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1 Introduction
Let $\mathbb{R}$ and $\mathbb{N}$ be sets of reals and natural numbers, respectively. Let $\Omega$ be a bounded convex polygonal
domain in $\mathbb{R}^{m}$ with $m=2,3$ . This article is concerned with the Dirichlet boundary value problem of the
semilinear elliptic equation:

$\{$

$-\nabla\cdot(a\nabla u)=f(u)$ , in $\Omega$ , (1)
$u=0$ , on $\partial\Omega$ .

We have proposed a numerical verification method [1] with Takayuki Kubo at University of Tsukuba for
proving the existence of solutions to problem (1). One feature of our method is that verification conditions
are based on Newton-Kantorovich theorem. Although this formulation is applicable to higher order finite
elements, authors mainly treated the case of piecewise linear elements in the previous paper [1]. Using
piecewise linear elements, numerical experiments sometimes require fine meshes to satisfy sufficient conditions
of Newton-Kantorovich theorem. Then, our verification method is failed to prove because of computational
costs. For example, consider the following nonlinear elliptic equation

$\{\begin{array}{l}-\triangle u=u^{2}, in \Omega,(2)u=0, on \partial\Omega.\end{array}$

The sufficient condition of Newton-Kantorovich theorem is expressed by the condition

$\alpha\omega\leqq\frac{1}{2}$ ,

where certain constants $\alpha$ and $\omega$ are explained later. Our numerical experiments are failed to show $\alpha\omega\leqq 1/2$

by using piecewise linear finite elements. In this article, we treat a problem of overcoming such difficulties.
Some reformulation are needed to refine the residual estimation by using higher order finite elements. The
smoothing technique is modified for our verification method.

In the following section, we briefly explain our computer assisted proof method. The refinement of our
method is proposed in Section 3. The smoothing method is introduced. In Section 4, a computational result
regarding (2) is presented. Our refined procedure prove the existence and local uniqueness of the exact
solution to (2).

2 Basic foundations
We would like to explain our computer assisted approach first for the following abstract problem:

Find $u\in V$ satisfying $\mathcal{F}u=0$ , (3)

ltakitoshiOsuou. waseda. jp
2oishiQwaseda. jp

数理解析研究所講究録
第 1733巻 2011年 118-126 118



with $\langle$ V, $(\cdot,$ $\cdot)_{V}\rangle$ denoting a Hilbert space with its inner product. We also define the dual space of $V$ as $V^{*}$ .
Let $\mathcal{F}$ : $Varrow V^{*}$ denote some Fr\’echet differentiable mapping. Let $\hat{u}\in V$ be an approximate solution to (3),
and Fr\’echet derivative of $\mathcal{F}$ at $\hat{u}$ denotes $\mathcal{F}’(\hat{u})$ : $Varrow V^{*},$ $i.e$ . satisfying

$\Vert \mathcal{F}(\hat{u}+\nu)-\mathcal{F}(\hat{u})-\mathcal{F}’(\hat{u})\nu\Vert_{V}$. $=o$ $(||\iota$ノ $\Vert_{V}),$ $\Vert\nu\Vert_{V}arrow 0$ .

Assuming that we can know three constants $C_{i},$ $(i=1,2,3)$ , such that

$\Vert \mathcal{F}’(\hat{u})^{-1}\Vert_{\mathcal{L}(V.V)}\leqq C_{1}$ , (4)

i. e., $C_{1}$ bounds the inverse operator of $\mathcal{F}’(\hat{u})$ . $C_{2.h}$ bounds the residual of approximation:

$\Vert \mathcal{F}\hat{u}\Vert_{V}\cdot\leqq C_{2.h}$ . (5)

$C_{3}$ denotes the Lipschitz constant of $\mathcal{F}’$ , which is required to be Lipschitz continuous on the certain ball $D$ ,

$\Vert \mathcal{F}’(v)-\mathcal{F}’(w)\Vert_{C(V.V)}\leqq C_{3}\Vert v-w\Vert_{V}$ , $\forall v.w\in D$ . (6)

Our main task to computer assisted analysis is the calculation of these constants explicitly. In order
to prove the existence and local uniqueness of the exact solution in the neighborhood of $\hat{u}$ , the following
Newton-Kantorovich theorem is applicable to (3). This form of Newton-Kantorovich theorem is called an
affine invariant form [2].

