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1. Introduction
Listed options are usually simple plane vanilla options. Financial institutions trade complex

derivative products called exotic options over the counter and they price the options incorporating
the market prices of listed plane vanilla options as best as possible. Path-dependent option such as
knockout-bamier option is one of the famous Exotic options and the lattice model is often used for
the convenient estimation.

Black-Scholes model (BS model) [1] adopts geometric Brownian motion (volatility of equity
retum is constant) as the equity model. However, the equity model of the constant volatility is not
enough to replicate the actual options market prices. To represent the volatility more flexibly,
deterministic volatility models (DVM) (Dupire [4], Derman and Kani [3] and so on) and stochastic
volatility models (SVM) (Heston[6], Fouque at al. [5] among others) have been proposed. The
former models are easily represented in the lattice framework, while the latter models are not
(Britten-Jones and Neuberger [2]). Due to the reason, the empirical comparison of these volatility
models in the lattice framework is not discussed from the view of the exotic derivative pricing
incorporating the market prices oflisted options as best as possible.

Therefore, in this research, first, we discuss the calibration of the lattice between DVMs and
SVMs. Second, we evaluate exotic options based on the implied lattice and discuss the magnitude of
the price difference among the models.

2. Deterministic volatility models (DVM) and their binomial lattices
In general, the deterministic volatility model (DVM) is given by equation (1).

$dS_{t}=rS_{t}dt+\sigma(S_{t},t)S_{t}d\hat{W}$ , (1)

where $S_{t},$ $r,\sigma(\cdot)$ and $d\hat{W}$ are underlying asset, risk-free interest rate, local volatility that consists
of the underlying asset and time, and Brownian motion under risk-neutral measure. DVM is
specified by local volatility function and five kinds ofthe models listed in Tablel.

Tablel. The five kinds ofDVMs.
$DVM$ LocalVolatility

Below we explain each of 2, 3, 5 and 7 parameter models (Refer to Mawaribuchi, Miyazaki and
Okamoto [9] regarding the features of functions tanh(x) and sech$(x))$ . $2$ parameter model has two
parameters such as $(a,b)$ . It is known that the model represents skewness of the risk-neutral
distribution. Nevertheless its flexibility is not quite big. 3 parameter model has three parameters
$(_{0},b_{C})$ and its local volatility contains fUnction tanh(x). It is able to represent skewness of the
risk-neutral distribution more flexibly than 2 parameter model. 5 parameter model has five
parameters $(a,b,c,d,e)$ and its local volatility is extension of 3 parameter model by including
function sech(x). Function sech(x) is upward convex and useful to represent kurtosis of the
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risk-neutral distribution. 7 parameter model has seven parameters $(a,b,c,d,e,f,g)$ and its local
volatility also contains function tanh(x) and sech(x). 7 parameter model differs from 5 parameter
model in that the log-retum is adopted and parameters $(d,g)$ are introduced to adjust the levels
inside the two functions. Important point is that function tanh(x) can express skewness of the
risk-neutral distribution and function sech(x) can express its kurtosis flexibly.

Having in mind that our paper is based on European option, the option valuation formulas are
Call Price $=e^{-\prime T} \int_{0}^{\infty}\max(S_{r}-K,O)f(S_{r}\lambda lS_{T}$ Put Price $=e^{-rT} r_{0}\max(K-S_{\Gamma},O)f(S_{T}\ltimes S_{r}$ (2)

where $r,$ $S_{T},$ $K$ and $f(S_{T})$ are risk-free rate, equity price at the maturity, strike price and
probability density function at the maturity, respectively.

