(@)| < CA+2)™, 220
for each nonnegative integer k.
Now, we state our main theorems. The first theorem is asymptotic stability of the
solution to (1.1) with the flux (I).

Theorem 2.2 (The case I).
(i)(Asymptotic stability) Suppose that (1.2) hold true. Assume that up — ¢ € H*
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and uy; € L2 Let ¢(z) be the stationary solution satisfying the problem (1.5). Then

there exists a positive constant €1 such that, if ||up — Pl + [|urllzz < €1, then the
instial-boundary value problem (1.1) has a unique global solution in time u satisfying
u—¢ € C°([0,00); Hy), (u — @), us € L*(0, 00; L?),
and the asymptotic behavior
lim sup [u(z,t) — ¢(z)| = 0. (2.1)

t—o00 >0
(i) (Polynomial decay rate) Suppose that f'(0) < 0 and (1.2) hold true. Let ¢(x) be the
stationary wave of the problem (1.5), and u(xz,t) be the global solution to the problem
(1.1) which is constructed in (3). If uo— ¢ € H: and uy € L2 for a > 0, then we have

lu(t) = ¢l < CEa(1+1)" (2.2)

for t >0, where C is a positive constant and E, = ||ug — Pllay + JJuallzz -
(vit) (Exponential decay rate) Suppose that the same conditions as in (ii) hold true.
Then, ifug — ¢ € H: . and u; € L2, for a > 0, then we obtain

a,exp
[u(t) = ¢llar < CEqexpe™

for t > 0, where 3 is a positive constant depending on o, C is a positive constant and

Eoezp = |luo — ¢”H},,mp + ||U1”L?.,m,-

TP

The second theorem is concern about asymptotic stability of g—th order degenerate
stationary waves for (1.1) with the flux condition (II).
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Theorem 2.3 (The case II). Suppose that (1.2) and (H) hold true. Assume that
u —¢ € H: anduy € L2 for a with1 < a < au(g):=(g+ 1+ 1/3¢>+49+1)/q.
Let ¢(x) be the stationary solution satisfying the problem (1 5). Then there erists a
positive constant €, such that, if |[uo — ¢llg + |lwallzz < €2, then the initial-boundary
value problem (1.1) has a unique global solution in time u satisfying

u— ¢ € C°([0,00); Hy) N C([0,00); L7),
and the asymptotic behavior

lim sup |u(z,t) — ¢(z)] = 0.

t—00 £50
Moreover, the solution verifies the following decay estimate
lu(t) = $llm < CMa(1+18)7* (2.3)
for t > 0, where C is a positive constant and M, := ||up — ¢|lgy + [|ur |22 -

The third theorem is concern about asymptotic stability of non-degenerate station-
ary waves for (1.1) with the flux condition (III).

Theorem 2.4 (The case III).
(1) (Asymptotic stability)

Suppose that (1.2) and (III) hold true. Assume thatug— ¢ € H'N L, u; € L>°N LY,
z0:=— [P uo(y)—P(y)dy € L? and z;:=— [ ui(y)dy € L?. Let ¢(x) be the stationary
solution satisfying the problem (1.5). Then there exists a positive constant €3 such that,
if |zollgz + ll21ll;n < €3, then the initial-boundary value problem (1.1) has a unique
global solution in time u satisfying :

u — ¢ € C°([0,00); Hy) N C*([0, o0); L*) N L*(0, o0; L?),
and the asymptotic behavior
lim sup |u(z,t) — ¢(z)| = 0.

t—00 z50

(it)(Polynomial decay rate) Suppose that (1.2) and (III) hold true. Let ¢(x) be the
stationary wave of the problem (1.5), and u(x,t) be the global solution to the problem
(1.1) which is constructed in (i). If ug — ¢ € HL and u; € L2 for a > 0, then we have

lu(t) = ¢l < CEa(L +1¢)7/? (24)
fort >0, where C is a positive constant and Ey := ||ug — @[ gy + [luallrz -
(111) (Exponential decay rate) Suppose that the same condition as in (i) hold true.
Then, if up — ¢ € H and wy € L2 ., for a > 0, then we obtain
lu(t) = ¢l < CEqeape™
for t > 0, where 3 is a positive constant depending on o, C is a positive constant and
Ea,emp = ”UO - ¢“Hé‘emp + “U] “L‘é eap

a LETD

In what follows, we state the scheme of the proof. Let ¢(x) be the stationary
solution satisfying (1.5). Then we reformulate our problem (1.1) by introducing the
perturbation v(z,t) by

u(z,t) = ¢(z,t) + v(z, t). (2.5)



This is the standard strategy for solving our stability problem. Then, we rewrite our
original problem (1.1) as

Vit — Upr + U+ {f(@+0v) = f(P)}s+h=0, >0, t>0,
v(0,t) = 0, t>0, (2.6)
’U(.’L‘,O) = ’UO(x)a 'UI,(:E70) =1 (33), x> 0.

where we put vo(z) := uo(z) — @o(z) and v1(z) := uy(x). We will discuss this reformu-
lated problem in Section 3, 4 and 5 to prove our main theorems.