Theorem 1 (Newton-Kantorovich Theorem). Assuming that the Frechet dert,vative $\mathcal{F}’(\hat{u})$ is nonsin-
gular and satisfies

$\Vert \mathcal{F}’(\hat{u})^{-1}\mathcal{F}\hat{u}\Vert_{V}\leqq\alpha$ ,

for a certain positive $\alpha$ . Then, let $D:=B(\hat{u}, 2\alpha)=\{v\in V:\Vert v-\hat{u}\Vert_{V}\leqq 2\alpha\}\subset V$ and assume that for a
certain positive $\omega$ and any $v,$ $w\in D$ , the following holds:

$\Vert \mathcal{F}’(\hat{u})^{-1}(\mathcal{F}’(v)-\mathcal{F}’(w))\Vert_{\mathcal{L}(V.V)}\leqq\omega\Vert v-w\Vert_{V}$ .

If $\alpha\omega\leqq 1/2$ holds, then there is a solution $u^{*}\in V$ of $\mathcal{F}u=0$ satisfying

$\Vert u^{*}-\hat{u}\Vert_{V}\leqq\rho:=\frac{1-\sqrt{1-2\alpha\omega}}{\omega}$.

Furthermore, the solution $u^{*}$ is unique in the ball $B(\hat{u}, \rho)$ .

Since $\alpha\leqq C_{1}C_{2,h}$ and $\omega\leqq C_{1}C_{3}$ form (4) $-(6)$ , the concrete computation of $C_{1},$ $C_{2,h}$ and $C_{3}$ yields
computer assisted proof of the existence and local uniqueness to the problem (3). Therefore, if $\alpha\omega\leqq$

$C_{1}^{2}C_{2}.{}_{h}C_{3}<1/2$ is obtained by verified computation, then the existence and local uniqueness of the solution
are proved numerically.

Remarks. The above result does not require elliptic properties of the operator $\mathcal{F}’(\hat{u}),$ $i.e$ . the existence and
local uniqueness can be obtained in the case of the operator is indefinite. This case occurs for several
approximate solution. In such a case, the existence and local uniqueness cannot be obtained by the
$:_{analytic’}$ way.. Our computer assisted proof method requires the approximate solution of (3) in a certain finite dimen-
sional subspace, such as the finite element subspace of $V$ . It means that we can verify the solution
when one have the approximate solution of (1) in the discrete subspace of $V$ .. Another method of proving the existence and inclusion of the exact solution for semilinear elliptic
problems has been developed by M.T. Nakao and $bI$ . Plum (See, $e.g$ . $[3]$ and [4]). Their methods have
been demonstrated to be useful for the computer assisted proof. We don $t$ report on their methods in
more detail here,

Based on this consideration, we now discuss the detail of our computer assisted proof approach in the below.

119



2.1 Notations
Throughout this article, $L^{P}(\Omega)(p\in[1, oc))$ denotes the functional space of Lebesgue-measurable $p$ th power-
integrable functions. Especially, let us define $L^{2}$ -inner product $(u, v)$ and $L^{2}$-norm $\Vert u\Vert_{L^{2}}=\sqrt{(u,u)}$ respec-
tively. Let $H^{S}(\Omega)$ denote $L^{2}$ -Sobolev space of order $s\in \mathbb{N}$ with the inner product $\langle u,$ $v\rangle_{s}$ . The $H^{s}$ -norm is
defined by $\Vert u\Vert_{H^{s}}=\sqrt{\langle u,u\rangle_{s}}$. Let further define $H_{0}^{1}(\Omega)$ by $H_{0}^{1}(\Omega)=\{u\in H^{1}(\Omega) : u=0(x\in\partial\Omega)\}$ with
the inner product $(\nabla u, \nabla v)$ and the norm $\Vert u\Vert_{H_{0}^{1}}=\Vert\nabla u\Vert_{L^{2}}$ . Here, $u=0$ on $\partial\Omega$ is the trace sense. Let
$H^{-1}(\Omega)$ be the topological dual space of $H_{0}^{1}(\Omega)$ , i. e., the space of linear continuous functionals on $H_{0}^{1}(\Omega)$ .

Let $T\in H^{-1}(\Omega)$ and $u\in H_{0}^{1}(\Omega)$ . We denote $Tu\in \mathbb{R}$ as $<T,$ $u>$ . The norm of $T\in H^{-1}(\Omega)$ is defined as

$\Vert T\Vert_{H^{-1}}=\sup_{0\neq u\in H_{0}^{1}(\Omega)}\frac{|<T,u>|}{\Vert u||_{H_{0}^{1}}}$ .