To construct the binomial lattice for each DVM from Tablel, we adopt Li algorism (Li [8]) that
proposes setting both up and down transition probabilities at 50%. Hoshika and Miyazaki [7] noticed
that the robustness of the Li algorism is higher compared to that of Derman and Kani [3]. $S^{j}$

denotes the underlying asset price at time $t$ , which falls on the i-th node from the top.
In Li algorithm, the asset price dynamics between two consecutive time periods (time interval

is $\Delta t)$ are given in equation (3).
$S_{l}^{1}=S_{t-1}^{1}[1+r\Delta t+\sigma(S_{-1}^{1},t)\Gamma\Delta t]$ ,

$S_{t}^{t+1}=S_{-1}^{t}[1+r \Delta t-\sigma(S_{-1}^{t},t)\int_{\overline{\Delta t}}]$ , (3)

$S_{t}^{i+1}= \frac{1}{2}b_{t-1}i[1+r\Delta t-\sigma(S_{t-1}^{i},t)\Gamma\Delta t]+S_{t-1}^{i+1}[1+r\Delta t+\sigma(S_{t-1}^{i+1},t)\sqrt{\Delta t}D\cdot(i\neq 0,t)$

The first and the second equations generate the top and the bottom stock paths in the lattice and the
third equation describes all the paths inside the lattice.

3. Stochastic volatility models (SVM) and their lattices
3.1 Compound binomial lattice for the simple stochastic volatility model
The simple stochastic volatility model

$dS=rSdt+\sigma Sd\hat{W}_{1}$ , (4)

$d\sigma=-\kappa(\sigma-a\lambda it+\mu\hat{W}_{2},$ (5)

where $S,r,\sigma,\alpha,\kappa,\gamma$ are equity price, risk-free interest rate, volatility, mean of the volatility,
mean-reversion parameter and volatility of the volatility, in order. $d\hat{W}_{1}$ and $d\hat{W}_{2}$ are independent
Brownian motion under the risk-neutral measure. In discrete version of the SVM, we represent the
mean-reversion process in the finite-space Markov framework. To this end, we describe the discrete
mean-reversion process $z_{t}$ with the finite-space Markov chain $(z, =-J,\ldots,O,1,\ldots,J)$ . Transition

probability ofthe mean-reversion process $z_{t}$ from $z,$ $=j$ to $z_{l+h}=k$ is given by equation (6).

$p_{k.j}= \{\frac{1}{2}\kappa h(J-j)$ if $k=j+1$ ; $1-d J$ if $k=j$; $\frac{1}{2}dr(J+J)$ if $k=j-1$ ; $0$ if $otherwise\}(6)$

Utilizing the mean-reverting process $z_{t}$ , we introduce volatility as equation (7).

$\sigma,(z,)=a+\ ,$ , (7)

where $\delta=\gamma/\sqrt{\kappa I}\cdot\sigma_{t}$ satisfies mean-reverting process (5).

In the modeling, the volatility $\sigma_{l}$
moves around the state-space $(\alpha-\delta I,\ldots,a,\ldots,\alpha+\delta J)$ .

Role of the parameters of the mean-reverting process (5) and settings in the compound binomial
lattice
(1) We set the number of volatility states and the time step as $J$ and $h$ , respectively.
(2) The level ofthe volatility $\sigma,(z,)$ is given by $a+\delta$ when $z,$ $=j$ .
(3) For the estimated parameter $\kappa,,$

, once we take enough large , , $\delta$ could be as small as we
would like to and the mean-reversion parameter $a$ is represented as $\alpha=\phi_{a}$ with positive
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integerj. $\cdot$ However, to make the volatility level positive, we need the condition $j_{\alpha}\geq J+1$ .
For convenience, we explain the lattice in case of$j_{a}=J+1$ . We try to construct the compound

binomial lattice of$y,$ $=\ln(S,/S_{0})$ . Solving equation (4), we have

$S_{l}=S_{0} \exp\{(r-\frac{1}{2}\sigma_{l}(z_{l})^{2})Z_{l}$ ’ (8)

and we know

$y_{l}=(Z_{l}Z_{l}^{\cdot}$ (9)

We call the lattice as the compound binomial lattice in following two reasons. First, when $y$,
moves to state $y_{\iota+h}$ with small time interval $h$ , the move consists of $2J+1$ kinds of cases
covering binomial tree $(y_{l+h}=y, \pm\sigma_{l}(z, )\int\overline{h})$ with the volatility $(\sigma_{l}(z_{l}))$ . Second, the probability that
the move from state $y_{t+h}$ to state $y_{l+2h}$ is decided by the volatility level of the lattice the move from

state $y$, to state $y_{t+h}$ and the probability transition matrix (equation(6)).