3 Proof of Case I

The aim of this section is to prove Theorem 2.2. In order to derive the existence of the
global solution in time described in Theorem 2.2, we need the local existence theorem.
For this purpose, we define the solution space for any interval I C R} and M > 0 by

Xu(I) = {v € C°(I; Hy(R4)) ; v € C°(; L*(R4)), Stg?(llv(t)llm + o (@) 2) < M}

For the solution space X,(I), the local existence theorem of the solution v for (2.6) is
stated as follows.

Proposition 3.1 (local existence). For any positive constant M, there exists a positive
constant to = to(M) such that if ||vol|gr + |[v1]|L2 < M, then the initial boundary value
problem (2.6) has a unique solution v € Xap ([0, to))-

3.1 A priori estimate
To construct a global solution, it is important to derive the following a prior: estimate
of solutions v for (2.6) in the Sobolev space H*.

Proposition 3.2 (a priori estimate). Suppose that the same assumptions as i Theo-
rem 2.2 hold true. Then, there exists a positive constant €, such that if v € X, ([0,T1])
is the solution of the problem (2.6) for some T > 0, then it holds

l®lE + (01122 +/0 (loe ()12 + loa(D1Z2 + 1V @zv(7)I72) dr (3.1)

< CllvollFn + lluilZ2)
fort € [0,T], where C is a positive constant independent of T.

Before proceeding to the proof of Proposition 5.2, we give some preparations con-
cerning a weight function. Since f”(0) > 0 and |f/(0)| < 1 by the condition (I), there
exist positive constants r and v such that

ff(w)=>v and |f'(u)]<1 for |u] <
In this situation, we choose the weight function as
w(u) = f(u) +dg(u) for wué€ [u_,rl, (3.2)

where g(u) is defined by g(u) = —u?™ + r>™, and § and m are positive constants
determined later. Then, we obtain the following lemma.
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Lemma 3.3 (Hashimoto-Matsumura [1]). Suppose that f(u) satisfies (1.2) and (I). Let
w(u) be the weight function defined in (3.2). Then, for suitably small § > 0 and suitably
large integer m, there exist positive constants ¢ and C such that
c<ww) <0 (f'w-fu')(u) >c (3.3)
foru € [u_,r].
For the proof, readers are referred to [1]. Furthermore, we prepare the key lemma
for the weight function (3.2) as follows.

Lemma 3.4. Suppose that f(u) satisfies (1.2) and (I). Let w(u) be the weight function
defined in (3.2) which satisfies the condition (3.3). Then, for suitably small § > 0, we
obtain the inequality

(f'w — fu)(u)? < w(u)® (3.4)
foru € [u_,r].
Proof. By the definition of w, we rewrite (3.4) as
P{(f'g- fa) W)} < {(f+59)w)}" (3.5)

Thus, the inequality (3.5) is enough to derive the inequality (3.4). In order to get the
inequality (3.5), we divide the interval [u_,r] into [u_, —7] and [—7, r]. We first consider
the interval [—r,r]. By the condition |f'(u)] < 1 and (fg)(uw) > 0 for u € [-r,7], we
choose ¢ suitably small, obtaining

{(f +69)w)}* = {(f'g - fg)(w)}’
= 6%9(w)*(1 — f'(w)?) + f(w)?(1 - 8%’ (w)?) + 26(fg)(w) (1 + &(f'g)(w))
> 89w’ (1= f'()?) + f()?*{1 - 0" max |g'(u)l}

+20(fg)(u {1——(5 max |f ()|}

>0 for wel[-r71].
Next, we consider the interval [u_, —r]. Taking ¢ sufficiently small, we have

(F+60) 2 min f(u)-6 max g2 min f

for u € [u_, —r]. Therefore, using the inequality
*{(f'9- 9w} <8 max |(f'g = fe)w)’
and choosing J suitably small such that

1
6 max [(f'g—fg)(u)| <5 min f(u),
u€fu—,—7| 2 uefu—_,—r|

we obtain the desired inequality (3.5) for u € [u—, —r] and complete the proof. O
Using Lemmas 3.3 and 3.4, we give proof of Proposition 3.2.

