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ABSTRACT. In this paper, we study the Johnson homomorphisms $\tau_{k}’$ of the automor-
phism group of a free group of rank $n$ , which $aI^{\cdot}e$ defincd on the graded quotients of
the lower central series of the IA-automorphism group. In particular, we determine
the cokernel of $\tau_{k}’$ for any $k\geq 2$ and $n\geq k+2$ .

1. INTRODUCTION

Let $F_{n}$ be a free group of rank $n\geq 2$ , and Aut $F_{n}$ the automorphism group of $F_{n}$ . Let
denote $\rho$ : Aut $F_{n}arrow$ Aut $H$ the natural homomorphism induced from the abelianization
$F_{n}arrow H$ . The kernel of $\rho$ is called the IA-automorphism group of $F_{n}$ , denoted by $IA_{n}$ .
The subgroup $IA_{n}$ refiects much richness and complexity of the structure of Aut $F_{n}$ ,
and plays important roles on various studies of Aut $F_{n}$ .

Although the study of the IA-automorphism group has a long history since its finitely
many generators were obtained by Magnus [14] in 1935, the combinatorial group struc-
ture of $IA_{n}$ is still quite complicated. For instance, any presentation for $IA_{n}$ is not
known in general. Nielsen [19] showed that $IA_{2}$ coincides with the inner automorphism
group, hence, is a free group of rank 2. For $n\geq 3$ , however, $IA_{n}$ is much larger than
the inner automorphism group Inn $F_{n}$ . Krstic and McCool [13] showed that IA3 is not
finitely presentable. For $n\geq 4$ , it is not known whether $IA_{n}$ is finitely presentable or
not.

Because of the complexity of the group structure of IA$n$ as mentioned above, it would
be sometimes not suitable to handle whole $IA_{n}$ directly. In order to study $IA_{n}$ with a
phased approach, we consider the Johnson filtration of Aut $F_{n}$ . The Johnson filtration
is one of descending central series

$IA_{n}=$ ん $(1)\supset \mathcal{A}_{n}(2)\supset\cdots$

consisting of normal subgroups of Aut $F_{n}$ , which first term is $IA_{n}$ . (For detail, see
Subsection 2.4.) Each graded quotient gr$k(\mathcal{A}_{n})$ $:=\mathcal{A}_{n}(k)/\mathcal{A}_{n}(k+1)$ naturally has a
GL$(n, Z)$ -module structure, and from it we can extract some valuable information for
$IA_{n}$ . For example, $gr^{1}(\mathcal{A}_{n})$ is just the abelianization of $IA_{n}$ due to Andreadakis [1], and
$gr^{2}(A_{n})$ is applied to determine the image of the cup product $U_{Q}$ : $\Lambda^{2}H^{1}(IA_{n}, Q)arrow$

$H^{2}(IA_{n}, Q)$ by Pettet [20].

To understand the graded quotients $gr^{k}(A_{n})$ more closely, we use the Johnson homo-
morphisms

$\tau_{k}:gr^{k}(A_{n})arrow H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1)$ .
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(For detail, see Subsection 2.4.) One of the most fundamental properties of the Johnson
homomorphism is that $\tau_{k}$ is a GL$(n, Z)$-equivariant injective homomorphism for each
$k\geq 1$ . Hence, we can consider $gr^{k}(A_{n})$ as a submodule of $H”\otimes_{Z}\mathcal{L}_{n}(k+1)$ which module
structure is easy to handle. Historically, the study of the Johnson homomorphisms was
originally begun in 1980 by D. Johnson [10] who determined the abelianization of the
Torelli subgroup of the mapping class group of a surface in [11]. Now, there is a broad
range of remarkable results for the Johnson homomorphisms of the mapping class group.
(For example, see [9] and [16], [17], [18].) These works also inspired the study of the
Johnson homomorphism of Aut $F_{n}$ . Recently, it achieved good progress through the
works of many authors, for example, [4], [5], [6], [12], [16], [17], [18] and [20].

In general, from a viewpoint of computation, it seems that to determine the struc-
ture of the cokernel of the Johnson homomorphism is inclined to be more simpler and
easier to handle than that of the image of the Johnson homomorphism. For $1\leq k\leq 3$ ,
the GL$(n, Z)$-module structure of the cokernel Coker $(\tau_{k,Q})$ of the rational Johnson ho-
momorphism $\tau_{k,Q}$ $:=\tau_{k}\otimes id_{Q}$ has been determined so far. (See [1], [20] and [22] for
$k=1,2$ and 3 respectively.) Furthermore, by a recent remarkable work of Morita, it
is known that there appears the symmetric tensor product $S^{k}H_{Q}$ of $H_{Q}$ $:=H\otimes_{Z}Q$ in
Coker $(\tau_{k,Q})$ . (See [18].) In general, however, it is quite difficult problem to determine
GL$(n, Z)$ -module structure of Coker$(\tau_{k,Q})$ for arbitrary $k\geq 4$ . One reason for it is that
we cannot obtain an explicit generating system of gr$k(\mathcal{A}_{n})$ easily.

