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Abstract

A magnetic field of a nut-shaped permanent magnet along the axial sym-
metry axis perpendicular to the plane of the nut through its center is mea-
sured. Theoretical models based on various electrical current distributions
within the magnet have been proposed to account for the field. However,
conventional current distributions result in a misalignment between data
and the conventional theoretical models. The issue is rectified by proposing
the existence of a non-conventional, displaced current in the region beyond
the outer physical boundary of the nut. The displaced current resembles
a halo around the magnet. The parametrization of the halo current leads
to a perfect match between data and the model. The computational and
graphical challenges including various animations all are addressed with the
latest version of Mathematica.

Keywords : Magnetic field of a permanent nut-shaped magnet, halo current,
Mathematica

1 Introduction and motivation
In our previous analysis we investigate the features of a nonlinear oscillations of
a pair of solid cylindrical permanent magnets [1]. In doing so we were in need of
knowing the value of the magnetic moment of the individual magnet; two distinct
empirical methods were practiced. The collected data were analyzed and a theo-
retical model was proposed to justifying the underlying features of the data. In
short, the trust of the theoretical model was based on assuming the field along the
axial symmetry axis of the cylinder through its center and its associated moment
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are due to a uniform electric current distribution confined only to the outer sur-
face of the cylinder. With this assumption we were able to interpret the data and
deduce the field and the associated moment. As discussed in [1] the oscillating
magnet stays apart from the stationary one. Its shortest distance of approach
is long justifying the utilization of the proposed current distribution within the
permanent magnet.

In the process of extending our analysis beyond the issues addressed in [1]
instead of utilizing a cylindrical solid permanent magnet we utilized nut-shaped
magnets. In our new experiments we were also in need of measuring the magnetic
field and its associated magnetic moment not only at far distances along the axial
symmetry axis but at close distances as well. Here, to focus on the issues at hand,
in Fig 2 we display the collected data. This is a plot of magnetic field vs. distance
from the center of the nut.

According to displayed data in Fig 2, the field vs. distance has two distinct
features. The tail of the data, i.e. the strength of the field for distances far
from the center falls off in proportion to the inverse distance to some power. The
head of the data, i.e. the strength of the field for distances close to the center,
however, deviates from interpolation of the latter. It is the objective of our study
to understand and reason the features of the field. To accomplish this, our crafted
work is composed of four sections. In addition to Introduction and objectives in
the Experiment section, we outline the experiment setup. In the Analysis section
after outlining the generalities of the magnetic field we detailed three progressive
models conducive to the fourth successful one. The details of mode14 entails the
halo current and shows its impact on evaluating field that is compatible with data.
In the last section, we close our work making a few conclusive comments.

2 Experiment
We obtain a nut-shaped permanent magnet with specifications of the inside, out-
side radii and thickness of $\{R_{1}, R_{2}, t\}=\{0.5,1.0,0.3\}cm$ . Web site [2] embodies
a host of nut-shaped magnets with various specifications. The magnet used to
measure the distance of the tip of the magnetometer to the center of the magnet.
A photo of the set up is shown in Fig 1. Utilizing Pasco data acquisition Interface
750 [4] and Data Studio software [5] data was collected and stored. The collected
data was stored in a spreadsheet format. To further the analysis the data was
imported in Mathematica [6]. Follow-up numeric manipulations, graphs as well as
symbolic calculations all are carried out deploying the latest version of Mathemat-
ica; V 7.01. The data is shown in Fig 2. These are the averaged values of the
measurements that was repeatedly collected and tallied in a course of a few days.
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imagel - Import [
$\prime\prime C:\backslash \backslash DataFi$les $\backslash \backslash MagnetostaticSpringNonl$inearOscillat $ions_{-}October_{-}2OO9\backslash \backslash IMG_{-}$

4266. JPG”, ImageSize $-\rangle\{300,300\}]$ ;

ima$ge2=$ Import [
$\prime\prime C:\backslash \backslash DataPi$ les $\backslash \backslash Ka$gnetostaticSpringNonlinearOscillat $ionsOctober2009\backslash \backslash IUG$

4263. JPG”, ImageSize- $>\{300,300\}]$ ;

GraphicsGrid $[\{\{image1$ , image2}}, Ima$geSizearrow\{6OO,$ $400\}]$

Figure 1. A nut-shaped permanent magnet, a magnetometer and a wooden
ruler are in display (the left side photo). The right side photo is a snap shot of
an instance of a registered magnetic field on the screen of a computer which is
connected to the interface.

dataNutmagnetDec16 – $\{\{2, \{950\}\},$ $\{4, \{927\}\},$ $\{5, \{903,908\}\},$ $\{6, \{835,864\}\}$ ,
{8, {678, 712, 688, 699}}, {10, {546, 561 , 561 , 551 , 571}}, {12, {435}},

{14, {395, 366, 383}}, {15 , {348}}, {16, {327, 332}}, {18, {273, 270}},
{20, {234, 234, 239, 241 , 248}}, {22, {205, 224, 229, 234}}, {24, {177, 205}},
{25, {185, 187}}, {26, {161 , 170, 185}}, {28, {146, 156, 168, 177}},
{30 , {135, 141, 143, 148, 153}}, {32, {127, 151 , 158}}, {34, {119}},