Let $L^{\infty}(\Omega)$ denote the essentially bounded functions with the norm $\Vert u\Vert_{x}=ess\sup_{x\in\Omega}|u(x)|$ . For $u(x)\in$

$(L^{\infty}(\Omega))^{m}$ , let us define

$|u(x)|_{E}=( \sum_{i=1}^{m}u_{i}(x)^{2})^{\frac{1}{2}}$

Assuming that $u^{h}=(u_{1}, \ldots, u_{n})$ is n-dimensional vector on $\mathbb{R}^{n}$ , let $|u^{h}|_{l^{2}}$ be the Euclidean norm:

$|u^{h}|_{l^{2}}=\sqrt{u_{1}^{2}+u_{2}^{2}++u_{n}^{2}}$

and the norm $\Vert\cdot\Vert_{2}$ denotes the spectral norm of matrices. Let $X$ and $Y$ be Banach spaces. The set of
bounded linear operators is denoted by $\mathcal{L}(X, Y)$ with the operator norm

$\Vert \mathcal{T}\Vert_{C(X,Y)}=\sup_{0\neq u\in X}\frac{\Vert \mathcal{T}u\Vert\}’}{||u\Vert_{X}}$, $(\mathcal{T}\in \mathcal{L}(X, Y))$ .

Here, $\Vert\cdot\Vert_{X}$ is the norm of $X$ and $\Vert\cdot\Vert\}’$ is the norm of $Y$ . Furthermore, the embedding constant $C_{e.p}$ gives
$\Vert v\Vert_{L^{P}}\leqq C_{e,p}\Vert v\Vert_{H_{0}^{1}}$ . Now we choose the spaces $V:=H_{0}^{1}(\Omega)$ and $V^{*}$ $:=H^{-1}(\Omega)(=\mathcal{L}(H_{0}^{1}, \mathbb{R}))$ .

2.2 Weak formulation
Let $\Omega$ be a bounded convex polygonal domain in $\mathbb{R}^{m}$ with $m=2,3$ . Present authors have presented with
T. Kubo a method of a computer assisted proof for the Dirichlet boundary value problem of the semilinear
elliptic equation [1] of the form:

$\{$

$-\nabla\cdot(a\nabla u)=f(u)$ , in $\Omega$ , (7)
$u=0$ , on $\partial\Omega$ ,

where $a(x)$ is a smooth function on $\Omega\cup\partial\Omega$ with $a(x)\geqq a_{0}>0$ for some $a_{0}\in \mathbb{R}$ . Here, $f$ : $Varrow L^{2}(\Omega)$ is
assumed to be Fr\’echet differentiable. For example, the following function

$f(u)=-b\cdot\nabla u-cu+c_{2}u^{2}+c_{3}u^{3}+g$

with $b(x)\in(L^{\infty}(\Omega))^{m},$ $c,$ $c_{2},$ $c_{3}\in L^{\infty}(\Omega)$ and $g\in L^{2}(\Omega)$ satisfies this condition. Here, we will briefly review
our proposed method. For $u,$ $v\in V$ , we define a continuous bilinear form $A(u, v)$ as $A(u, v)=(a\nabla u, \nabla v)$ .

Note that the bilinear form $A(u, v)$ is an inner product on $V$ and there exist positive constants $C_{a}$ and $c_{a}$

satisfying
$c_{a}\Vert u\Vert_{V}\leqq\Vert u\Vert_{a}\leqq C_{a}\Vert u\Vert_{V}$ for $u\in V$, (8)

where $\Vert u\Vert_{a}=\sqrt{A(u,u)}$ . In fact, we can choose $c_{a}=\sqrt{a_{0}}$ and $C_{a}=\sqrt{\Vert a\Vert_{x}}$ .
If we fix $u\in V$ , then $A(u, \cdot)\in V^{*}$ is a linear functional. Thus, we can define an operator $A:Varrow V^{*}$ by

$<Au,$ $v>=A(u, v)$ . Note that the bilinear form $A$ is coercive, $i.e$ .

$A(u, u)\geqq a_{0}\Vert u\Vert_{V}^{2}$ . (9)

120



Then, for $v\in V$ , Lax-Milgram’s theorem states the existence of the inverse of $A:Varrow V^{*}$ as $A^{-1}$ : $V^{*}arrow V$ .
Similarly, for $u,$ $v\in V$ we can define a nonlinear operator $\mathcal{N}$ : $Varrow V^{*}$ by $<\mathcal{N}u,$ $v>=(f(u), v)$ . A weak
form of Eq.(7) can be transformed into

$Au=\mathcal{N}u$ . (10)
We define the operator $\mathcal{F}$ : $Varrow V^{*}$ by $\mathcal{F}u=(A-\mathcal{N})u$ . Then, Eq.(10) can be written as

$\mathcal{F}u=0$ . (11)

This is nothing but the abstract problem (3).
In order to apply Newton-Kantorovich theorem, the $Fr_{\acute{e}chet}$ derivative of $\mathcal{F}$ is needed. The Fr$\mathfrak{X}het$

differentiability of $\mathcal{F}$ is derived by that of $f$ . We define the Frechet derivative of $\mathcal{N}$ at $\hat{u}\in V$ , i. e., $\mathcal{N}’(\hat{u})$ :
$Varrow V^{*}$ is given by $<$ Al”(\^u)u, $v>=(f’(\text{\^{u}})u, v)$ . Here, $f’(\hat{u})$ : $Varrow L^{2}(0,1)$ is the Fr\’echet derivative of
$f$ : $Varrow L^{2}(0,1)$ at $\hat{u}$ . Thus, for a given $u\in V$ the Fr\’echet derivative $\mathcal{F}’(u):Varrow V^{*}$ is defined as