Proof of Proposition 3.2. First, put
N(T) = sup (Jlv(®)lla + llve()llz2),

o<t<T



and then we suppose N(T') < 1 throughout this section. We introduce a new unknown
function ¥ as

v(z,t) = w(é(z,t))d(z,t), (3.6)

where w is the weight function defined by (3.2). Substituting (3.6) into the equation of
(2.6), we obtain

(w(@)p),, — (w(9)D),, + (w(®)), + {f(@+w(@)D) — f($)},=0.  (3.7)
Multiplying (3.7) by ¥, we get

—

{30+ @)+ w@)in}, —w(@)5? + w0+ § (u— war + 1) (0)7
ﬁ | ’ ’ (3.8)
+ ¢z/0 f’(¢+ 'LU(¢)77) - f’(¢)dn+¢z/0 f,(¢ + w(¢)n)w/(¢)ndn+]__x ~0,

where we define F as
fz_%mww%ﬂm@%f+uw+www) v—/f¢+w¢M) f(#)dn
By using the condition ¢, = f(¢), we find that
e () = 0/ (6) (~hue) + 0" (D)6
= —w'($)f(9)s — w"(4)¢;

¥ . (3.9)
= —{w"(#)¢z + (f'w')(9)} Pz
= —(fw" + f'w')(#)¢s-
Moreover, by the straightforward calculation, we have
b [ 71-+0(0)m) - £ @)in + b [ 76+ w@l @ndr
(3.10)
=510+ [0)(8) 6.5+ O(fol)
Therefore substituting (3.9) and (3.10) into the equality (3.8), we obtain
(G0 + w5} + @+ 50 - OB~ w@F 4 Fe g
= O(|])¢".
Next, we multiply (3.7) by 2%;, obtaining
Gi + 20(@)7; + H — (2w(@)idz), = 0, (3.12)

where G and H are defined by
G = w(B)T; +w(P)5; + (wy(9)7%)e — W (4)7°

+ 29, /0 (6 +w(@)n) - F($)dn + 26, / (6 + w(@n ()ndn,

H = {1 +w($)0)w($) — w.(¢) } 01Tz
Applying the relations (3.9) and (3.10), we rewrite G as
G = w()T; +w(9)T; + (ws(9)7%)s + (f'w — fu")($)¢eD” + O(18)d?.  (3.13)
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On the other hand, making use of the equality
f'(¢+w(P)t)w(e) — ws(9) = (f'w — fw)(g) + O(I7)),
we have
H =2(f'w — fw')(¢)5:0; + O(|5]) 0¥, (3.14)
Summing up (3.11) and (3.12), and substituting (3.13) and (3.14) into the resultant
equation, we obtain

(E+ R1),+D+F.=Ri+ Ry, (3.15)
where F, D, F, R, and R, are defined by

B = w(@)(57 + 8 + 82+ 50,) + (/"0 — fu")(@)gu
D = w($)(# + %) + 2w — f)(@)os + 5("w — fu)(@)s,
F = —30(@)i? - w(@) 00 + 203)

+ (76 +0(@)D) = 1#)5 - [ 166+ wle)n) - f(@)an,

Ry = O(|9])$=7°, Ro = O(|0])0;.
Therefore, integrating the equation (3.15) over R, we get the energy equality

d o0 [0 ] o0
dt Jo 0 0
Here, calculating the discriminants and using Lemma 3.4, we have the condition
/ Edx ~ ||(D, Vg, U1, /02D |32, / D dz ~ ||(Dy, Ty, /2D |32 (3.17)
0 0

Therefore, integrating (3.16) over (0,t), and taking N(T') sufficiently small, we obtain

t
191 + 1517 +/ 19272 + 18:l1Z2 + V@0l T2dT < C(T0llEn + 151072)-
0

Finally, by the positivity of w and the simple relations v, = w,;v+wv, and v, = wiy,
we find that ||v||z2 ~ ||0]|z2. Thus, we have the desired estimate (3.1) and complete the
proof of Proposition 3.2. O

3.2 Convergence rates of stationary solutions

In this section, we prove Theorems 2.2-(i). The main idea of the proofs are due to
Ueda [7]. We use the space-time weighted energy method introduced in Kawashima-
Matsumura [2]. Before stating the proofs, we give a preparation. The following lemma
is concerning the inequality of the nonlinear term f and the weight function w.

Lemma 3.5. Suppose the same condition as in Theorems 2.2-(i). Let w(u) be the
weight function defined by (3.2). Then, for suitably large integer m, there exists a
positive constant ¢ such that :

(fw' — flw)(u) > c (3.18)
for u € [u_,0].
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Proof. By the definition of weight function w, we have
| (fw' = f'w)(u) = 6(fg' — f'g)(u).
In order to derive the desired inequality, we decompose the interval [u._, 0] into [u_, —r],
[—7,—r/2] and [-r/2,0]. We first consider the case [u_, —r]. For u € [u_,—r], we have
(fg' = f'9)(u) = —{2mu®™ 7! f(u) + f'(u)(—u®™ +r*™)}

_ 2m—1 , 1-. 2m _’l_L— (319)
= —2m M @) (- 1+ |2 )5 + S}
Here, we note that |r/u| <1 and f(u) > ¢, | f'(u)| < C for u € [u_, —r], where ¢, and

C are positive constants. Thus we can choose m sufﬁciently large such that

r@(-1+]H "o 4 ) 2 2 (3.20)
Therefore, (3.19) and (3.20) imply the following 1nequa11ty
(Fd ~ ['9)(u) > comr®™" > 0. (321)
For the case u € [-r, —r/2], since f > 0,¢' > 0 and f’ < 0 < g, it immediately holds
(fg' = f'9)(w) 2 (f9)(u) 2 (fg')(~r/2) > C. (3-22)
Finally, for the case u € [-r/2,0], since f > 0,¢' > 0 and f' <0 < g, we get
(F9 = 1@ = (F9) > _min [(79)w)] > 0. (3.23)
Thus combining (3.21), (3.22) and (3.23), we obtain the desired estimate (3.18). O