To avoid this difficulty, we consider the lower central series $A_{n}’(1)=IA_{n},$ $\mathcal{A}_{n}’(2)$ ,
. . . of $IA_{n}$ . Since the Johnson filtration is central, we have $\mathcal{A}_{n}’(k)\subset A(k)$ for any
$k\geq 1$ . It is conjectured that $\mathcal{A}_{n}’(k)=\mathcal{A}_{n}(k)$ for each $k\geq 1$ by Andreadakis who
showed $A_{2}’(k)=A_{2}(k)$ for each $k\geq 1$ and $\mathcal{A}_{3}’(3)=\mathcal{A}_{3}(3)$ in [1]. Now, it is known that
$\mathcal{A}_{n}’(2)=\mathcal{A}_{n}(2)$ due to Cohen-Pakianathan [4, 5], Farb [6] and Kawazumi [12], and that
$A_{n}’(3)$ has at most finite index in $A_{n}(3)$ due to Pettet [20].

For each $k\geq 1$ , set $gr^{k}(\mathcal{A}_{n}’)$ $:=\mathcal{A}_{n}’(k)/\mathcal{A}_{\mathfrak{n}}’(k+1)$ . Since $IA_{n}$ is finitely generated as
mentioned above, each gr$k(\mathcal{A}_{n}’)$ is also finitely generated as an abelian group. Then we
can define a GL$(n, Z)$ -equivariant homomorphism

$\tau_{k}’:gr^{k}(A_{n}’)arrow H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1)$

by the same way as $\tau_{k}$ . We also call $\tau_{k}’$ the Johnson homomorphism of Aut $F_{n}$ . In
our research, we are interested in the study of the cokernel of $\tau_{k}’$ for the following three
reasons. First, we can directly obtain information about the cokernel of $\tau_{k}’$ using finitely
many generators of $gr^{k}(\mathcal{A}_{n}’)$ . Second, using the representation theory, we can consider
Coker $(\tau_{k,Q})$ as a GL$(n, Z)$ -submodule of Coker $(\tau_{k,Q})$ . Hence, we can give an upper
bound on Coker $(\tau_{k,Q})$ . Finally, by the conjecture that $A_{n}’(k)=A_{n}(k)$ for each $k\geq 1$ ,
these research would be applied to the study of the difference between the Johnson
filtration and the lower central series of $IA_{n}$ .

For $1\leq k\leq 3$ , we have Coker $(\tau_{k,Q}’)=$ Coker $(\tau_{k,Q})$ , and hence they have been com-
pletely determined. In our previous paper [23], we give the irreducible decomposition
of Coker $(\tau_{4,Q}’)$ for $n\geq 6$ . Furthermore, in [22], we showed that Coker $(\tau_{k,Q}’)$ is large
in its own way. More precisely, let $T(H)$ be the tensor algebra of $H$ , and $T(H)^{ab}$ its
abelianization as a Lie algebra. Then $T(H)^{ab}$ naturally has a graded GL$(n, Z)$-module
structure. We denote by $C_{n}(k)$ the degree $k$ part of $T(H)^{ab}$ for each $k\geq 1$ . In [22],
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we have essentially shown that $C_{n}^{Q}(k)$ appears in Coker $(\tau_{k,Q}’)$ as a GL $(n, Z)$-equivariant
submodule. In particular, we have seen that Coker $(\tau_{k,Q}’)=C_{n}^{Q}(k)$ for $1\leq k\leq 4$ and
$n\geq k+2$ from our results.

In this paper, we determine the cokernel of the rational Johnson homomorphism
$\tau_{k,Q}’$ $:=\tau_{k}’\otimes id_{Q}$ for $k\geq 2$ and $n\geq k+2$ . Our main theorem is

Theorem 1. ($=$ Theorem 3.1.) For any $k\geq 2$ and $n\geq k+2$ ,

Coker $(\tau_{k,Q}’)=C_{n}^{Q}(k)$ .

This paper consists of four sections. In Section 2, we recall the IA-automorphism
group, the free Lie algebra and the Johnson homomorphisms of the automorphism
group of a free group. In Section 3, we discuss the cokernel of the rational Johnson
homomorphisms $\tau_{k,Q}’$ .
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2. PRELIMINARIES

In this section, we recall the IA-automorphism group, the free Lie algebra and the
Johnson filtration of Aut $F_{n}$ .

2.1. Notation and conventions.

Throughout the paper, we use the following notation and conventions. Let G be a
group and N a normal subgroup of G.