$\mathcal{F}’(u)=A-\mathcal{N}’(u)$ . (12)

2.3 Finite element approximation
Next we define the finite element approximation. Let $V_{h}$ denote a finite-dimensional space spanned by
linearly independent V-conforming finite element basis functions depending on the mesh size $h,$ $(0<h<1)$ .
For the piecewise linear base functions $\phi_{i}^{l}$ , we define $V_{h}^{l}=span\{\phi_{1}^{l}, \phi_{2}^{l}, \ldots, \phi_{N_{1}}^{l}\}\subset V$ where $N_{l}$ denotes the
number of node points in $\Omega\backslash \partial\Omega$ . On the other hand, for piecewise quadratic base functions $\phi_{i}^{q}$ , we define

Figure 1: Piecewise linear $(N_{l}=1)$ & quadratic elements $(N_{q}=9)$

$V_{h}^{q}=$ span$\{\phi_{1}^{q}, \phi_{2}^{q}, \ldots, \phi_{N_{q}}^{q}\}\subset V$ where $N_{q}$ denotes the number of node points in $\Omega\backslash \partial\Omega$ (See Figure 1). If
we use the piecewise linear or quadratic base functions, $V_{h}=V_{h}^{l}$ or $V_{h}=V_{h}^{q}$ , respectively. In the following,
by $\phi_{i}$ we designate $\phi_{i}^{l}$ or $\phi_{i}^{q}$ according to the base function being linear or quadratic.

The Ritz-projection $\mathcal{P}_{h}:Varrow V_{h}$ is defined by $(a(x)(\nabla u-\nabla(\mathcal{P}_{h}u)), \nabla v_{h})=0,$ $\forall v_{h}\in V_{h}$ . For $u\in$

$V\cap H^{2}(\Omega)$ and its approximation $\mathcal{P}_{h}u\in V_{h}$ , a priori error estimate is given as

$\Vert u-\mathcal{P}_{h}u\Vert_{V}\leqq C_{0}(h)\Vert f(u)\Vert_{L^{2}}$ .

In case of $a(x)=1$ , for the rectangular mesh, Nakao, Yamamoto and Kimura [5] have shown that one
can take $C_{0}(h)=h/\pi$ and $h/2\pi$ for bilinear and biquadratic element, respectively. Kikuchi and Liu [6]
have proved that for $a(x)=1$ and for the linear and equilateral triangle mesh of the convex polygonal
domain, $C_{0}(h)$ can be taken as 0. $493h$ . Now, we show how to calculate $C_{0}(h)$ for the case of $a(x)\neq 1$ . Let
$\Pi_{h}$ : $Varrow V_{h}$ be the orthogonal projection defined by $(\nabla u-\nabla(\Pi_{h}u), \nabla v_{h})=0$ , $\forall v_{h}\in V_{h}$ . For convex
polygonal domain, it is known that the following a priori error estimate holds:

$\Vert u-\Pi_{h}u\Vert_{V}\leqq C(h)\Vert\triangle u\Vert_{L^{2}}$ .
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Assuming that we know the explicit formula for $C(h),$ $e.g$ . in case of the linear and equilateral triangle mesh,
one can take $C(h)=0.493h$ as mentioned above. From (9), $\mathcal{P}_{h}u$ and $\Pi_{h}u\in V_{h}$ , it follows

$c_{a}^{2}\Vert u-\mathcal{P}_{h}u\Vert_{V}^{2}$ $\leqq$ $A(u-\mathcal{P}_{h}u, u-\Pi_{h}u)$

$\leqq$ $C_{a}^{2}\Vert u-\mathcal{P}_{h}u\Vert_{V}\Vert u-\Pi_{h}u\Vert_{V}$

$\leqq$ $C_{a}^{2}\Vert u-\mathcal{P}_{h}u\Vert_{V}C(h)\Vert\triangle u\Vert_{L^{2}}$ .

Thus, we have
$\Vert u-\mathcal{P}_{h}u\Vert_{V}\leqq(\frac{C_{a}}{c_{a}})^{2}C(h)\Vert\Delta u\Vert_{L^{2}}$ . (13)

Put $-\nabla\cdot(a\nabla u)=g_{d}$ . Then, we have

$\Vert\triangle u\Vert_{L^{2}}$ $=$ $\Vert\frac{\nabla a\cdot\nabla u+g_{d}}{a}\Vert_{L^{2}}$

$\leqq$ $\frac{1}{a_{0}}(\Vert\nabla a\cdot\nabla u\Vert_{L^{2}}+\Vert g_{d}\Vert_{L^{2}})$

$\leqq$ $\frac{1}{a_{0}}(\Vert|\nabla a|_{E}\Vert_{\infty}\Vert\nabla u\Vert_{L^{2}}+\Vert g_{d}\Vert_{L^{2}})$ .