Now, we prove Theorem 2.2-(ii) and (iii). Applying Lemma 3.5 to F, we calculate
F as
1 . -
= 5(fw' = f'w)($)* + w(@) (90: + 20,5) + O(|5]°)

> ct? — C(92 + 9%) + O(|9)3),
where c and C are positive constants.
Let v and 3 be any positive constants satisfying 0 < 7,8 < a. We multlply the
equality (3.15) by (1 +¢)7(1 + z)#, obtaining

{A+01+2)(E+R)}hi—vQ + )11+ z)5(E+ R) + (1 +t)"(1 +2)’D

+{(1+t)"Q+2)°F}, - BAL+1)"(1 +2)'F = 1 4+ t)"(1 + 2)?(R; + Ry).
(3.25)

Substituting (5.29) into (5.30), integrating the resultant inequality over R, x (0,¢) and
taking SuPogth [v(?)]| L sufficiently small, we have

(L4 716,550 Ol + [ @+ 7 (160,50, VBT + B ) dr

(3.24)

<C’Eﬁ+fyC/l+T7 Hi(®, ’Ut,’Uz.)(T)”deT-f-ﬂC/l-f-T (g, 0z ) (T )”L2 dT

for an arbitrary v and f with 0 < v, 8 < «, where C is a constant independent of v
and (. For the above estimate, applying the induction argument, we can obtain the
desired estimate (2.4) in Theorem 2.2-(ii). For the details, we refer the readers to [6, 7].
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Finally, we prove Theorem 2.2-(iii) by using the space-time weighted energy method.

Proof of Theorem 2.2-(iii). Let «, # > 0. Multiplying (3.15) by e®e®®, we obtain

{e?e®(E + Ry)}; — BeP'e*®(E + Ry) + e*te**D

+ {?e** F}, — ae® e F = eP'e®*(R, + R,).

Substituting (5.29) into (5.36), integrating the resultant inequality over R, x (0,t) and
taking supg<;<r [[v(t)||~ sufficiently small, we get

i t
(B0, 52, D) DIy + / (5, ) (M3 dr +a / ()3, dr

a,exp

(3.26)

¢ t
< CEeap + BCo / e 5(r)3s ., 47 + (o + B)Ca / e 1@, %) (7)1, 4
0 ' 0 -

where Cy, C; and C are positive constants independent of a and 3. Taking o > 0 and
B > 0 suitably small such that Cy < a and (a + B)C; < 1, we obtain the desired
estimate in Theorem 2.2-(iii) and complete the proof. 0

4 Proof of Case I1

The aim of this section is to prove Theorem 2.3, which is a direct application of the
work of Ueda-Nakamura-Kawashima [9]. In order to derive the existence of the global
solution in time described in Theorem 2.3, we need the local existence theorem. For
this purpose, we define the solution space for any interval I C R, M > 0 and positive
constant a with 1 < a < a.(q) by

Xu(I) = {v € CO; Ho(R+)) 5 v € C(L; L3 (Ry)), sup([lo(e)llay + [lve(t)ll2z) < M}

For the solution space X (), the local existence theorem of the solution v for (2.6) is
stated as follows.

Proposition 4.1 (local existence). For any positive constant M, there exists a positive
constant to = to(M) such that if |lvo||gy + |lu1llzz < M, then the initial boundary value
problem (2.6) has a unique solution v € X0 ([0, to]).

4.1 Energy estimate

To construct a global solution, it is important to derive the following estimate of so-
lutions v of (2.6) in the Sobolev space H}, where § is a positive constant satisfying
0<p<oa.

Proposition 4.2 (space-time energy estimate). Suppose that the same assumptions
as in Theorem 2.3 hold true. Then, there exists a positive constant co such that if



v € X,([0,T)) is the solution of the problem (2.6) for some T > 0, then it holds

L+ 87l (v, v, va) ()75 + / (L +7) (e + ) (g + (7125, )ar

0

t
< CM32 ++C / (1 + 770, w1, 02) (1) By dr (4.1)
0

t
+8C [ (171w w) (DI + o) o
Jorv >0 and 3 with 0 < 8 < a, where Mg := IIUOI|H1 + HleLz and C is a positive

constant independent of v, 8 and T.
Proof. The proof is given by space-time weighted energy method. First, put

N(T) = swp (o) +llo(0)li)

and then we suppose N(T) < 1 throughout this section. We start with the equality
(2.6). Let 0 < 3 < a and define a weight function as

w(g) = (—¢)". (4.2)
We multiply (2.6) by @w(¢) and obtain
(@($)(E + Ry))e + (0(6)(D + Rp) — @' (¢)p ) + (0(¢)F)e = 0

where E, D, F, R, and R, are the same polynomial defined in Section 3. By using
Lemma. 2.1, we see that w(¢) ~ (1 + z)?. We deconstruct as