The $y_{l}$ is specified by equation (9). The discrete version ofthe dynamics becomes

$\Delta y,$ $|z,$ $=\{_{-\sigma,(z_{l})\sqrt{h}}^{\sigma_{t}(z_{l})/\overline{h}}$
$probability \frac{1}{2}-\frac{(z,(Z_{l}2\sigma_{l}(Z_{t})}{2\sigma,(z,)}probability\frac{1}{2}+\frac$

(10)

3.2 Our discrete stochastic volatility models examined in empirical analyses
In empirical analyses, we set the number ofthe volatility state to be three $(J=1)$ and propose our

models below. First, the step sizes of the high, middle and low volatilities in section 3.1 are
$(\delta,2\delta,3\delta)$ (Fig.1). In our empirical analysis, we introduce two models with different kinds of
volatility levels. The high, middle and low volatility levels are $(\delta,3\delta,5\delta)$ and $(\delta,5\delta,9\delta)$ respectively.
Second, the model in section 3.1 assumes that the equity and the volatility processes are independent.
Heston [6] and also Fouque, et al. [5] introduced that the factor in the SVM to generate the skewness
of the risk-neutral distribution is the correlation between the two processes. Thus, we propose the
discrete SVM with two kinds of transition probability matrixes. One is used after the upward move
of the equity price and the other is used in the opposite case. In addition, with respect to the
transition probability of the volatility, we extend the model by relaxing the constraint of the OU
process (Table2). In more detail, we propose the symmetrical probability transition matrix and the
free one. Corresponding to the combination of three kinds of volatility levels and probability
transition matrixes, we propose total nine kinds of discrete SVMs listed in Table3.

In empirical analyses, we also examine another SVM based on asymptotic expansion (refer to
Fouque, et al. [5] $)$ .

Fig. 1 The conceptual figure in case $ofJ=1(6,26,36)(6,36,56)(6,56,96)$ .
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Table2. Probability transition matrix.

4. Empirical Analyses
4.1 Objects and Methods of empirical analyses
(Analysisl)
Compare how closely the model prices fit the market prices between DVMs and SVMs.
(Analysis2)
Analysis on the model risk (the deviation from the benchmark model) in the pricing of barrier
options based on the implied tree. In this study, we focus the result ofthis analysis.

The methods of (Analysisl) and (Analysis2) are following (Methodl) and (Method2) respectively.
(Methodl)

We calibrate the parameters of each model so as to minimize the objective functions (equation
(11)$)$ and identify which model well replicates the cross-sectional option market prices. As the
options used in the calibration, we adopt tota16 kinds of out-of-the-money options such as OTMI
(the strike price is closest to the current equity price), OTM2 (secondly closest), OTM3 (thirdly
closest) call and put options. Objective function is

${\rm Min} \sum_{i=1}^{6}(P_{i}’-P_{i})^{2}/6$ (11)

where $P$ and $P$ are option market price and model price, respectively. $j$ indicates type of option.
Here, we describe empirical procedure shortly in the asymptotic expansion approach. Fouque, et

al. [5] estimate parameters of volatility by the regression model with the information of the implied
volatility surface. For the data used in the regression analysis, we first recover the 6 implied
volatilities corresponding to the 6 option market prices and utilize spline-function to derive the
implied volatilities corresponding to variety of strike prices. We estimate the parameters of volatility
with the derived implied volatilities. To compare the calibration between the lattice framework and
the asymptotic expansion approach in the same standard, we compute 6 model prices $P$ of the
asymptotic expansion approach and derive the objective fUnction value.
(Method2)

