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1. INTRODUCTION

In a joint 2006 paper [2], E. Pedersen and I proved a certain stability result for
controlled L-groups. The proof depended on a construction called the Alexander trick.
In this note I describe a modified Alexander trick which can be used to give a built-
in squeezing mechanism of a certain L-space. This should replace the (barycentric

subdivision argument” used in [4].

2. ITERATED MAPPING CYLINDERS

Let $X$ be a finite polyhedron, and $M$ be a topological space. We are interested in

a map $p:Marrow X$ which has an iterated mapping cylinder decomposition in the sense
of Hatcher [1]: there is a partial order on the set of the vertices of $X$ such that, for
each simplex $\triangle$ of $X$ ,

(1) the partial order restricts to a total order of the vertices of $\triangle$

$v_{0}<v_{1}<\cdots<v_{n}$ ,

(2) $p^{-1}(\triangle)$ is the iterated mapping cylinder of a sequence of maps

$F_{v0}arrow F_{v_{1}}arrow\ldotsarrow F_{v_{n}}$ ,

(3) the restriction $p|p^{-1}(\triangle)$ is the natural map induced from the iterated mapping

cylinder structure of $p^{-1}(\triangle)$ above and the iterated mapping cylinder structure
of $\triangle$ coming from the sequence

$\{v_{0}\}arrow\{v_{1}\}arrow.$ . . $arrow\{v_{n}\}$ .

To simplify the situation we assume that $X$ is an n-simplex $\triangle$ with vertices $v_{0},$ $v_{1}$ ,

. . . , $v_{n}$ . The edge $|v_{0},$ $v_{1}|$ is the mapping cylinder $v_{0}\cross\{0\leq t_{1}\leq 1\}/(v_{0},1)\sim v_{1}$ , the

face $|v_{0},$ $v_{1},$ $v_{2}|$ is the mapping cylinder $|v_{0},$ $v_{1}|\cross\{0\leq t_{2}\leq 1\}/(x, 1)\sim v_{2},$ $\ldots$ , and
$\triangle=|v_{0},$

$\ldots,$
$v_{n}|$ is the mapping cylinder $|v_{0},$

$\ldots$ , $v_{n-1}|\cross\{0\leq t_{n}\leq 1\}/(x, 1)\sim v_{n}$ .

Thus we can assign a point in $\triangle$ to each $(t_{1}, \ldots, t_{n})\in[0,1]^{n}$ . $(t_{1}, \ldots, t_{n})$ is pseudo-

coordinates of the point in the sense that the coordinates are not uniquely determined
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by the point. If $(\lambda_{0}, \ldots, \lambda_{n})$ are the barycentric coordinates of a point $x\in\triangle,$ $i.e$ .

$x= \sum\lambda_{a}v_{i}(\lambda_{0}+\cdots+\lambda_{n}=1)$ , then $t_{i}$ is equal to $\lambda_{i}/(\lambda_{0}+\cdots+\lambda_{i})$ , when defined,

and is indeterminate when $\lambda_{0}=\cdots=\lambda_{i}=0$ .

For each vertex $v$ of $\triangle$ , define a simplicial map $s^{v}$ : $\trianglearrow\triangle$ by:

$s^{v}(u)=\{\begin{array}{ll}v fora vertex u with u<v,u for avertex u with u\geq v.\end{array}$

For example, $s^{v0}$ is the identity map, and $s^{v_{n}}$ is the constant map which sends every
point of $\triangle$ to $v_{n}$ . A strong deformation retraction $s_{t}^{v}$ : $\trianglearrow\triangle$ is defined by $s_{t}^{v}(x)=$

$(1-t)x+ts^{v}(x)$ , where $x\in\triangle$ and $t\in[0,1]$ . Note that this strong deformation
retraction $s_{t}^{v}$ is covered by a deformation $\tilde{s}_{t}^{v}$ on $M$ , since $M$ has an iterated mapping
cylinder structure. Also note that $s_{t}^{v_{j}}(t>0)$ changes the $t_{j}$ pseudo-coordinate but
fixes the other pseudo-cordinates $t_{i}(i\neq j)$ .