$\bullet$ The abelianization of G is denoted by $G^{ab}$ .
$\bullet$ The group Aut G of G acts on G from the right. For any $\sigma\in$ Aut G and x $\in G$ ,

the action of $\sigma$ on x is denoted by $x^{\sigma}$ .. For an element g $\in$ G, we also denote the coset class of g by g $\in G/N$ if there
is no confusion.. For any Z-module M, we denote $M\otimes_{Z}Q$ by the symbol obtained by attaching a
subscript Q to M, like $M_{Q}$ or $M^{Q}$ . Similarly, for any Z-linear map f : A $arrow B$ ,
the induced Q-linear map $A_{Q}arrow B_{Q}$ is denoted by $f_{Q}$ or $f^{Q}$ .
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$\bullet$ For elements $x$ and $y$ of $G$ , the commutator bracket $[x, y]$ of $x$ and $y$ is defined
to be $[x, y]$ $:=xyx^{-1}y^{-1}$ .

2.2. IA-automorphism group.
In this paper, we fix a basis $x_{1},$ $\ldots,$

$x_{n}$ of $F_{n}$ . Let $H$ $:=F_{n}^{ab}$ be the abelianization of $F_{n}$

and $\rho$ : Aut $F_{n}arrow$ Aut $H$ the natural homomorphism induced from the abelianization
of $F_{n}$ . In the following, we identify Aut $H$ with the general linear group GL$(n, Z)$ by
fixing the basis of $H$ induced from the basis $x_{1)}\ldots,$ $x_{n}$ of $F_{n}$ . The kernel $IA_{n}$ of $\rho$ is
called the IA-automorphism group of $F_{n}$ . It is clear that the inner automorphism group
Inn $F_{n}$ of $F_{n}$ is contained in $IA_{n}$ . In general, however, $IA_{n}$ for $n\geq 3$ is much larger
than Inn $F_{n}$ . In fact, Magnus [14] showed that for any $n\geq 3,$ $IA_{n}$ is finitely generated
by automorphisms

$K_{ij}:x_{t}\mapsto\{\begin{array}{ll}x_{j}^{-1}x_{i}x_{j}, t=i,x_{t}, t\neq i\end{array}$

for distinct $i,$ $j\in\{1,2, \ldots,n\}$ and

$K_{ijl}:x_{t}\mapsto\{\begin{array}{ll}x_{i}[x_{j}, x_{l}]) t=i,x_{t}, t\neq i\end{array}$

for distinct $i,$ $j,$ $l\in\{1,2, \ldots, n\}$ such that $j<l$ . Recently, Cohen-Pakianathan [4, 5],
Farb [6] and Kawazumi [12] independently showed

(1) IA$nab\cong H^{*}\otimes_{Z}\Lambda^{2}H$

as a GL$(n, Z)$-module where $H^{*}$ $:=Hom_{Z}(H, Z)$ is the Z-linear dual group of $H$ .

2.3. EYee Lie algebra.

In this subsection we recall the free Lie algebra. Let $\Gamma_{n}(1)\supset\Gamma_{n}(2)\supset\cdots$ be the
lower central series of a free group $F_{n}$ defined by the rule

$\Gamma_{n}(1):=F_{n}$ , $\Gamma_{n}(k):=[\Gamma_{n}(k-1), F_{n}]$ , $k\geq 2$ .

We denote by $\mathcal{L}_{n}(k)$ $:=\Gamma_{n}(k)/\Gamma_{n}(k+1)$ the graded quotient of the lower central series
of $F_{n}$ , and by $\mathcal{L}_{n}$ $:=\oplus_{k>1}\mathcal{L}_{n}(k)$ the associated graded sum. Since the group Aut $F_{n}$

naturally acts on $\mathcal{L}_{n}(k)$ for each $k\geq 1$ , and since $IA_{n}$ acts on it trivially, the action
of GL$(n, Z)$ on each $\mathcal{L}_{n}(k)$ is well-defined. Fbrthermore, the graded sum $\mathcal{L}_{n}$ naturally
has a graded Lie algebra structure induced from the commutator bracket on $F_{n}$ , and
called the free Lie algebra generated by H. (See [21] for basic material concerning the
free Lie algebra.) It is classically well known due to Witt [25] that each $\mathcal{L}_{n}(k)$ is a
GL$(n, Z)$ -equivariant free abelian group of rank

(2) $r_{n}(k):= \frac{1}{k}\sum_{d|k}\mu(d)n^{\frac{k}{d}}$

where $\mu$ is the M\"obius function. For example, the GL$(n, Z)$ -module structure of $\mathcal{L}_{n}(k)$

for $1\leq k\leq 3$ is given by
$\mathcal{L}_{n}(1)=H$, $\mathcal{L}_{n}(2)=\Lambda^{2}H$,

$\mathcal{L}_{n}(3)=(H\otimes_{Z}\Lambda^{2}H)/\langle x\otimes y\wedge z+y\otimes z\wedge x+z\otimes x\wedge y|x,$$y,$ $z\in H\rangle$ .
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Next, we consider an embeddings of the free Lie algebra into the tensor algebra. Let
$T(H)$ be the tensor algebra of $H$ over Z. Then $T(H)$ is the universal enveloping algebra
of the free Lie algebra $\mathcal{L}_{n}$ , and the natural map $\iota$ : $\mathcal{L}_{n}arrow T(H)$ defined by

$[X, Y]\mapsto X\otimes Y-Y\otimes X$

for $X,$ $Y\in \mathcal{L}_{n}$ is an injective graded Lie algebra homomorphism. We denote by $\iota_{k}$

be the homomorphism of degree $k$ part of $\iota$ , and consider $\mathcal{L}_{n}(k)$ as a submodule $H^{\otimes k}$

through $\iota_{k}$ .

