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Abstract

Jacobi-Davidson type methods have been recently proposed for the iter-
ative compution ofa few eigenpairs of a large-scale and sparse matrix. This
type methods are characterized by the correction equation for generating
a subspace where eigenpairs are approximated. In this report, we present a
shift invariance property of the Krylov subspace on a projected space. Based
on the property, a procedure for solving the correction equation is proposed.
Through the procedure, we can construct not only existing methods but also
new methods of Jacobi-Davidson type.

1 Introduction

Given an $N\cross N$ large and sparse matrix $A$ , we consider computing a few eigen-
pairs $(\lambda\in \mathbb{C},x\in \mathbb{C}^{N})$ satisfying

$A$ $x=\lambda x$ $(x\neq 0)$ . (1)

For the iterative computation of eigenpairs, Krylov subspace methods are widely
used, e.g., the Lanczos method [7, 2] (when $A$ is Hermitian) and the Amoldi
method [1, 2] (when $A$ is non-Hermitian). On the other hand, a different type
of iterative methods have been recently proposed, e.g., the Jacobi-Davidson (JD)
method [10, 5, 2] and the Riccati method [3]. This type methods are characterized
by the correction equation [10] for generating a subspace. Here, we focus on this
type methods and call them JD-type methods.

In JD-type methods, the correction equation is (approximately) solved for gen-
erating a basis vector of a subspace. According to solvers for the equation, dif-
ferent subspaces are generated, i.e., different JD-type methods are produced. In
this report, we present a shift invariance property of the Krylov subspace on a
projected space [8]. Based on the property, a procedure for solving the correction
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equation is proposed. Through the procedure, not only existing JD-type meth-
ods but also new JD-type methods can be constructed. Relationship among the
constmcted methods are established.

This report is organized as follows. In section 2, we describe the correction
equation in JD-type methods. In section 3, we present our procedure for solving
the correction equation. Through the procedure, JD-type methods can be con-
stmcted. In section 4, numerical experiments are reported to compare JD-type
methods. Finally, we summarize this report in section 5. Throughout this report,
$I$ denotes the $N\cross N$ identity matrix, and $(\cdot)^{*}$ denotes the conjugate transpose. Let
$(K_{m}(A, b)$ denote the m-dimensional Krylov subspace span$\{b, Ab, ..., An-1b\}$ .

2 JD-type methods

To start with, we describe the colTection equation in JD-type methods. The equa-
tion is a reformulation of Jacobi’s idea [6] for generating a subspace. Then, the
JD method and the Riccati method are outlined.

2.1 The correction equation
Let $Q$ be an $N\cross k$ matrix whose column vectors form an orthonormal basis of
a subspace $O$ . Let $(\theta, u)$ be an approximate eigenpair. We consider $u\in O$ , i.e.,
$u=Qy(y\in \mathbb{C}^{k})$ . The Rayleigh quotient of $u$ is taken as the approximate
eigenvalue $\theta=u^{*}Au$ with $||u||_{2}=1$ . We define the residual vector $r=Au-\theta u$

and compute $\Vert r||_{2}$ to check the accuracy of $(\theta, u)$ .
Here, we are given the approximate eigenpair $(\theta, u)$ to $(\lambda, x)$ . To get the exact

eigenvector $x$, Jacobi’s idea is to find the correction vector $t=x-u$ satisfying
$t\perp u$ . From Eq. (1), $t$ satisfies

$A(u+t)=\lambda(u+t)$ . (2)

Let $P=I-uu^{*}$ , then applying the projector $P$ to Eq. (2) leads to the correction
equation [10] as follows

$P(A-\lambda I)Pt=-r$ . (3)

The unknown eigenvalue $\lambda$ exists in Eq. (3). To vanish 1, the projector $I-P$ is
applied to Eq. (2). This leads to

$\lambda=u^{*}Au+u^{*}A$ $t$ . (4)

From Eqs. (3) and (4), a Riccati form [3] of the correction equation is derived as
follows

$P(A-(\theta+u^{*}At)I)Pt=-r$ . (5)
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In JD-type methods, the correction vector $t$ is approximated and the approxi-
mation is used to expand the subspace $O$ . In the expanded subspace, the eigenpair
will be approximated again.

2.2 Solving the correction equation
Two JD-type methods are briefly described here. One is the Riccati method, the
other is the JD method.

The Riccati method approximates the solution vector ofnonlinear equation (5)
in a Krylov subspace [3]. On the other hand, typically in the JD method, Eq. (5)
is linearized and the following linear system

$P(A-\theta I)Pt=-r$ (6)

is approximately solved by the GMRES algorithm [9]. The JD method discards
the term $u^{*}At$ . From this difference, the Riccati method may show faster conver-
gence than the JD method.

3 Constructing JD-type methods

Our approach for computing the correction vector is outlined as follows.
$\bullet$ Replace the unknown eigenvalue $\lambda$ in Eq. (3) by its approximation $\sigma$ .

$\bullet$ Solve the following linear system

$P(A-\sigma I)Pt=-r$. (7)

To this end, double Krylov subspaces are used as follows.

$\bullet$ The first subspace $’\kappa_{m}(A, u)$ for $\sigma$ .

$\bullet$ The second subspace $’\kappa_{l}(P(A-\sigma I)P, r)$ for solving Eq. (7) approximately.

3.1 Shift invariance property

The computational cost of the approach is considerable, especially in matrix-
vector multiplications for generating the basis vectors of the double Krylov sub-
spaces. To save these costs, we make clear a relationship of the subspaces.