{35, {133}}, {36, {114, 124}}, {38, {109, 131, 136, 138}} ,
{40, {104, 109, 115, 115, 122}}, {46, {92}}, {50, {83, 114}} $\}$ ;

dataNutmagnetDec16 $-$ dataNutmagnetDec16 /. $\{p_{-}, q_{-}\}arrow\{0.001(p(*+\frac{6.5}{2}*)),$ $q\}$ ;

$1i$ stplotdataNutmagnetDec16 –

ListPlot [Table [{dataNutmagnetDec16 [$i,$ $1I$ , Mean [dataNutmagnetDec16 $[i, 2I]//N\}$ ,
{ $i,$ $1$ , Length [dataNutmagnetDec16]} $]$ , Gr$idLinesarrow$ Automatic , PlotMarkers $arrow t\blacksquare$ },

PlotRange $arrow\{\{0,0.04\}, \{0, 1000\}\}$ , AxesLabel $arrow t”z,$ $m”$ , “
$B_{-}field$ (gauss) “

$\}]$
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Figure 2. Magnetic field of a nut-shaped permanent magnet along the axial
symmetry axis through the center of the magnet vs. distance.

dataNutmagnetDec16CGS $=$ dataNutmagnetDec16 /. $\{p_{-}, q_{-}\}arrow\{100(p(*\frac{*6.5}{2}*)),$ $q\}$

$\{\{0.2, \{950\} \}$ , {0.4, {927}}, {0.5 , {903, 908}} , $\{0.6, \{835 , 864\}\}$ ,
$\{$ 0.8, $\{6?8,712$ , 688, 699} $\}$ , {1. , {546, 561 , 561 , 551 , 571}}, {1.2, {435}},
{1.4, {395, 366, 383}}, {1.5, {348}}, {1.6 , {327, 332}} , {1.8, {273, 270}} ,
{2. , {234, 234, 239, 241 , 248}}, {2.2, {205, 224, 229, 234}}, {2.4, {177, 205}},
{2.5, {185, 187}}, {2. 6 , {161 , 170, 185}}, {2.8 , { 146, 156, 168 , 177}} ,
$\{$ 3. , $\{13S,$ $141$ , 143, 148 , 153} $\}$ , {3.2, {127, 151 , 158}} , {3.4, {119}},
{3.5, {133}}, {3.6, {114, 124} } , {3.8, {109, 131 , 136 , 138}},
{4. , {104, 109, 115, 11S , 122}}, {4.6 , {92}}, {5. , {83, 114}} $\}$

tabledataNutmagnetDec16CGS $=$

Table [{dataNutmagnetDec16CGS $ti,$ $1p$ , Mean [dataNutmagnetDec16CGS $[ i, 2\prod]//N\}$ ,
{ $i,$ $1$ , Length $[d$ataNutma$g$ne$tDec16$CGS]} $]$

$\{\{0.2,950.\},$ $\{0.4,927.\},$ $\{0.5,905.5\},$ $\{0.6,849.5\},$ $\{0.8,694.25\}$ ,
{1., 558.}, {1.2, 435.}, {1.4, 381.333}, {1.5, 348.}, {1.6, 329.5},
{1. 8 , 271. 5}, {2. , 239. 2}, {2. 2, 223. }, {2. 4 , 191. } , {2. 5, 186. },
{2.6, 172.}, {2.8, 161.75}, {3., 144.}, {3.2, 145.333}, {3.4, 119.},
{3.5, 133.}, {3.6, 119.}, {3.8, 128.5}, {4., 113.}, {4.6, 92.}, {5., 98.5} $\}$
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3 Analysis
Assuming an electric current confined to a line is the source of the magnetic field,
we utilize Biot-Saravt law evaluating the field [7].

$\vec{B}=ik’\int\frac{dl\cross\vec{r}arrow}{r^{3}}$ (1)

In this equation, $i$ is the curret and $k’= \frac{\mu_{0}}{4\pi};\mu_{0}$ is the permeability of vacuum

and its value in MKS units is $k’=10^{-7} \frac{T.m}{Amp},$
$d\ell^{arrow}$ is the length element along the

current $i,\vec{r}$ is the distance vector from the current element $id\ell^{arrow}$ to the point of
interest where the magnetic field $\vec{B}$ is evaluated. A schematic of the setting is
shown in Fig 3.

$’/\prime J|$

Figure 3. Display of a nut-shaped magnet with the inside and outside radii $R_{1}$

and $R_{2}$ , respectively.

Assuming the current is distributed on the surface of the nut, the $arrow light$ grey
ribbon shows a portion of the entire current $i$ . The length element $d\ell$ , and the
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$P_{arrow}^{osition}$ vector $\vec{r}$ are shown. The element of magnetic field $d\vec{B}$ due to current
$idp$ is oriented perpendicular to the plane displayed by the yellow triangle formed
with the side lengths of $dp^{arrow}$ and $\vec{r}$ at a point of interest along the Z-axis is shown
in blue.