2.4. Johnson homomorphisms.

In this subsection, we recall the Johnson homomorphisms of Aut $F_{n}$ . To begin with,
we consider a descending filtration of Aut $F_{n}$ called the Johnson filtration. For each
$k\geq 0$ , the action of Aut $F_{n}$ on the nilpotent quotient group $F_{n}/\Gamma_{n}(k+1)$ of $F_{n}$ induces
a homomorphism

Aut $F_{n}arrow$ Aut $(F_{n}/\Gamma_{n}(k+1))$ .
We denote its kernel by $A_{\eta}(k)$ . Then the groups $A_{n}(k)$ define a descending central
filtration

Aut $F_{n}=A_{n}(0)\supset A_{n}(1)\supset A_{n}(2)\supset\cdots$

of Aut $F_{n}$ , with $\mathcal{A}_{n}(1)=IA_{n}$ . (See [1] for details.) It is called the Johnson filtra-
tion of Aut $F_{n}$ . For each $k\geq 1$ , the group Aut $F_{n}$ acts on $A_{m}(k)$ by conjugation,
and it naturally induces an action of GL$(n, Z)=$ Aut $F_{n}/IA_{n}$ on the graded quotients
$gr^{k}(A_{n})$ $:=A_{n}(k)/A_{\eta}(k+1)$ . The graded sum gr $(A_{\eta})$ $:=\oplus_{k\geq 1}gr^{k}(A_{n})$ has a graded
Lie algebra structure induced from the commutator bracket on $IA_{n}$ .

In order to study the GL$(n, Z)$-module structure of gr$k(A_{\eta})$ , we consider the Johnson
homomorphisms of Aut $F_{n}$ as follows. For each $k\geq 1$ , define a homomorphism $\tilde{\tau}_{k}$ :
$A_{\eta}(k)arrow Hom_{Z}(H, \mathcal{L}_{n}(k+1))$ by

$\sigma\mapsto(x\mapsto x^{-1}x^{\sigma})$ , $x\in H$ .

Then the kernel of $\tilde{\tau}_{k}$ is just $A_{n}(k+1)$ . Hence it induces an injective homomorphism
$\tau_{k}:gr^{k}(A_{n})arrow Hom_{Z}(H, \mathcal{L}_{n}(k+1))=H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1)$ .

The homomorphisms $\tilde{\tau}_{k}$ and $\tau_{k}$ are called the k-th Johnson homomorphisms of Aut $F_{n}$ .
It is known that each $\tau_{k}$ is GL$(n, Z)$-equivariant injective homomorphism. Therefore,
to determine the image (or equivalently, the cokernel) of $\tau_{k}$ is an important problem on
the study of the structure of $gr^{k}(A_{n})$ .

For the Magnus generators of $IA_{n}$ , their images by $\tau_{1}$ are given by

(3) $\tau_{1}(K_{ij})=x_{i}^{*}\otimes[x_{i}, x_{j}]$ , $\tau_{1}(K_{ijl})=x_{i}^{*}\otimes[x_{j}, x_{l}]$ .

Furthermore, we remark that $\tau_{1}$ is an isomorphism and nothing but the abelianization
of $IA_{n}$ . (See [4, 5, 6, 12].)

Let Der $(\mathcal{L}_{n})$ be the graded Lie algebra of derivations of $\mathcal{L}_{n}$ . The degree $k$ part of
Der $(\mathcal{L}_{n})$ is considered as $H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1)$ , and we identify them in this paper. Then
the sum of the Johnson homomorphisms

$\tau$

$:= \bigoplus_{k\geq 1}\tau_{k}$
: gr $(A_{n})arrow$ Der $(\mathcal{L}_{n})$
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is a graded Lie algebra homomorphism. In fact, if we denote by $\partial\xi$ the element of
Der $(\mathcal{L}_{n})$ corresponding to an element $\xi\in H^{*}\otimes_{Z}\mathcal{L}_{n}$ , and write the action of $\partial\xi$ on
$X\in \mathcal{L}_{n}$ as $X^{\partial\xi}$ then we have

$\tau_{k+l}([\sigma, \sigma’])=\tau_{k}(\sigma)^{\partial\tau_{l(\sigma’)}}-\tau_{l}(\sigma^{f})^{\partial\tau_{k}(\sigma)}$ .

for any $\sigma\in A_{\eta}(k)$ and $\sigma’\in \mathcal{A}_{n}(l)$ . This formula is very useful to study the image of the
Johnson homomorphism inductively. In general, however, to determine the structure
of the image and the cokernel of $\tau_{k}$ is quite difficult.