It is known that the Krylov subspace is shift invariant, i.e.,

$’\kappa_{n}(A-\sigma I, b)=’\kappa_{n}(A, b)$ .

We show that the property holds on a projected space [8].
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Theorem 1 Let $G$ be an $N\cross N$ matrix satisfying $G^{2}=G,$ $G^{*}=G.$ Then, the
Krylov subspace on a projected space is shift invariant, that is

$j\zeta_{n}(G^{*}(A-\sigma I)G, Gb)=’\kappa_{n}(G^{*}AG, Gb)$. (8)

Corollary 1 From Eq. (8), the double Krylov subspaces satisfy

$’\kappa_{n}(P(A-\sigma I)P, r)=PK_{n+1}(A, u)$ . (9)

From Eq. (9), the basis of the first subspace can be reused as that of the second
subspace. The computational cost for generating the basis are therefore saved.

3.2 Procedure for the correction equation
By utilizing the relationship ofthe double Krylov subspaces, our approach is out-
lined as follows.

Krylov procedure for the correction equation (7)

Step 1. Set parameters $m,$ $n$ , and $f= \max(m, n+1)$ .

Step 2. Generate $\ell$-orthonormal basis vectors $v_{1},$ $\ldots$ , $v_{C}$ of $’\kappa_{p}(A, u)$ .

Step 3. Set the algorithm to generate the approximate eigenvalue $\sigma$ in
$7C_{m}(A, u)=$ span$\{v_{1}, \ldots, v_{m}\}$ .

Step 4. Set the algorithm to solve Eq. (7) approximately in
$(K_{n}(P(A-\sigma I)P, r)=$ span$\{v_{2}, \ldots, v_{n+1}\}$ .

Through the procedure, JD-type methods can be constmcted by the decision of
the parameters, i.e., $m,$ $n$ and the two algorithms at Steps 3 and 4. Examples of
the constructed methods are shown in Table 1.

Table 1: The parameter decision for JD-type methods.

$\frac{Type|m|A1gorithmatStep3|A1gorithmatStep4}{|\begin{array}{l}\overline{1}+n1+n1+n1\end{array}|}(((II)Amo1di(Ritz)$

The existing JD-type methods are reconstmcted through the procedure.
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Remark 1 Suppose the $JD$ method is set up with the n-steps ofthe GMRES algo-
rithmfor solving Eq. (6) approximately. Then, the $JD$ method is equivalent to the
JD-type (I) method in Table 1.

Remark 2 Suppose the Riccati method is set up with the n-dimensional Krylov
subspacefor solving Eq. (5) approximately. Then, the Riccati method is equivalent
to the JD-type (II) method in Table 1.

From the above remarks, we compare the JD method with the Riccati method.
At Step 2 in the Krylov procedure, $f=n+1$ dimensional subspace is generated
in the both methods. At Step 3, the JD method utilizes only $m=1$ dimensional
subspace whereas the Riccati method utilizes the maximum $m=n+1$ dimensional
subspace. Hence, in the Riccati method, a better approximate eigenvalue $\sigma$ can
be set in Eq. (7). As a result, a better approximation of the correction vector
may be produced in the Riccati method. For this reason, the Riccati method may
show faster convergence than the JD method. However, in the Riccati method, the
Amoldi algorithm producing Ritz values is implicitly used at Step 3. This may
not be appropriate when desired eigenvalues are interior.

We consider constmcting other JD-type methods, e.g., Type (III) and (IV) in
Table 1. The parameter $m$ is the same as that in the Riccati method to utilize
the maximum dimensional subspace at Step 3 for approximate eigenvalues. In
the Amoldi algorithm at Step 3, Ritz values are produced for exterior eigenvalues
(Type (III)) whereas harmonic Ritz values are produced for interior eigenvalues
(Type (IV)). To produce the minimum residual solution of Eq. (7), the shifted
GMRES algorithm is adopted at Step 4 (Type (III) and (IV)).

4 Numerical experiments
We show numerical experiments to compare the three kinds of JD-type methods.
The JD method approximately solved Eq. (6) by the $n=10$ steps of the GMRES
algorithm. The Riccati method approximately solved Eq. (5) in the $n=10$ dimen-
sional Krylov subspace. The JD-type (III) method approximately solved Eq. (7)

with the parameter $n=10$ . Number ofmatrix-vector multiplications per iteration
were the same in all the methods.

By using these methods, we computed the largest eigenvalue and its corre-
sponding eigenvector of the real nonsymmetric matrix DW8192 obtained from
[4]. These experiments were implemented with Fortran 77 in double precision
arithmetic on AMD Phenom 9500 (2.2 GHz). In the three methods, an ini-
tial approximate eigenvector was given by a common vector whose elements
were random numbers. Iteration was stopped when the relative residua12-norm
$||r||_{2}/|\theta|\leq 10^{-12}$ . Convergence histories are shown in Figure 1.
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Figure 1: Convergence histories of relative residua12-norms.

As shown in Figure 1, the Type (III) method showed faster convergence than
both the JD method and the Riccati method. With respect to computational time,
the JD method required 2.17 seconds, the Riccati method required 2.25 seconds,
and the Type (III) method required 1.60 seconds.

5 Conclusion
In this report, we presem a shift invariance property of the Krylov subspace on
a projected space. By utilizing the property, we provide a procedure for solving
the correction equation. Through the procedure, not only existing JD-type meth-
ods but also new JD-type methods can be constmcted. Numerical experiments
indicates that the new JD-type method is a good competitor to existing JD-type
methods.
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