On the other hand, from (9), we have the following inequality

$c_{a}^{2}\Vert\nabla u\Vert_{L^{2}}^{2}\leqq A(u, u)=(g_{d}, u)\leqq\Vert g_{d}\Vert_{L^{2}}\Vert u\Vert_{L^{2}}\leqq C_{e,2}\Vert g_{d}\Vert_{L^{2}}\Vert\nabla u\Vert_{L^{2}}$ .

Therefore, it turns out that

$\Vert\Delta u\Vert_{L^{2}}\leqq-$$a_{0}1( \frac{C_{e,2}}{c_{a}^{2}}\Vert|\nabla a|_{E}\Vert_{\infty}+1)\Vert g_{d}\Vert_{L^{2}}=C’\Vert g_{d}\Vert_{L^{2}}$ . (14)

Finally, from (13) and (14), we can derive the formula for $C_{0}(h)$ in the case of $a(x)\neq 1$ as

$C_{0}(h)=( \frac{C_{a}}{c_{a}})^{2}C(h)C’$ .

2.4 Each constants
By the notation of Fr\’echet derivative (12), condition (4) turns out to be the inverse norm estimation:

$\Vert(\mathcal{A}-\mathcal{N}’(\hat{u}))^{-1}\Vert_{\mathcal{L}(V,V)}\leqq C_{1}$ .

In our method, this is estimated by the following theorem given by S. Oishi [7]. This theorem is based on
perturbation lemma of linear operators [8].

Theorem 2 (Oishi 1995). Let $\hat{u}\in V$ and $\mathcal{N}’(\hat{u})$ : $Varrow V^{*}$ be a linear compact operator. Let $V_{h}$ be a finite
dimensional subspace of V. Let $\mathcal{P}_{h}:Varrow V_{h}$ be the Ritz-projection. Assuming that $\mathcal{P}_{h}\mathcal{A}^{-1}\mathcal{N}’(\hat{u}):Varrow V$

is bounded and satisfies
$\Vert P_{h}\mathcal{A}^{-1}\mathcal{N}’(\hat{u})\Vert c(\iota^{r}.v)\leqq K$ ,

the difference between $\mathcal{A}^{-1}\mathcal{N}’(\hat{u})$ and $\mathcal{P}_{h}\mathcal{A}^{-1}\mathcal{N}’(\hat{u})$ is bounded and enjoys

$\Vert(\mathcal{A}^{-1}-\mathcal{P}_{n}\mathcal{A}^{-1})\mathcal{N}’(\hat{u})\Vert_{\mathcal{L}(V.V)}\leqq L$ ,

and the finite dimensional operator $\mathcal{P}_{h}(\mathcal{I}-\mathcal{A}^{-1}\mathcal{N}’(\hat{u}))|v_{h}$ : $V_{h}arrow V_{h}$ is invertible with

$\Vert(\mathcal{P}_{h}(\mathcal{I}-\mathcal{A}^{-1}\mathcal{N}’(\hat{u}))|_{V_{h}})^{-1}\Vert_{\mathcal{L}(V.V)}\leqq$ M.

Here, $P_{h}(\mathcal{I}-\mathcal{A}^{-1}\mathcal{N}’(\hat{u}))|v_{h}$ : $V_{h}arrow V_{h}$ is the restriction of the operator $\mathcal{P}_{h}(\mathcal{I}-\mathcal{A}^{-1}\mathcal{N}’(\hat{u})):Varrow V_{h}$ on $V_{h}$ .

If $(1+MK)L<1$ , then the oPerator $\mathcal{A}-\mathcal{N}’(\hat{u})$ is also invertible and

$\Vert \mathcal{F}’(\hat{u})^{-1}\Vert_{\mathcal{L}(V.V)}=\Vert(\mathcal{A}-\mathcal{N}’(\hat{u}))^{-1}\Vert_{\mathcal{L}(V.V)}\leqq\frac{1+\Lambda IK}{a_{0}(1-(1+\Lambda IK)L)}=:C_{1}$ .