In the analysis of the model risk we examine up-knockout-barrier-option (hereafter, we call just
barrier option) as an example of exotic derivatives. We set the strike price of the barrier option to be
that of the CallOTMl option and compute, model by model, prices of the barrier options that have
the barrier prices up to 4000 above the strike price. We capture the model risk by the absolute
deviation of the barrier option price by each model from that by the benchmark, which most
precisely replicates the options market prices. To the goal, for each model, we take average of the
absolute differences in all the contract months of the analysis period. With the product specification
of the bamier option, we firstly know that the absolute deviation approaches to $0$ , when the barrier
price becomes closer to the strike price and the barrier option price itself becomes closer to $0$ . We
secondly know that the absolute deviation of barrier option approaches to that (attained in
(Methodl) $)$ of the European option when the barrier option price itself is close to the European
option price with the small barrier hitting probability in the case ofthe highly set barrier price level.
We also statistically test the difference in the sample average ofthe absolute deviations.
4.2 Data and settings

For the calibration of the models, we use the 6 kinds of options described in (Methodl). The
options are monthly contracts and their remaining maturities are 15 business days. The data period
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covers from June 2003 to Apri12008 and total 59 monthly results in the period are attained. The
number ofthe lattice up to the maturity is set to be 30.
4.3 Results and implications of empirical analyses
Results and implications of (Analysisl)

As the results of (Analysisl), average and standard deviation of the objective function values for
each model in both periods before and after occurrence of financial crisis (sub-prime problem) are
shown in Table 4.

Firstly, we focus on the average of the objective function value for each DVM. The precision of
the calibration is dramatically improved in accordance with the extension of the model from 1
parameter to 7 parameter. 7 parameter model almost perfectly replicates the cross-sectional option
market prices. Function tanh(x) and sech(x) are important to express skewness and kurtosis of the
risk-neutral distribution flexibly.

Secondly, we compare the average of the objective function value between the Heston model in
the asymptotic expansion approach and the models in the lattice framework such as OU. The
averages of the objective function values for OU3, OU5 and OU9 are 76.81, 64.53 and 56.07,
respectively. The average of the objective iUnction value in the asymptotic expansion approach is
61.72 and close to that of OU5 model. This result indicates that the different valuation approaches
provide approximately the same level of the precision of the calibration in average, once the same
kinds ofmodels are adopted. On the other hand, there is a big difference between the two approaches
in the standard deviation of the objective function value. From the standard deviations, the
asymptotic expansion approach is thought to be more robust than the lattice framework.

Thirdly, we compare the average objective function value of one model with those of others
among the nine SVMs. One notable point is that for all the three probability transition matrixes such
as OU, “symmetric” and “ffee”, the larger the difference among high, middle and low volatility
levels, the better the calibration. The other notable point is that the weaker the constraint in the
probability transition matrix, the better the fit in any volatility level. The sensitivity ofthe calibration
on the constraint in the probability transition matrix is much larger than that on the difference among
high, middle and low volatility levels. These results suggest that the flexibility of the probability
transition matrix is important to replicate precisely the cross-sectional options market prices.

Lastly, we compare the precision of the calibration for the DVMs with the one for the SVMs. The
OU-type of SVM has the same level of the precision ofthe calibration as that for 2 parameter DVM.
When we relax the constraint on the probability transition matrix from OU to ”symmetric”, the
precision of the calibration for the SVM is improved so as to sulpass the one of 2 parameter DVM
but still inferior to the one of 3 parameter one. This result indicates that the small relax in the
volatility transition probability from OU to ”symmetric” is not enough to generate the skewness in
the risk-neutral distribution as the function tanh(x). With the fUrther relax in the volatility transition
probability ffom ”symmetric” to “free”, the precision of the calibration for the discrete SVMs is
revamped to be better than the one for 3 parameter DVM but still be inferior to the one for 5 and 7
parameter models. The implication of this result is that once we adopt sech(x) in addition to tanh(x)
as the functional form of the local volatility, the precision of the calibration for the DVMs becomes
superior to the one for the discrete SVMs both in the average and the standard deviation of the
minimized sum of the square errors. Taking the convenience in the lattice construction into
consideration, 5 and 7 parameter DVMs seems to be advantageous among all of the valuation
models examined in our analysis.