3. ALEXANDER TRICKS

Let $M$ be an iterated mapping cylinder of maps

$F_{v0}arrow F_{v_{1}}arrow\ldotsarrow F_{v_{n}}$ ,

and $p:Marrow\triangle=|v_{0},$
$\ldots,$

$v_{n}|$ be the projection from $M$ to the ordered n-simplex $\triangle$ as
in the previous section. Suppose $c$ is a quadratic Poincar\’e $(n+2)-ad$ on $p:Marrow\triangle$ ,

such that $\partial_{i}c$ is a quadratic Poincar\’e $(n+1)-$ad on $p|p^{-1}(\partial_{i}\triangle),$ $i=0,$ $\ldots,$ $n([4][5])$ .

Such an $(n+2)-adc$ is said to be proper on $\triangle$ or simply proper.
We will describe a version of Alexander trick for such a proper $(n+2)-adc$ . First

fix a positive integer $N$ (height’) and pick up a vertex $v=v_{j}$ of $\triangle$ toward which
we try to squeeze the objects. Triangulate the closed interval $I_{N}=[0, N]$ using unit

intervals and represent each simplex by its barycenter. Use these points to construct
the symmetric Poincar\’e triad $e$ of $(I_{N};0, N)$ . Take the tensor product of $c$ and $e$ and
denote it by $c\cross I_{N}$ . This is a geometric object on $M\cross I_{N}$ which gives a cobordism
between $c\cross O$ and the $(n+2)-adc’$ defined by:

$c’=c\cross N\cup\partial_{j}c\cross I_{N}$ ,

$\partial_{i}c’=\{\begin{array}{ll}\partial_{i}c\cross N\cup\partial_{j-1}\partial_{i}c\cross I_{N} if i<j,\partial_{j}c\cross 0 if i=j,\partial_{i}c\cross N\cup\partial_{j}\partial_{i}c\cross I_{N} if i>j.\end{array}$
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So this construction does not change the j-th face $\partial_{j}c=\partial_{j}c\cross 0$ . If $i\neq j$ , then one
can perform the same construction to $\partial_{i}c$ to get $(\partial_{i}c)’$ , which coincides with $\partial_{i}c’$ .

Define maps $S_{N}^{v}$ : $\triangle\cross I_{N}arrow\triangle\cross I_{N}$ and $\tilde{S}_{N}^{v}$ : $M\cross I_{N}arrow M\cross I_{N}$ by

SQ $(x, t)=(s_{t/N}^{v}(x), t)$ and $\tilde{S}_{N}^{v}(w, t)=(\tilde{s}_{t/N}^{v}(w), t)$ .

Define an ordered $(n+1)$ -simplex $\triangle^{n+1}(\subset\triangle\cross I_{N})$ by

$\triangle^{n+1}=(\langle v_{0}, \ldots, v_{j}\rangle\cross 0)*(\langle v_{j}\rangle\cross N)*(\langle v_{j+1}, \ldots, v_{n}\rangle\cross 0)$ .

Here $*$ denotes the join of simplices. Note that

$S_{N}^{v}( \triangle\cross I_{N})=\bigcup_{0\leq t\leq N}(s_{t/N}^{v}(\langle v_{0}, \ldots, v_{j}\rangle\cross t)*(\langle v_{j+1}, \ldots, v_{n}\rangle\cross t)$
,

$\triangle^{n+1}=\bigcup_{0\leq t\leq N}(s_{t/N}^{v}(\langle v_{0}, \ldots, v_{j}\rangle\cross t)*(\langle v_{j+1}, \ldots, v_{n}\rangle\cross 0)$
.