D :=w(¢)(D + Ry) — @ (¢)¢F = D + R,

D = @{w(i? + ) + 2w ~ fw')ide + (v~ ful)o.57),

1
— W' P 5( f'w— fw)o? — wit, — 2wy, },

R = ~@'$,0(|9])8* + 0(8) (O(|5])¢aD” + O(|8]) ).
Then we have the following estimate for z € R, .
(P + 02+ 02) < E < C@* + 2+ 02),
|R| < C(1+z)?Hi]® + C(1 + z)°|5|(5? + 52)
|[Ri| < C(1 + x,)P|5)3,
D > c(1+2)P(@2 +02) + c(1 + 2)*~%° — B2 + 02 + (1 + 2)"% 7},

where ¢ and C are positive constants of 8 with 0 < 8 < a. Here, we assume that N (7T)
~ is suitably small, then we can easily derive the estimate for E, |R| and |R;| in (4.3). In
what follows, we show the estimate for D. We further decompose D as

D= D1 + DQ:
Di = w(wi? + wi? + %( f'w — fw")¢,0°) + @' ¢, (Wi, — —;-( fl'w— fuw)?), (44)
Dy = 2{w(f'w — fuw') + Wwe, }5,,.

(4.3)
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By using the definition of w, we observe that

W(8) = Ba-0) P, 6. = L9 +0(4),

F (@) = —Cor (=) (1 +0(|¢)), [f"(¢) = qCor1(=8)T (1 +O(18])),  (4.5)
W(6)6s = - P Con®@)(~9)° (1 + O(19D).

Substituting (4.5) into the definition of D;, then we have the following equality.
Dy =61 (~8) P02+ + B - ag( )75+ L2 (0 +1) - (aq(-8)79)")
+ (=) {0(18)3= - (=9)%0 + O(l9]) ((—¢)* ”)2 +0(14))37},

where a, = ﬁﬁ— Therefore, if 0 < f < a with a < a*(q), we estimate D from bellow
as

D > c(1 4 2)P(@2 + 92) + c(1 + 2)P~%%2, for z— 400, (4.6)
where c is a positive constant independent of 5. On the other hand, for any fixed large
K > 0, we see easily from the definition of D that

. D > (@ + 92 +92) — CB(* + 02 + 92), (4.7)

for 0 < z < K, where ¢ and C are positive constants depending on k£ but not on £.
Combining (4.6) and (4.7), we derive the desired estimate (4.3). Once we have the
estimate (4.3), by using the same strategy as in (9], we derive the desired inequality
(4.1). For the details, we refer the readers to [9]. O

Once we derive the inequality (4.1), by applying the induction argument, we can
derive the following two decay estimate in Proposition 4.3 and 4.4.

Proposition 4.3. Let M, := |lvg||gy + ||lv1ll2. Under the same assumption in Propo-
sition 4.2, we have the following estimate for integer j with 0 < j < [a/2],

(L + ) (15, B, B) (8) 132

t
+ [ @ P U@ @I, + o0, )dr<OMZ for 0<t<T,
0 a~-2j—2

-2

(4.8)

where C is a positive constant.

Proposition 4.4. Let v be a positive constant with v > «, provided that a/2 is not an
integer. Then, under the same assumption as in 4.2, we have the following estimate,

(1+)"[1(3, Bz, B) ($) 122

t 4.9
# [ UG8 + Wl ir < a2 v,

for 0 <t < T, where C is a positive constant.

By using these inequality (4.8) and (4.9), and noting that v(z,t) = w(@)(z,t), we
derive decay estimate

lo@)lla + [[oe()llze < CMa(1 + )%, (4.10)
On the other hand, the inequality (4.8) with @ = 1 and j = 0 leads the following a



priori estimate

t
(v, vs, ue) 122 + / (e, w) (1) 23 + l0(D)l3 Jdr < OMZ. (411)

Combining the inequality (4.11) and local existence theorem, we have the time-global
solution and show the Theorem 2.3-(i). Therefore, (4.10) verify the asymptotic rate
(2.3) in Theorem 2.3-(ii). For the details, we refer the readers to [9]. We complete the
proof of Theorem 2.3.

5 Proof of Case III

The aim of this section is to prove Theorem 2.4. All of the first, we reformulate the
problem (2.6). We introduce a new unknown function z2(z,t) as

z(z,t) = — /mv(y,t)dy.