$\underline{\frac\frac\frac{351592601728216920592931526310241132450220398178334454165511256868StzndardD\circ 1atonAverage}{7371058266374513022l665179602935645457670501804528013009410031698078}}$

105



Results and implications of (Analysis2)
As a benchmark model in (Analysis2), we adopt the deterministic 7 parameter model, which the

most precisely replicates the cross-sectional option market prices in (Analysis 1).
Firstly, the averages of 59 contract months absolute deviations of the barrier option prices for

DVMs (1, 2, 3, 5 parameter models) from that ofthe benchmark model are shown in Fig.2. In Fig.2,
vertical axis indicates the average absolute deviations and horizontal axis shows the barrier price
level. From Fig.2, we see that in any barrier price level, the more precise the calibration, the smaller
the average absolute deviation. Especially, when the model is extended from 2 parameter model to 3
parameter model, the average absolute deviation is greatly diminished. One of the interesting points
in Fig.2 is that the average absolute deviation takes the maximum value in the barrier level from
1000 to 1500 yen. Considering the barrier option price itself is smaller than the price ofthe European
option with the same strike price, the average absolute deviation of the barrier option with the barrier
level is quite large relative to the price itself. The result suggests that the difference in the inside of
the calibrated lattice between each model and benchmark model is larger than that in the risk-neutral
distributions at the maturity ofthe option between the two.

$K18$

$3_{s}^{S_{l8}^{l10}}\^{\mathbb{E}}5^{\overline{t}_{l14}^{l16}}s_{\mathfrak{k}^{12}}\dot{3}g$. $\ _{\backslash }^{\nu....----}-N_{\grave{9}}...u\oint_{\backslash j_{\backslash _{\sim}\}_{\backslash i_{\wedge\sim-\sim\sim}^{*}\}}}}w\backslash _{2_{*}}\prime_{h^{\wedge-1P.---2P},}\backslash :^{p:_{\dot{b}}}.=\#t.\backslash .y_{\backslash .\Psi_{t n\wedge\backslash }^{\backslash d}..\ldots-3P\cdots\cdot 5P}$

,

$\not\in 4^{:}\dot{\int}_{\iota_{K2}}\in l4’ i^{\wedge^{*}\backslash \#.\cdot.\prime}*\gamma’\backslash :lgl60_{K0}.\underline{\sqrt[\prime]{}\prime\wedge\cdot\cdot\theta_{d}.\cdot,\backslash .......\prime\ldots\ldots\ldots\ldots..}$

$0$ $K100015002000$ 2500 $300035004000$
$url\cdot rmt\cdot n\mathfrak{l}$

Fig.2 $(1P, 2P, 3P, 5P)$ .

Secondly, we examine the model risk in the SVMs. SVMs are specified by the combination ofthe
size in the high, middle, low volatilities and the probability transition matrix as in Table 3. First, for
a given probability transition matrix, we examine the volatility size effect to the average absolute
deviation in the barrier option price based on the SVM. Fig. $3\sim$ Fig.5 show the volatility size effect
to the average absolute deviation in the barrier option price for the probability transition matrixes
such as OU process, symmetrical and free, respectively. From Fig.3 $\sim$ Fig.5, we see that in any
probability transition probability matrix, the larger the size of the volatility, the smaller the average
absolute deviation. Second, for a given size in the high, middle, low volatilities, we examine the
probability transition matrix effect. Fig.6$\sim$ Fig.8 show the probability transition matrix effect to the
average absolute deviation in the barrier option price for the sizes in the high, middle, low volatilities
such as $(\delta,2\delta,3\delta),$ $(\delta,3\delta,5\delta)$ and $(\delta,5\delta,9\delta)$ , respectively. The figures tell us that in any volatility size,

the more flexible the probability transition matrix, the smaller the average absolute difference. In
more detail, the shrink of the average absolute deviation by the replacement of OU process
probability transition matrix with Symmetrical one is limited, while the reduction of it by the
replacement of Symmetrical probability transition matrix with Free one is quite large.

From the results of the analyses, the effect of the probability transition matrix to the average
absolute deviation is much larger than that of the size in the high, middle, low volatilities. The
implication from the results is that the flexible probability transition matrix is indispensable to
replicate precisely European options and exotic options respectively.