Let $A_{n}’(k)$ be the lower central series of $IA_{n}$ with $A_{n}’(1)=IA_{n}$ . Since the Johnson
filtration is central, $\mathcal{A}_{n}’(k)\subset A_{\eta}(k)$ for each $k\geq 1$ . Set gr$k(A_{n}’)$ $:=A_{n}’(k)/\mathcal{A}_{n}’(k+1)$ and
gr $(A_{n}’)$ $:=\oplus_{k\geq 1}gr^{k}(A_{n})$ . Then gr $(A_{n}’)$ is also a graded Lie algebra induced from the
commutator bracket on $IA_{n}$ , and GL $(n, Z)$ naturally acts on each of $gr^{k}(A_{n}’)$ . Moreover,
since $IA_{n}$ is finitely generated by the Magnus generators $K_{ij}$ and $K_{ijl}$ , each $gr^{k}(\mathcal{A}_{n}’)$ is
also finitely generated by commutators of weight $k$ among the components $K_{ij}s$ and
$K_{ijl}s$ .

A restriction of $\tilde{\tau}_{k}$ to $A_{n}’(k)$ induces a GL$(n, Z)$-equivariant homomorphism

$\tau_{k}’$ : gr$k(A_{n}’)arrow H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1)$ ,

and the sum
$\tau’$

$:= \bigoplus_{k\geq 1}\tau_{k}’$
: gr $(A_{n}’)arrow$ Der $(\mathcal{L}_{n})$

is also a graded Lie algebra homomorphism. Furthermore, we have

$\tau_{k+l}’([\sigma, \sigma’])=\tau_{k}’(\sigma)^{\partial_{\mathcal{T}\downarrow(\sigma’)}}-\tau_{l}’(\sigma’)^{\partial\tau_{k}(\sigma)}$.

for any $\sigma\in A_{n}’(k)$ and $\sigma’\in A_{n}’(l)$ . Using this formula recursively, we can easily compute
$\tau_{k}’(\sigma)$ for any $\sigma\in \mathcal{A}_{n}’(k)$ from (3). We should remark that in general, it is not known
whether $\tau_{k}’$ is injective or not. In this paper, we study the cokernel of the rational
Johnson homomorphism $\tau_{k,Q}’=\tau_{k}’\otimes id_{Q}$ . We remark that for $1\leq k\leq 4$ , the irreducible
decomposition $of\cdot Coker(\tau_{k,Q}’)$ have already determined as follows:

Here, for any $k\geq 1,$ $H^{\lambda}$ denotes the Schur-Weyl module of $H$ corresponding to the
partition $\lambda$ of $k$ . In particular, the modules $H^{[k]}$ and $H^{[1^{k}]}$ are the symmetric product
$S^{k}H$ and the exterior product $\Lambda^{k}H$ respectively. (See [8] for basic material concerning
the Schur-Weyl module for example.)
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3. THE COKERNEL OF $\tau_{k,Q}’$

In this section, we determine the cokernel of the rational Johnson homomorphism
$\tau A_{Q}$ for $n\geq k+2$ . In Subsection 3.1, we consider a lower bound on Coker $(\tau_{k,Q}’)$ using
trace maps. In Subsections 3.2 and 3.3, we give an upper bound on Coker $(\tau_{k,Q}’)$

3.1. Contractions and trace maps.
Let

$T(H)= \bigoplus_{k\geq 0}H^{\otimes k}$

be the tensor algebra generated by $H$ over Z. The algebra $T(H)$ is isomorphic to the
non-commutative polynomial ring $Z\langle x_{1},$

$\ldots,$
$x_{n}\rangle)$ and on which GL$(n, Z)$ naturally acts.

The abelianization $T(H)^{ab}$ of $T(H)$ as a Lie algebra is also graded GL$(n, Z)$ -module.
We write $C_{n}(k)$ for the degree $k$ part of $T(H)^{ab}$ . Namely, $C_{n}(k)$ is a quotient module of
$H^{\otimes k}$ by a submodule of $H^{\otimes k}$ generated by elements type of

$x_{i_{1}}\otimes x_{i_{2}}\otimes\cdots\otimes x_{i_{k}}-x_{i_{2}}\otimes\cdots\otimes x_{i_{k}}\otimes x_{i_{1}}\in H^{\otimes k}$ , $1\leq i_{l}\leq n$ .

Each$\cdot$ of $C_{n}(k)$ is also GL$(n, Z)$ -module. For $1\leq k\leq 3$ , the irreducible decomposition
of $C_{n}^{Q}(k)$ is given by

$C_{n}^{Q}(1)=H_{Q}$ , $C_{n}^{Q}(2)=S^{2}H_{Q}$ , $C_{n}^{Q}(3)=S^{3}H_{Q}\oplus\Lambda^{3}H_{Q}$ .

In this subsection, we define trace maps which are used to detect $C_{n}^{Q}(k)$ in the cokernel
of $\tau_{k,Q}’$ . To begin with, we consider contraction maps.