口
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In the previous paper [1], we have shown that the residual of the operator equation (11) can be bounded
by

$\Vert \mathcal{F}\hat{u}\Vert_{V}\cdot=\Vert A\hat{u}-\mathcal{N}\hat{u}\Vert v*\leqq C_{a}^{2}(\Vert\hat{u}-\mathcal{P}_{h}A^{-1}\mathcal{N}(\hat{u})\Vert_{V}+C_{0}(h)\Vert f(\hat{u})\Vert_{L^{2}})=;C_{2.h}$. (15)

It is noted that the term $C_{0}(h)\Vert f(\hat{u})\Vert_{L^{2}}$ is included in this expression of $C_{2.h}$ . Usually, since $C_{0}(h)$ is
proportional to $h,$ $C_{2.h}$ decreases only proportional to $h$ even if we use smaller $h$ . Namely, if $\Vert f(\hat{u})\Vert_{L^{2}}$ term
becomes large, the condition of Newton-Kantorovich theorem $(\alpha\omega\leqq 1/2)$ might not be satisfied unless fine
mesh is used. To overcome this, this article will present a refined method of evaluating the residual of the
operator equation (11). In the previous paper, we have also shown how to calculate the Lipschitz constant
$C_{3}$ defined through $C_{3};=C_{e},{}_{2}C_{L}$ where $C_{L}$ is the Lipschitz constant of $f’$ .

3 Refinement for residual evaluation
Since the expression (15) of $C_{2,h}$ includes the term $C_{0}(h)\Vert f(\hat{u})\Vert_{L^{2}},$ $C_{2.h}$ is difficult to decrease less than 1
when the maximam value of $\hat{u}$ becomes large. If we use the piecewise linear finite element, $C_{0}(h)$ is usually
decreasing $O(h)$ . Thus, in order to satisfy the condition of Newton-Kantorovich theorem, $C_{1}^{2}C_{2},{}_{h}C_{3}\leqq 1/2$ ,
the mesh size $h$ should be taken sufficiently small such that $C_{0}(h)\Vert f(\hat{u})\Vert_{L^{2}}\ll 1$ holds. This means that
$h$ should be taken very small. It causes a problem of increasing computational costs. In fact, we cannot
success the verification of the problem (2). In order to overcome such difficulties for verifying the solution,
we use the smoothing technique. It is a method of improving the accuracy of the residual norm estimation.

Here, elements of the finite dimensional subspace $V_{h}$ are assumed to be piecewise linear or quadratic
finite elements $(V_{h}^{l}$ or $V_{h}^{q})$ . We define $N=\dim V_{h}$ . Let $N_{b}$ be the number of grid points on the boundary
$\partial\Omega$ . Let $g_{i}(i=1,2, \ldots, N_{b})$ be grid points on $\partial\Omega$ . Let further $\phi_{1}^{*},$

$\ldots,$
$\phi_{N_{b}}^{*}$ be piecewise linear or quadratic

finite element basses defined by

$\{\begin{array}{l}\phi_{i}^{*}(g_{i})=1, i=1, \ldots, N_{b},\phi_{i}^{*}(g_{j})=0, j\neq i.\end{array}$

Thus, $V_{h}^{*}\subset H^{1}(\Omega)$ is a finite element subspace defined by

$V_{h}^{*}=$ span$\{\phi_{1}^{*}, \ldots, \phi_{N_{h}}^{*}, \phi_{1}, \ldots, \phi_{N}\}$ .

Let $\nabla\hat{u}-\in V_{h}^{*}\cross V_{h}^{*}$ be the vector function defined by

$(\nabla\hat{u}, v^{*})-=(\nabla\hat{u}, v^{*})$ , $\forall v^{*}\in V_{h}^{*}\cross V_{h}^{*}$ .

Namely it is an $L^{2}$ -projection of $\nabla\hat{u}\in L^{2}(\Omega)\cross L^{2}(\Omega)$ to $V_{h}^{*}\cross V_{h}^{*}$ . Further, Aa $\in L^{2}(\Omega)$ is defined by

$\triangle\hat{u}=\nabla\cdot(a\nabla\hat{u})--$ .

Then the following Green’s formula holds between va and $\triangle\hat{u}:-$

$(a\nabla\hat{u}, \nabla v)-+(\triangle\hat{u}, v)=0-$ , $\forall v\in V$. (16)

Hence, $\nabla\hat{u}-$ can be seen as an approximation of $\nabla u$ . This statement is argued in [9]. Using this fact, we
present a refined estimation. Let $v_{h}\in V_{h}$ be the Ritz-projection of $v\in V$ , satisfying

$A(v-v_{h}, \phi_{h})=0$ , $\phi_{h}\in V_{h}$ .