Here, we assume integrability of z(z,t) over R,.. We reformulate (1.1) in terms of z(z, t)
as

Ztt_zzz+zt+{f(¢+za:)_f((P)}:O; CE>O, t>07

2;(0,t) =0, t >0, (5.1)
2(z, 0) = zp(z), zt(a: 0) = z1(x), z > 0.
where we put z(z) = — [>( ¢(y))dy and z(z) = — [Fui(y)dy. In this

section, we will dleUSS this reformulated problem to prove our main theorem. In order
to derive the existence of the global solution in time described in Theorem 2.4, we need
the local existence theorem. For this purpose, we define the solution space for any
interval ] CR; and M > 0 by

Xu(I) = {2 € CI; H* N H},), 2 € CO(; H' N L% ,); 2. € L*(I; H*N L2,
Sttelllo(llz( a2 + 2|l m) < M}

For the solution space X(I), the local existence theorem of the solution v for (2.6)
is stated as follows.

Proposition 5.1 (local existence). For any positive constant M, there exists a positive
constant to = to(M) such that if 20 € C*(I; H* N H,,,y), 21 € CO(I; H' N L3.,) and

l|zollm2 + 21l < M, then the initial boundary value problem (2.6) has a unique
solution z € Xop ([0, to)).

5.1 A priori estimate
To construct a global solution, it is important to derive the following a prior: estimate
of solutions z for (5.1) in the Sobolev space H?2.

Proposition 5.2 (a priori estimate). Suppose that the same assumptions as in The-
orem 2.4-(i) hold true. Then, there exists a positive constant €3 such that if z €
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Xe,([0,T)) is the solution of the problem (5.1) for some T > 0, then it holds

IIZ(t)II?;z+IIzm(t)II%1+/O (I bo2(r)IZ2 + 2 (T)En + ll2a(7)5n) dr

< Clll#ollfr= + ll21l130),
fort € [0,T), where C is a positive constant independent of T.

(5.2)

Before proceeding to the proof of Proposition 5.2, we give some preparations for a
weight function. We introduce a weight function as

_ [ (e +1)/f(u), uelu,0),
where A is a positive constant which is chosen later. For this weight function, we obtain
the following lemma.

Lemma 5.3. Suppose that f(u) satisfies (1.2) and (III). Let w(u) be the weight func-
tion defined in (5.3). Then if we take A sufficiently large, w(u) satisfies the following
conditions in u € [u_,0] for some positive constant ¢ and C.

e<u@<C, @) ((fu'w) <w?
() (fw)’(w) <0, (v) (fu)'(u) < —

Proof. Since (iii) and (iv) are clear, so we only prove (i) and (ii).
Proof of (i). We divide the interval [u_, 0] into [u_, —r] and [~r, 0], for some positive
constant . We first consider the interval [-r,0]. By the definition of w(u), we obtain

—e® +1 |1 — (14 Aetfuy)| | Ae0y|

= = = . 5.4
Y0 = T T PO LGand PO + e O
Take r > 0 sufficiently small such that
OIS IFO) + 5/ Gupd < SIFO) for wel-r0, (65
then by combining (5.4), we derive
2Ae~ A" 2A
o) = ™ = o) (56)

Next, we consider the interval [u_, —7]. By the definition of the weight function w(u),
we have
_pAr __p—Au_-
e’ +1 < wiu) < — € +1 ‘
maX,_<u<-r | f(u)| min,_<u<—r [ f(w)

This complete the proof of (i)

(5.7)

Proof of (iii). We also divide the interval {u_,0] into [u_, —r] and [—7,0]. We prove
(1f'(w)|?/w?) < 1 which is enough to derive the inequality (iii). We first consider the
interval [-r,0]. Around the origin, f(u) is written as f(u) = f/(0)u™ + § f”(Qu)u?. It



follows from the definition of the weight function that

l (fw)’ , ! wAe | |(f'(0)u + 31" (fu)u®) Ae*|
B —eA“ +1 1 | AeA%uy|
_ ]/I(O) + f”2 ” eAu.(l—ﬂ) (58)
(o] 1 [ L7060
= lf (0)| T ]T'

By the sub-characteristic condition |f’(0){ < 1 and f’(0) > 0, we can choose r suffi-
ciently small such that

ff/(26U) ’T <1 (5.9)

7o)+

For u € [r,u_], we have

/ Au Au
fw) I — ‘ Ae < (maxu._SuSr ‘f(u),)Ae _ MA . (510)
eA" +1 —edv +1 —1+e A
where M ‘= maXy_<u<r | f(uw)]. Hence, taking A sufficiently large, we can make
MA
—_— < 1. 9.11
Thus the proof of (iii) and Lemma 5.3 is completed. a

Now, we are ready to prove Proposition 5.2.

Proof of Proposition 5.2. First, put '
| N(T) = sup (|lz(O)]ln2 + llz()]lm),
0<t<T

and then we suppose N(T') < 1 throughout this section. The first equality of (2.6) is
rewrited as

2 — Zox + [(P)2s + 2 = F, (5.12)
where
F=—(f(¢+2z)-f($)~ f(P)z) = Oz
Multiplying (5.12) by w(¢)z, then we get

(G2 + w@)2) ~ w($)2 + (L O - w(@)zz + 10/()6:2),

- U O8) + 27 (B0 (@) + SO ()62 + w922 = O(ZDw(0)z,
where we use the fact that

F@zu(@): = GIOu@P) — (P Gw@) + FOW @2, 6.19)

(5.13)

and

- Ze0($)2 = ~(220(8)2)e + W (B)6a (5 + w(9)22

) X (5.15)
= ~(z0(9)z = 50/(9)622%): - 5 (W' (B)F(6) + W(9)'(8)) 62 + w(9)72
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Next, multiplying (5.12) by w(¢)z:, then we have
 (W(9)22 + w(@)22): — (rw(@)z)s +w($)2?