For $k\geq 1$ and $1\leq l\leq k+1$ , let $\varphi^{k}:H^{*}\otimes_{Z}H^{\otimes(k+1)}arrow H^{\otimes k}$ be the contraction map
defined by

$x_{i}^{*}\otimes x_{j_{1}}\otimes\cdots\otimes x_{j_{k+1}}\mapsto x_{i}^{*}(x_{j_{1}})\cdot x_{j_{2}}\otimes\cdots\otimes\cdots\otimes x_{j_{k+1}}$ .
For the natural embedding $\iota_{n}^{k+1}$ : $\mathcal{L}_{n}(k+1)arrow H^{\otimes(k+1)}$ , we obtain a GL$(n, Z)$ -equivariant
homomorphism

$\Phi^{k}=\varphi^{k}\circ(id_{H^{*}}\otimes\iota_{n}^{k+1}):H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1)arrow H^{\otimes k}$.

We also call $\Phi^{k}$ a contraction map.

Lemma 3.1. For any $1\leq i,$ $i_{1},$
$\ldots,$

$i_{k}\leq n$ such that $i_{1}\neq i_{f}$ we have
$\Phi^{k}(x_{i}^{*}\otimes[x_{i}, x_{i_{1}}, \ldots, x_{i_{k}}])$

$=x_{i_{1}} \otimes\cdots\otimes x_{i_{k}}-\sum_{l=2}^{k}\delta_{i,i_{l}}[x_{i}, x_{i_{1}}, \ldots, x_{i_{l-1}}]\otimes x_{i_{l+1}}\otimes\cdots\otimes x_{i_{k}}$ .

Lemma 3.2. For $n\geq k+1$ , the contraction map $\Phi^{k}$ is surjective.

Now, let Tr $(k)$ be the composition of the contraction map $\Phi^{k}$ and the natural projec-
tion $H^{\otimes k}arrow C_{n}(k)$ . We call it the trace map for $C_{n}(k)$ . From Lemma 3.2, for $n\geq k+1$ ,
the trace map Tr $(k)$ is surjective. On the other hand, in our previous paper [22], we
showed that
(4) Tr $(k)\circ\tau_{k}’\equiv 0$

for any $n\geq k\geq 2$ . Hence we see
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Proposition 3.1. For $n\geq k+1$ and $k\geq 2$ ,

Coker $(\tau_{k,Q}^{f})\supset C_{n}^{Q}(k)$ .

Here we remark that the inclusion in Proposition 3.1 means that Coker $(\tau_{k,Q}’)$ contains
a GL$(n, Z)$ -submodule which is isomorphic to $C_{n}^{Q}(k)$ .

3.2. The image of $\Phi^{k}0\tau_{k}’$ .

Let $\mathcal{U}_{n}(k)$ be the kernel of the natural projection $H^{\otimes k}arrow C_{n}(k)$ . From (4), we see
that ${\rm Im}(\Phi^{k}\circ\tau_{k}’)\subset \mathcal{U}_{n}(k)$ . In this subsection, we show that ${\rm Im}(\Phi^{k}\circ\tau_{k}’)$ coincides with
$\mathcal{U}_{n}(k)$ for any $n\geq k+2$ and $k\geq 1$ .

Lemma 3.3. For $n\geq 3$ and $k\geq 1_{Z}$ if $i_{1},$
$\ldots,$

$i_{k+1}\neq i_{Z}$

$x_{i}^{*}\otimes[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k+1}}]\in{\rm Im}(\tau_{k}’)$ .

Lemma 3.4. For $n\geq 3$ and $k\geq 1$ , if $i,$ $j\neq i_{2},$
$\ldots,$

$i_{k+1}$ and $i\neq j$ , we have

$x_{i}^{*}\otimes[x_{i}, x_{i_{2}}, \ldots, x_{i_{k+1}}]-x_{j}^{*}\otimes[x_{j)}x_{i_{k+1}}, x_{i_{2)}}\ldots, x_{i_{k}}]\in{\rm Im}(\tau_{k}’)$ .

Proposition 3.2. For $n\geq k+2$ and $k\geq 1_{f}$ the map $\Phi^{k}\circ\tau_{k}^{f}$ : $gr^{k}(A_{n}’)arrow \mathcal{U}_{n}(k)$ is
surjective.

3.3. The Kernel of $\Phi^{k}$ .

In this subsection we show that $Ker(\Phi^{k})\subset{\rm Im}(\tau_{k}’)$ for $n\geq k+2$ and $k\geq 2$ . (It
is clear for the case where $k=1$ since $\tau_{1}’=\tau_{1}$ is surjective.) Here we use $\equiv$ for the
equality in $Ker(\Phi^{k})$ modulo $Ker(\Phi^{k})\cap{\rm Im}(\tau_{k}’)$ .

Take any $X\in Ker(\Phi^{k})$ . We show $X\equiv 0$ . Since $X\in H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1),$ $X$ is written
as a linear combination of elements type of

$x_{i}^{*}\otimes[x_{i_{1}}, x_{i_{2)}}\ldots, x_{i_{k+1}}]\in H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1)$

for $1\leq i,$ $i_{l}\leq n$ . We fix one of such expressions. In the following, we reduce such linear
combination observing some elements in $Ker(\Phi^{k})$ .