From this, we have
$\Vert v-v_{h}\Vert_{L^{2}}\leqq C_{a}^{2}C_{0}(h)\Vert v-v_{h}\Vert_{V}$ . (17)

This is nothing but Aubin-Nitsche’s trick. The orthogonality of the Ritz-projection and (8) yield

$\Vert v-v_{h}\Vert_{V}\leqq\frac{C_{a}}{c_{a}}\Vert v\Vert_{V}$ (18)

and
$\Vert v_{h}\Vert_{V}\leqq\frac{C_{a}}{c_{a}}\Vert v\Vert_{V}$ . (19)
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Using inequalities (18) and (19), we have

$\Vert \mathcal{F}\hat{u}\Vert_{V}\cdot=\sup_{0\neq v\in V}\frac{|<A\hat{u}-\mathcal{N}\hat{u},v>|}{||v\Vert_{V}}$

$= \sup_{0\neq v\in V}\frac{|A(\hat{u},v)-(f(\hat{u}),v)|}{\Vert v\Vert_{V}}$

$= \sup_{0\neq v\in V}\frac{|A(\hat{u},v-v_{h})-(f(\hat{u}),v-v_{h})+A(\hat{u},v_{h})-(f(\hat{u}),v_{h})|}{\Vert v\Vert_{V}}$

$\leqq\sup_{0\neq t\in V}\frac{|A(\hat{u},v-v_{h})-(f(\hat{u}),v-v_{h})|}{\Vert v\Vert_{V}}+(\frac{C_{a}}{c_{a}})\sup_{0\neq v_{h}\in V_{h}}\frac{|A(\hat{u},v_{h})-(f(\hat{u}),v_{h})|}{||v_{h}||_{V}}$. (20)

In the following, we show how to bound the second term of (20). Let $\epsilon_{i}$ be

$\epsilon_{i}:=A(\hat{u}, \phi_{i})-(f(\hat{u}), \phi_{i})$ , $(i=1, \ldots, N)$ .

Since $v_{h}\in V_{h}$ , we can express $v_{h}$ as

$v_{h}= \sum_{i=1}^{N}c_{i}\phi_{i}$ .

Let us put $c=(c_{1}, \ldots, c_{N})^{t}$ and $\epsilon=(\epsilon_{1}, \ldots, \epsilon_{N})^{t}$ . Let further $D$ be $n\cross n$ matrix whose $(i, j)$ -elements are
given by $(a\nabla\phi_{j}, \nabla\phi_{i})$ . Then, we have

$( \frac{C_{a}}{c_{a}})\sup_{0\neq v_{h}\in V_{h}}\frac{|A(\hat{u},v_{h})-(f(\hat{u}),v_{h})|}{\Vert v_{h}||_{V}}\leqq\frac{C_{a}\sum_{i=1}^{N}c_{i}\epsilon_{i}}{c_{a}^{2\sqrt{c^{t}Dc}}}\leqq\frac{C_{a}|c|_{l^{2}}|\epsilon|_{l^{2}}}{c_{a}^{2}\sqrt{c^{t}Dc}}\leqq(\frac{C_{a}}{c_{a}^{2}})\Vert D^{-1}\Vert_{2}|\epsilon|_{l^{2}}=:C_{r}$. (21)

Finally, using a smoothing element va and inequalities (16)-(21), we have

$\Vert \mathcal{F}\hat{u}\Vert_{V}$ . $\leqq$ $\sup_{0\neq v\in V}\frac{|(a(\nabla\hat{u}^{-}-\nabla\hat{u}),\nabla(v-v_{h}))+(a\nabla\hat{u},\nabla(v-v_{h}))-(f(\hat{u}),v-v_{h})|-}{||v\Vert_{V}}+C_{r}$

$\leqq$ $\frac{C_{a}^{3}}{c_{a}}(\Vert\nabla\hat{u}^{-}-\nabla\hat{u}$ $\Vert$ L2 $+$ Co(ん川 $\Delta$ \^u $+$ f(釧 $|$ L2) $+$ C。$=:C_{R,h}$ .

One can replace $C_{2,h}$ by $C_{R.h}$ . For a “certain“ good approximation, $\Vert\overline{\Delta}\hat{u}+f(\hat{u})\Vert_{L^{2}}$ becomes relatively smaller
than $\Vert f(\hat{u})\Vert_{L^{2}}$ . Then, the condition $C_{1}^{2}C_{R}.{}_{h}C_{3}\leqq 1/2$ is easier to be fulfilled. Table 1 shows quantities $C_{2,h}$

and $C_{R,h}$ in the case of the problem (2). We use piecewise linear and quadratic basses on an uniform
triangular mesh. In fact, smoothing technique doesn’t work drastically by piecewise linear finite elements.
On the other hand, in case of piecewise quadratic elements, $C_{R.h}$ becomes much less than $C_{2.h}$ of piecewise
linear elements.