$O\cup 3$

$\frac{g\S 5\dot{s}}{\S}5\in l10\#^{s}\not\simeq K6\overline{\dot{z_{l14}^{l16}-}}x\epsilon---\dot{\hslash}^{l12}\epsilon\}f’-\wedge*\ddot{p}_{*k_{\sim\cross\wedge\dot{\tilde{b}}--\vee--\cdot\prime}^{\backslash }}\#^{*\mathscr{N}_{\aleph^{-}\overline{.,}0\omega}}\oint_{---}..-O\cup 5$

.

$\dot{\dot{\epsilon}\}\mathscr{S}_{l2}K4$

$\prime \mathscr{J}--$

$.-$$K0-$$0$ $500$ $10001500$ 2000 2500 $3wo35M4m$ $0$ $500100015W2000$ $2M3R35004000$
Wrkr $PrhL\cdot r|$ Rrbr $Pr|\infty R|$

Fig.3 (OU3, OU5, OU9). Fig.4 (Sym.3, Sym.5, Sym.9).
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Fig. 5 (Free3, Free5, Free9)
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Fig.6 (OU3, Sym.3, Free3).
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Fig.7 (OU5, Sym.5, Free5). Fig.8 (OU9, Sym.9, Free9).

Thirdly, we compare the average absolute deviations of the DVMs with those of the SVMs. From
the DVMs, we adopt 2, 3, 5 parameter models. Considering that the probability transition matrix
effect is larger than the volatility size effect to the average absolute deviation, we adopt OU9,
Symmetrica19 and Free9 from the SVMs. All in all, we compare the model risks in the 6 kinds of
models. First, in (Analysisl), we rank the 6 kinds ofmodels based on the precision of the calibration.
From the model of the highest precision in order, the rank is 5parameter, Free9, 3parameter,
Symmetrica19, OU9, 2parameter. Second, the averages of the 59 contract month absolute deviations
ofthe barrier option prices for the 6 kinds ofmodels from that ofthe benchmark model are shown in
Fig.9. Fig.9 tells us that the average absolute deviations are ranked as 5parameter, Free9, 3parameter,
Symmetrica19, OU9 and 2parameter from the smallest in order. We are able to see that the more
precise the calibration, the smaller the average absolute deviation.

It is very interesting that even though the lattice framework is different, the rank of the calibration
is almost the same as the rank ofthe average absolute deviation in the barrier option price.

$0$ 500 1000 1500 2000 2500 3000 3500 4000

Barrier Price Level

Fig.9 ($2P$, OU9, Sym.9, 3 $P$, Free9, $5P$)

Finally, we statistically examine whether the average absolute deviation of the barrier option for
one model is different ffom that for the other model with some confidence level. In Table5, the
positive T-value indicates that the model with the precise calibration provides the smaller average
absolute deviation (model risk) of the barrier option price. The statistical results in Table5 support
the results ofmodel comparisons observed in the graph.
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Table5. Statistical test on the model risk.

5. Summary and Concluding Remarks
In this research, we discussed how precisely DVM and SVM, which are extension of BS model

replicated the cross-sectional options market prices in the lattice framework adopting NIKKEI225
options market data. As the DVMs, we examined five kinds of models ffom BS model to the model
consisting of functions tanh(x) and sech(x) that might generate skewness and kurtosis in risk-neutral
density at maturity. Regarding the SVMs, nine kinds of models were examined. They were the
discrete SVMs with the probability transition matrix of OU process as Heston model, Symmetrical
and Free. From the empirical results, the precision of the calibration for any discrete SVM was not
up to those ofthe DVMs that had both function tanh(x) and sech(x).

Regarding the analysis on the model risk, we defined the model risk as the average absolute
deviation of the barrier option price for each model from that by the benchmark model and discussed
about it based on the graph and the statistical test of the average absolute deviation. From the results,
we found that more precise the calibration, the smaller the average absolute deviation in the barrier
option price either in the DVMs or the SVMs.
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