First, considering Lemma 3.3, we may assume that in each of $x_{i}^{*}\otimes[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k+1}}]$

in the linear combination above, $i_{l}=i$ for at least one $1\leq l\leq k+1$ . Next, take any
$x_{i}^{*}\otimes[x_{i_{1}}, x_{i_{2}}, . . , , x_{i_{k+1}}]$ such that $i_{l_{1}}=i_{l_{2}}=i$ for some $l_{1}\neq l_{2}$ . Since $n\geq k+1$ , there
exists a certain $1\leq j\leq n$ such that $j\neq i,$ $i_{l}$ for $1\leq l\leq k+1$ . If we set

$\sigma_{1}:=\{$ $K_{ij}^{-1}K_{iji_{k+1}},$

’
$i=i_{k+1}i\neq i_{k+1}$

,

we have
$\tau_{1}’(\sigma_{1})=x_{i}^{*}\otimes[x_{j}, x_{i_{k+1}}]$ .

From Lemma 3.3, there exists a certain $\sigma_{2}\in A_{n}’(k-1)$ such that

$\tau_{k-1}’(\sigma_{2})=x_{j}^{*}\otimes[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}]$ .
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Then,
$\tau_{k}’([\sigma_{1}, \sigma_{2}])=x_{i}^{*}\otimes[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k+1}}]$

$- \sum_{l=1}^{k}\delta_{i,i_{l}}x_{j}^{*}\otimes[x_{i_{1}}, \ldots, x_{i_{l-1}}, [x_{j}, x_{i_{k+1}}], x_{i_{l+1}}, \ldots, x_{i_{k}}]$,
(5)

$=x_{i}^{*}\otimes[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k+1}}]$

$+ \sum_{l=1}^{k}\delta_{i,i_{l}}x_{j}^{*}\otimes[x_{j}, x_{i_{k+1}}, [x_{i_{1}}, \ldots, x_{i_{l-1}}], x_{i_{1+1}}, \ldots, x_{i_{k}}])$

If $n\geq k+2$ , we can take a certain $1\leq m\leq n$ such that $m\neq j,$ $i_{l}$ for $1\leq l\leq k+1$ .
By Lemma 3.3, there exist some $\sigma_{3}\in A_{n}’(k-1)$ such that

$\tau_{k-1}’(\sigma_{3})=-x_{j}^{*}\otimes[x_{i_{1}}, \ldots, x_{i_{1-1)}}x_{m)}x_{i_{l+1)}}, \ldots x_{i_{k}}]$

$=x_{j}^{*}\otimes[x_{m}, [x_{i_{1}}, \ldots, x_{i_{l-1}}], x_{i_{l+1}}, \ldots, x_{i_{k}}]$ .

Then we have
$\tau_{k}’([K_{mji_{k+1}}, \sigma_{3}])=x_{m}^{*}\otimes[x_{m}, [x_{i_{1}}, \ldots, x_{i_{l-1}}], x_{i\iota+1}, \ldots, x_{i_{k}}, x_{i_{k+1}}]$

$-x_{j}^{*}\otimes[x_{j}, x_{i_{k+1}}, [x_{i_{1}}, \ldots, x_{i_{l-1}}], x_{i_{l+1}}, \ldots, x_{i_{k}}]$ .

Using this and (5), we see that an element
$Y:=x_{i}^{*}\otimes[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k+1}}]$

$+ \sum_{l=1}^{k}\delta_{i,i\iota}x_{m}^{*}\otimes[x_{m}, [x_{i_{1}}, \ldots, x_{i_{l-1}}], x_{i_{l+1}}, \ldots, x_{i_{k}}, x_{i_{k+1}}]$ ,

(6)
$=x_{i}^{*}\otimes[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k+1}}]$

$- \sum_{l=1}^{k}\delta_{i,i_{l}}x_{m}^{*}\otimes[x_{i_{1}}, \ldots, x_{i_{l-1}}, x_{m}, x_{i_{l+1}}, \ldots, x_{i_{k}}, x_{i_{k+1}}]$

belongs to ${\rm Im}(\tau_{k}’)$ . Furthermore, from Lemma 3.1, we also see that $Y\in Ker(\Phi^{k})$ .
Considering (6), we may assume that $X$ is a linear combination of elements
(7) $x_{i}^{*}\otimes[x_{i_{1}}, \ldots, x_{i_{l-1}}, x_{i}, x_{i_{l+1}}, \ldots, x_{i_{k+1}}]$ , $1\leq l\leq k+1$

such that $i_{1},$
$\ldots,$

$i_{l-1},$ $i_{l+1},$
$\ldots,$

$i_{k+1}\neq i$ .