Table 1: Comparing $C_{2.h}$ with $C_{R.h}$ by piecewise linear & quadratic elemets

$\overline{\frac{Meshsize:\frac{1}{2^{\tau}}C_{2.h}(Linear)C_{R.h}(Linear)C_{R.h}(Quadratic)}{412.1l57.33930.6186}}$

5 5.9337 3.4043 0.1585
6 2.9516 1.6335 0.0399
7 1.4740 0.7968 0.0108
8 0.7368 0.3921 0.0072

4 Computational result

For an application of our verification method, we consider the following semilinear Dirichet boundary value
problem on $\Omega=(0,1)\cross(0,1)$ :

$\{\begin{array}{ll}- Au=u^{2}, in \Omega,u(x)=0, on \partial\Omega.\end{array}$
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An approximate solution $\hat{u}$ is computed by the finite element method with piecewise linear and quadratic
base functions. Figure 2 shows the shape of the approximate solution with piecewise linear elements. The
proposed computer assisted proof method is applied to this approximate solution. All computations are

1

Figure 2: Approximate solution $\hat{u}$ , Mesh size $\frac{1}{16}$ .

carried out on Windows Server 2008 Enterprise, Quad-Core AMD Opteron(tm) Processor S384, 2.70 GHz
with 128 GByte Memory by using MATLAB $2010a$ with a toolbox for verified computations, INTLAB [10].

Obviously, the Fr\’echet derivative of $f(u)=u^{2}$ is given by $f’(u)=2u$. The calculated approximate
solution $\hat{u}$ is bounded on $\Omega$ so that $\hat{u}\in L^{\infty}(\Omega)$ in this case. Therefore, for $\hat{u},$ $v,$ $w\in V$ it follows

$K:= \frac{C_{e,2}}{a_{0}}\Vert f’(\hat{u})\Vert_{C(V.L^{2})}\leqq 2C_{e_{\rangle}2}^{2}\Vert\hat{u}\Vert_{\infty}$ ,

$L$ $:=C_{0}(h)\Vert f’(\hat{u})\Vert_{\mathcal{L}(V,L^{2})}\leqq 2C_{e},{}_{2}C_{0}(h)\Vert\hat{u}\Vert_{\infty}$

and let $D$ and $G$ be $n\cross n$ matrices whose $(i,j)$ -elements are given by

$(\nabla\phi_{j}, \nabla\phi_{i})$ and $(\nabla\phi_{j}, \nabla\phi_{i})-(2\hat{u}\phi_{j}, \phi_{i})$ ,

respectively. Let a lower triangular matrix $\hat{L}$ be the Cholesky decomposition of $D$ , i. e., $D=\hat{L}\hat{L}^{t}$ .

$M:= \frac{C_{a}}{c_{a}}\Vert\hat{L}^{t}G^{-1}\hat{L}\Vert_{2}$ .

Furthermore,
$\Vert f’(v)-f’(w)\Vert_{C(V.L^{2})}\leqq 2C_{e..4}^{2}\Vert v-w\Vert_{V}$ .

Thus, we put $C_{L}$ $:=2C_{e,4}^{2}$ .
Using piecewise linear finite elements, our verification is fail to prove the existence of the exact solution.

Table 2 shows the failure in case of piecewise linear elements. We cannot obtain an improved result even if
we use smoothing technique. On the other hand, the drastic refinement is occurred by piecewise quadratic
elements. In case of 1/128, our computer assisted proof method yields

$C_{1}=12.1493,$ $C_{R,h}=0.0108,$ $C_{3}=0.2252$ .

Thus, we have
$C_{1}^{2}C_{R},{}_{h}C_{3}<0.3549$ .

Therefore, our method succeeded the verification of the approximate solution. It turns out that there exists
an exact solution in the ball $B=B(\hat{u}, \rho)$ with the radius

$\rho=1.687\cross 10^{-1}$ .

By increasing grid points, guaranteed error bounds are improved. The improvement of the guaranteed error
is presented in Table 3. We use piecewise quadratic basses on an uniform triangular mesh to compute the
verified result.
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Table 2: Verification Results by piecewise linear elements

$\overline{\frac{Meshsize:\frac{1}{2^{x}}C_{1}C_{1}^{l}C_{2},{}_{h}C_{3}C_{1}^{l}C_{R}.{}_{h}C_{3}Verification}{5Fai1ed--Fai1ed}}$

6 130.1 17535 9704 Failed
7 17.09 152.07 82.20 Failed
8 11.93 37.007 19.70 Failed
9 10.42 14.137 7.455 Failed

Table 3: Verification Results by piecewise quadratic elements.

$\overline{Meshsi\prime ze:\frac{1}{2^{x}}C_{1}C_{R},{}_{h}C_{1}^{l}C_{R},{}_{h}C_{3}Error:\rho}$$\overline{5}$440.16120.15856910Failed
6 17.9291 0.0399 2.8885 Failed
7 12.1491 0.0108 0.3548 $1.687\cross 10^{-1}$

8 10.5144 0.0072 0.1770 $8.286\cross 10^{-2}$
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