Therefore, the obvious vertical retraction

$\langle v_{j+1},$
$\ldots,$

$v_{n}\rangle\cross I_{N}arrow\langle v_{j+1},$
$\ldots,$

$v_{n}\rangle\cross 0$

induces a map $R_{N}^{v}$ from the image $S_{N}^{v}(\triangle\cross I_{N})$ to $\triangle^{n+1}$ . Let

$q=p\cross 1_{I_{N}}|:M_{\triangle^{n+1}}=(p\cross 1_{I_{N}})^{-1}(\triangle^{n+1})arrow\triangle^{n+1}$

denote the pull-back of $p:Marrow\triangle$ by the projection map

$\pi:\triangle^{n+1}arrow^{inclusion}\triangle\cross I_{N}arrow^{projection}\triangle$ .

The map $R_{N}^{v}$ is covered by a map $\tilde{R}_{N}^{v}$ : $\tilde{S}_{N}^{v}(M\cross I_{N})arrow M_{\triangle^{n+1}}$ .

$j$ $n$

$N]$

$0$ $0$ $0$

Let us look at the relation between $c$ and $c’$ (and its functorial image $(\tilde{R}_{N}^{v}\circ\tilde{S}_{N}^{v})_{*}(c’)$ )

more closely. As in the pictures above, define a subset $\triangle’$ of $\partial(\triangle\cross I_{N})$ by

$\triangle^{J}=\triangle\cross N\cup\partial_{j}\triangle\cross I_{N}$ .
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The $(n+2)-adc’$ lies over $\triangle’$ . By glueing some of the faces, let us regard $c\cross I_{N}$ as an
$(n+3)-ad$ whose faces are

$\partial_{0}c\cross I_{N},$

$\ldots,$
$\partial_{j-1}c\cross I_{N},$ $c’,$ $c\cross 0,$ $\partial_{j+1}c\cross I_{N},$

$\ldots,$
$\partial_{n}c\cross I_{N}$ .

The functorial image of this $(n+3)-ad$ by the composition $\tilde{R}_{N}^{v}\circ\tilde{S}_{N}^{v}$ defines a proper
quadratic Poincar\’e $(n+3)-$ad $C_{N}^{v}(c)$ on $q:M_{\Delta^{n+1}}arrow\triangle^{n+1}$ .

The face $(\tilde{R}_{N}^{v}\circ\tilde{S}_{N}^{v})_{*}(c’)$ is a proper quadratic Poincar\’e $(n+2)-ad$ on $q|q^{-1}(R_{N}^{v}(S_{N}^{v}(\triangle’))$ ,

and is denoted $A_{N}^{v}(c)$ . Its functorial image $\pi_{*}(A_{N}^{v}(c))$ will be denoted $a_{N}^{v}(c)$ . It is a
proper on $\triangle$ . The functorial image $\pi_{*}(C_{N}^{v}(c))$ can be regarded as a Poincar\’e cobor-
dism between $c$ and $a_{N}^{v}(c)$ . The operation described above is called the Alexander
trick (of height $N$) at the vertex $v=v_{j}$ . Note that $a_{N}^{v}(c)$ has a fine control in the $t_{j}$

pseudo-coordinate. Also note that $\partial_{j}a_{N}^{v}(c)=a_{N}^{v}(\partial_{j}c)=\partial_{j}c$ , where $v=v_{j}$ .

If we successively apply the Alexander tricks at $v_{n},$ $\ldots$ , $v_{1},$ $v_{0}$ to the given proper
quadratic Poincar\’e $(n+2)-adc$, then we get finely controlled object which is cobordant
to $c$ . This process is called “squeezing” of (shrinking”. When we use the same height
$N$ at every vertex, then the squeezed object obtained from $c$ will be denoted $S_{N}(c)$ :

$S_{N}(c)=a_{N}^{v_{0}}(a_{N}^{v_{1}} (. . . (a_{N}^{v_{\mathfrak{n}}}(c))\ldots))$ .