Now, for any $l>1$ , we denote by $\mathfrak{S}_{l}$ the symmetric group of degree $l$ . Then we have

Lemma 3.5. For any $l,$ $m\geq 1$ , an element
$[x_{i_{1}}, \ldots, x_{i_{l}}, [x_{j_{1})}\ldots, x_{j_{m}}]]\in \mathcal{L}_{n}(l+m)$

is written as a linear combination of elements
$[x_{i_{1}}, \ldots, x_{i_{l}}, x_{j_{\gamma(1)}}, \ldots, x_{j_{\gamma(m)}}]$

for some $\gamma\in \mathfrak{S}_{l+m}$ .

Using Lemma 3.5, we see that the element

(7) $=-x_{i}^{*}\otimes[x_{i}, [x_{i_{1}}, \ldots, x_{i_{l-1}}], x_{i_{l+1)}}\ldots, x_{i_{k+1}}]$,
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and hence $X$ , is written as a linear combination of elements type of
$x_{i}^{*}\otimes[x_{i}, x_{i_{2}}, \ldots, x_{i_{k+1}}]$

for $i_{2},$
$\ldots,$

$i_{k+1}\neq i$ .

Lemma 3.6. For $n\geq k+2$ and $k\geq 2_{l}$ if $i\neq i_{2},$
$\ldots,$

$i_{k+1_{f}}$ then
$x_{i}^{*}\otimes[x_{i}, x_{i_{2},}x_{i_{k+1}}]-x_{i}^{*}\otimes[x_{i}, x_{i_{3}}, \ldots, x_{i_{k+1}}, x_{i_{2}}]\in{\rm Im}(\tau_{k}’)$ .

Lemma 3.7. For $n\geq k+2$ and $k\geq 2_{j}$ if $i,$ $j\neq i_{2},$
$\ldots,$

$i_{k+1}$ and $i\neq j$ , we have
$x_{i}^{*}\otimes[x_{i)}x_{i_{2)}}\ldots, x_{i_{k+1}}]-x_{j}^{*}\otimes[x_{j)}x_{i_{2}}, \ldots, x_{i_{k+1}}]\in{\rm Im}(\tau_{k}^{f})\cap Ker(\Phi^{k})$ .

From Lemma 3.7, we see that $x_{i}^{*}\otimes[x_{i}, x_{i_{2}}, \ldots, x_{i_{k+1}}]$ modulo $Ker(\Phi^{k})\cap{\rm Im}(\tau_{k}’)$ does
not depend on the choice of $i$ such that $i\neq i_{l}$ for $2\leq l\leq k+1$ . Since $n\geq k+2$ , for
any $i_{2},$

$\ldots,$
$i_{k+1}$ , we can take some $i$ such that $i\neq i_{l}$ for $2\leq l\leq k+1$ . We fix such

$i=i(i_{2}, \ldots, i_{k+1})$ , and set
$s(i_{2}, \ldots, i_{k+1}):=x_{i}^{*}\otimes[x_{i}, x_{i_{2}}, \ldots, x_{i_{k+1}}]$ .

Then, using Lemma 3.7, we obtain

$X \equiv\sum_{i_{2},\ldots,i_{k+1}=1}^{n}a_{i_{2},\ldots,i_{k+1}}s(i_{2}, ., . ,i_{k+1})=:X’$

for some $a_{i_{2},\ldots,i_{k+1}}\in$ Z. By the assumption, $X’\in Ker(\Phi^{k})$ . Therefore, by Lemma 3.1,
we have

$\Phi^{k}(X’)=\sum_{i_{2},\ldots,i_{k+1}=1}^{n}a_{i_{2},\ldots,i_{k+1}}x_{i_{2}}\otimes\cdots\otimes x_{i_{k+1}}=0\in H^{\otimes k}$ ,

and hence
$a_{i_{2},\ldots,i_{k+1}}=0$

for any $1\leq i_{l}\leq n$ . This shows that $X\equiv 0$ . Thus we conclude

Proposition 3.3. For $k\geq 2$ and $n\geq k+2$ ,
$Ker(\Phi^{k})\subset{\rm Im}(\tau_{k}’)$ .

Finally, we determine the cokernel of $\tau_{k,Q}’$ for $n\geq k+2$ . Observing a sequence

$H_{Q}^{*}\otimes_{Z}\mathcal{L}_{n}^{Q}(k+1)arrow H_{Q}^{\otimes k}\Phi_{Q}^{k}arrow C_{n}^{Q}(k)$

of GL$(n, Z)$ -equivariant surjective homomorphisms, we see
$H_{Q}^{*}\otimes_{Z}\mathcal{L}_{n}^{Q}(k+1)\cong Ker(\Phi_{Q}^{k})\oplus \mathcal{U}_{n}^{Q}(k)\oplus C_{n}^{Q}(k)$

as a GL$(n, Z)$-module. Therefore, from Propositions 3.1, 3.2 and 3.3, we conclude that

Theorem 3.1. For $k\geq 2$ and $n\geq k+2$ ,

Coker $(\tau_{k,Q}’)=C_{n}^{Q}(k)$ .
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