2 (5.16)
+'(@)w($) 22 + w'($)ps2z2 = O(|2;])w()2.
We make a combination (5.13) +2x(5.16), then we have the following equality
E.+D+F, =R, (6.17)
where
B = w(@)3 +w(9)22 + w($)z + 5u(6)7
D = w(@)s +2fw) @z + 0O - S0 D6

F = 5(fu) ($) ~ w(g)zz: - 20(8) 27
R =0(|z| + |2|)22.

Consider E as the quadratic form in terms of z, 2, and z;, then calculating the discrim-
inant of E and using Lemmas 5.3, then we have the condition

E ~w(p)- (22 + 22+ 22). (5.19)
In a similar way, calculating the discriminant of F and using Lemmas 5.3, then we have
D~ 224 22 + ¢,2°. (5.20)

Therefore, taking N(T') suitably small, putting (5.19) and (5.20) into (5.17), and inte-
grating it over (0, 00) x (0,t) with respect to = and ¢ , we have

/oww(¢)-(22+Zt2+Zg)(t)dl‘-f-/ot/ooo(zi+Zt2+¢zz2)(7_)dxd7_

t
4 / 2(0, 52ds < C(llzol%, + 21]23),
0
that is
i
2liZ, + ]2, + / (VB2 + 12a(7) 22 + 2(7)12) dr
0

< Cllzolizy + llzalizs)-

Next, we proceed to the estimates of z,. Noting that z, = v, we calculate L2-
estimate of v(z,t) for the estimates of 2. Multiplying (2.6) by w(¢)v, then making use
of the equality

{f(¢+v) = f(#)}aw(d)v
={(f(¢+v) = f(®))w(¢)v}s — (f(d +v) = f($))(wv)e

~{6+0) - 1@ - w@) [ 16+ - 1@

(5.21)

+ 4, {w'w) / "F6+m) - F(@)dn + () / "p(é ) - f’(¢)dn}
~ (6 +v) - F@)w(d)v,



we obtain
(w(@vws + 30(0)?). — w(B)e? = 5 (w"(8)] + 0/ (D)) 20 + 0 (B
oy {w' /0 Cf@ ) - f@)dn+w / " Fle+m) - f’(¢)dn} (5.22)
+ Fo — (f(¢+v) = f(d))w(d)zv,
where

F = ~ul@)vvs + 50(@)® + ([0 +0) = F@)w@) - w(@) [ f0+m) - f@)an.
Next, multiplying (2.6) by w(¢#)v; and using the equality
{f(¢+2) = f(@)}aw(@)ve = (F(¢ +v) = [ () rw(P)ve + ['(¢ + v)vowrr
= {w@p. [ re4m - g} + £io+opuom,
we obtain

S (@NF + w(@)02): - (w(@)uve)s + w(@)e? +w()(6 +v)uw,
+w @@+ @6, [ £@+n)- @i} =0

t
We make a combination (5.22)+2x(5.23). This yields the differential equality

(E+ Ry),+ D+ F, = Ry + Ry + Ry, (5.24)

(5.23)

where E, D, F', R, and R, are defined by
B = w($)(ov, + 507 + 97 +2),
D = w(g)(v; +v;) + 2(fw)' (¢)vevs,
F= —-—;-w(qﬁ)mv2 — w(P)(vv, + 2vv4)

+w(@)(F(6+v) — £(8))v —w(9) /0 T+ ) f(@)dn,

Ry = w(¢)s /0” (@ +mn) = f(¢)dn,
R2 = O(l)¢x62)
R3 = O(|9]) 0.

We consider E and D as quadratic forms in terms of v, v, and v;. Then calculating the
discriminant of E' and D, and using Lemma 5.3, we have the condition

E~w(@) (V+v2+v7), D~uvlt+ol (5.25)
Noting the fact that z, = v, we see from (5.21) that
t 0o
| [ 1+ Rildadr < izl + 2112 (5.26)
o Jo

Then, integrating (5.24) with respect to = and ¢ over (0,00) x (0,t), and substituting
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(5.25) and (5.26), we have
t
lw@®IIZs + lve@)lZz + llva Oz +/0 (lvsliZz + llvellZ2)(7) dr

(5.27)
< Clllvollzzy + lvallza + llzoliFry + ll21llZ2),
for suitably small N(T). By the definition of z(x,t), (5.27) means
t
lae(OlFsy + Ol + [ (esalis + lzeall)r) dr 525)

< Clllzollzg + ll2llzy)-

Combining (5.28) with (5.21), we finally have (5.2). Thus the proof of the Proposition
5.2 is completed. O

Proof of Theorem 2.4-(i). The global existence of solutions to the initial-boundary
value problem (1.1) can be proved by the continuation argument based on a local
existence result in Proposition 5.1 combined with the corresponding a priori estimate
in Proposition 5.2. We omit the detail. O

5.2 Convergence rates of stationary solutions

In this section, we prove Theorem 2.4-(ii), (iii). The main idea of the proofs are due to
Ueda [7]. We use the space-time weighted energy method used in Section 3 and 4.