The cobordism between $c$ and $S_{N}(c)$ constructed above is called the standard cobordism.
The squeezing operation $S_{N}$ preserves the face relation:

Proposition 3.1. $\partial_{i}S_{N}(c)$ is equal to $S_{N}(\partial_{i}c)$ . Furthermore, the standard cobordism
between $\partial_{i}c$ and $\partial_{i}S_{N}(c)$ is equal to the standard cobordism between $\partial_{i}c$ and $S_{N}(\partial_{i}c)$ .

4. $L$-SPACES

The squeezing operation seems to justify the following simple definition of the co-
efficient L-space $L_{n}(p:Marrow X)$ for the generalized homology $H_{*}(X;L(p))$ , where
$p$ : $Marrow X$ is a map from a space to a finite polyhedron which has an iterated
mapping cylinder decomposition and $n$ is an integer. It is a $\triangle$-set; a k-simplex is an
$(n+k)$-dimensional proper quadratic Poincar\’e $(k+2)-ad(c;\partial_{0}c, \ldots, \partial_{k}c)$ on the pull-

back $\pi^{*}Marrow(\triangle;\partial_{0}\triangle, \ldots, \partial_{k}\triangle)$ , where $\triangle$ is a k-simplex and $\pi$ : $\trianglearrow\triangle^{\iota}$ is an affine
surjection from $\triangle$ to an l-dimensional simplex $\triangle^{l}$ of $X(l\leq k)$ induced by an order $(\leq)$

preserving map between the vertices.
Two such simplices $(c, \pi : \trianglearrow\triangle^{l})$ and $(c’, \pi’ : \triangle’arrow\triangle^{\iota})$ are identified when there

is an affine homeomorphism $\phi:\trianglearrow\triangle’$ of ordered simplices such that $\pi=\pi’\circ\phi$ and
$\phi_{*}(c)=c’$ .
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Note that the squeezing operation $S_{N}$ defines a simplicial homotopy of the identity
map of $L_{n}(p:Marrow X)$ to a simplicial map whose image is contained in a subset made
up of simplices of ‘small radius’ measured on $X$ , if $N$ is large. Thus this space has a
built-in ‘squeezing’ mechanism.

$A_{N}^{v_{0}}(A_{N}^{v_{1}}(c))$

$0$ $c$ 1

Let us consider the special case when $X$ is a single point. There is a similar $\triangle$-set
$L_{n}’(M)$ whose k-simplex is an $(n+k)$-dimensional quadratic Poincar\’e $(k+2)-adc$ on $M$

that is special, $i.e$ . $\partial_{0}\partial_{1}\ldots\partial_{k}c$ is $0$ . $\pi_{0}(L_{n}’(p:Marrow*))$ is isomorphic to $L_{n}^{h}(\mathbb{Z}\pi_{1}(M))$ .

There is a map $L_{n}(Marrow*)arrow L_{n}’(M)$ that sends a k-simplex $(c, \pi)$ to its functorial
image $\pi_{*}(c)$ . A map in the reverse direction can be constructed as follows. Let $c$

be a k-simplex of $L_{n}’(M)$ . It is made up of three type of things: (1) ‘points’ in $M$

(generators of free modules), (2) paths with coefficients connecting the generators, and
(3) homotopies of certain paths. Since $c$ is special, one can make a 1-1 correspondence
between its faces (including $c$ itself) and the faces of a standard k-simplex $\triangle$ (including
$\triangle$ itself), and can make copies of the faces of $c$ on the sets {barycenters} $\cross M\subset\triangle\cross M$

and realizing the morphisms between adjacent pieces by using the original paths in $c$ in
the M-direction and the path connecting two adjacent barycenters in the $\triangle$-direction
as components. Similarly for homotopies of paths. These are homotopy inverses of
each other.

$:\ldots\ldots\ldots\ldots..:\ldots\ldots\ldots\ldots..$ :

$:\ldots..\triangle.\cross\ldots M.:\ldots.\ldots::\ldots.\ldots$

:

$\partial_{\underline{1}}\Delta\Delta\partial_{0}\Delta$
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Therefore, $L_{n}(p : Marrow X)$ defined above may give a convenient description of
L-homology groups.
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