Proof of Theorem 2.4-(ii). We start with the energy equality (5.17). Applying Lemma
5.3 to F, we calculate F' as

- 1
—-F = —E(fw)'( })2* — w(P) (225 + 22:2;)
> c2® - C(22 + 22),
where ¢ and C are positive constants.
Let v and 3 be any positive constants satisfying 0 < v, < a. We multiply the
equality (5.17) by (1 +t)7(1 + z)?, obtaining
{Q+8)"Q+2)PE}—y(1 + )" "1+ z)PE+ (1 +¢)"(1 +2)°D
+{(1+t)"(1+2)°F}, — (1 +t)"Q+z)’'F = (1+1t)"(1 + z)°R.
Substituting (5.29) into (5.30), integrating the resultant inequality over R, x (0,t), we
have

(L4 070z 2 2) Ol + [ (7 (20, VBRI + Bl )ar

(5.29)

(5.30)

(5.31)
<0Eﬂ+vc/ L+ )7 (2,2 20) () 3,

for an arbitrary v and § with 0 < v, f < a, where C is a constant 1ndependent of v
and 3. For the above estimate, applying the induction argument, we can obtain the



following estimate.
L+ )1 (2, 2, 2) ()17 _

t
+ [ @+ 1 (120 VBN, + 0= DI, )i < O,
for any integer ! with 0 <! < a. Then, we have
(2, 25, 2) ()| 52 < CE2(1 +8)7™. (5.33)

For detail of the proof, we refer the readers to [6, 7].
Next, we proceed to the higher order estimate. We multiply the equality (5.24) by
(14+t)7(1 + z)? and integrating the resultant equality over Ry x (0,t), obtaining

1+ t)”“(v,vt,vz)(t)[[i% +/0(1 + 1) (|| (v, Vs qbzv)(r)ni%)dr

(5.32)

t t
< OB +40[ (14 177 0,0, 0 (gr +9C [0+ 777 22,2 (g,
0 0
(5.34)
here we use (5.31), that is
o0 t o0
(1+ t)'y/ (1 + z)Pp0dx + / (1+ 'r)"’/ (1 + z)Ppv2dzdr
0 0

0
t
< CEy++C / L+ 77z 21, 2) ()2 .
0

Applying the induction argument and combining the estimate (5.32), we obtain the
following estimate.

(4 01w, v, 0O, + [ (@) o))y dr < OE2

for any integer | with 0 <! < a. Then, using the same strategy as in [6, 7], we have
(v, vz, v) (D172 < CEZ(1 + 1) (5.35)

Combining (5.33) and (5.35), we have the desired estimate in Theorem 2.4-(ii), and
complete the proof. O

Finally, we prove Theorem 2.4-(iii) by using the space-time weighted energy method.
Proof of Theorem 2.4-(iii). Let o, 8 > 0. Multiplying (5.17) by e’*¢**, we obtain
{ePe*(E + Ry} — BePte®®(E + Ry) + e%*¢**D
+ {”e** F}, — aeP'e® F = ¢?'e**(R, + Ry).
Substituting (5.29) into (5.36), integrating the resultant inequality over R, x (0, ),
we get

t t
et 7 2) O, + [ N2y b+ [ IO, dr

(5.36)

t t
<CE?,, +BCo / SN, _dr + (a+ HC / (21, 22) (T2 _dr,
0 TP 0

,ETP

where Cp, C; and C are positive constants independent of o and 8. Taking a > 0 and
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B > 0 suitably small such that 3Cy < a and (a + §)C; < 1, we obtain

t t
(2, 22, )OI+ /O (21, 2) (1)1, dT + @ /0 & l|2(1)|g . a7 (5.37)
< CE?

«,exp

Next, we proceed to the higher order estimate. We multiply the equality (5.24) by

eP'e®® and integrating the resultant equality over R, x (0,t), obtaining
t

OO A (e [ [ T

a,eTp a,eTp

. (5.38)
< OBy + B + (@4 B)C1 [ e (u,0) (7).,
0 .
here we use the fact that v = 2, and (5.37), that is
t
FN Oz, + | SN, 0 < Ol (5.39)

Taking a > 0 and 3 > 0 suitably small such that 3Co < o and (a+ 3)C; < 11in (5.38),
and combining with (5.37), then we have the desired estimate in Theorem 2.4-(iii), and
complete the proof. ]
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