For a nut-shaped permanent magnet and assumed surface current distribution
shown in Fig 3, eqn (1), however, is to be modified. I.e., the current $i$ is not
confined to a thin circular loop around the vertical symmetry axis through the
center of the nut, rather it is distributed over its surface. Denoting the current
distribution density by $j= \frac{di}{da}$ where $d$ $a$ is the surface element, i.e. the area of the
light grey ribbon in Fig 3, eq (1) reads,

$\vec{B}=k’\int j(\rho)da(\rho)\int\frac{d\vec{i}\cross r^{arrow}(\rho)}{r(\rho)^{3}}$ (2)

here $\rho$ is the radial parameter defining the geometry of the current distribution.
The evenness of the current distribution about the symmetry axis about of the
nut result a magnetic field along the z-axis only. We note,$dl=\rho d\varphi$ where $\varphi$ is
the polar angle and $(dl\crossarrow\vec{r})_{z}=(\rho d\varphi r)\cos\theta$ where $\theta$ is the angle between the
orientation of the $d\vec{B}$ and the z-axis. Utilizing the geometry depicted in Fig 3,
we replace $\cos\theta$ with $\sin\theta$ and we replace $\sin\theta$ with the relevant side lengths of
the associated vertical triangle, namely $\sin\theta=er.$ Putting all this together eq (1)

yields, $B(z)=k’ \int\frac{\rho^{2}}{r^{3}}did\varphi$ . Moreover, since $di=jd$ $a$ and because $da=2\pi\rho d\rho$

we arrive at, $B(z)=2 \pi k’\int j(\rho)\frac{\rho^{3}}{r^{3}}d\varphi dp$ . From this point on one needs to make
assumptions about the current distribution density $j$ .

Model #1.
As a first intuitive model we assume the current is distributed evenly, and therefore
its associated density is constant. With this assumption the latter integral yields,

$B(z)=(2 \pi)^{2}k’j\int_{R_{1}}^{R_{2}}\frac{\rho^{3}}{(\rho^{2}+z^{2})^{\frac{3}{2}}}d\rho$ (3)

where utilizing Fig 3 we substitute $r=\sqrt{p^{2}+z^{2}}$ . In eq (3) we replace the current
density $j$ in terms of its corresponding magnetic dipole moment $\mu$ . For a current
looping in a line the magnetic moment is defined with $\mu=iA$ , where $A$ is the
enclosed area by the loop. However, in our case study because the current is
distributed over the surface of the nut we modify the moment accordingly; this
yields $\mu=\int$ a $di$ . Replacing $di=j(\rho)da$ and the enclosed area with $a=\pi\rho^{2}$

the moment reads, $\mu=2\pi^{2}\int j(\rho)\rho^{3}d\rho$ . Applying the latter for the case at hand,
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namely, a constant current density $j$ , yields $\mu=2\pi^{2}j\int\rho^{3}d\rho=\frac{\pi^{2}}{4}j(\ovalbox{\tt\small REJECT}-R_{1}^{4})$. We
solve the last equation for $j$ , and substitute its value in eq (3), integrating the
function gives,

$( \frac{B(z)}{\mu})_{nut}=8k’\frac{1}{R_{2}^{4}-R_{1}^{4}}(\frac{2z^{2}+R_{2}^{2}}{\sqrt{R_{2}^{2}+z^{2}}}-\frac{2z^{2}+R_{1}^{2}}{\sqrt{R_{1}^{2}+z^{2}}})$ (4)

Since the moment $\mu$ is constant, we plot the left-hand side of eq (4) vs. dis-
tance $z$ and compare the compatibility of the proposed current density hypothesis
vs. collected data. Utilizing the specifications of the magnet on hand, namely,
$\{R_{2}, R_{1}, t\}=\{1.0,0.5,0.3\}$ cm this is shown in Fig 4.

values – $\{R1arrow 0.5\cross 10^{-2}$ , R2 $arrow 1.0\cross 10^{-2}$ , kp $arrow 10^{-7}\}$ ;

BNutpermoment $[z_{-}]$ $:$ – $\frac{8kp}{R2^{\iota}-R1^{4}}[\frac{2z^{2}+R2^{2}}{\sqrt{R2^{2}+z^{2}}}-\frac{2z^{2}+R1^{2}}{\sqrt{R1^{2}+z^{2}}}]$

Show [

{ListPlot [Table [{dataNutmagnetDec16 [ $i,$ $1 \prod$ , Mean [dataNutmagnetDec16 $[i,$ $2$ ]] $//N\}$ ,

{ $i,$ $1$ , Length [dataNutmagnetDec16]} $]$ , GridLi $nesarrow$ Automat $ic$ , PlotMarkers $arrow t\blacksquare$ },

$PlotRangearrow\{\{0,0.04\}, \{0, 1600\}\}$ , AxesLabel $arrow\{’’$ z,m”, “
$B_{-}field$ (gauss) ”

$\}]$ ,
Plot [200 $+$ 3000 BNutpermoment $[z](*/. zarrow z-0.04*)/$ . values,

$\{z$ , 0.000, 0.04 $\}$ , $PlotStylearrow$ {Thick, Magenta} , GridLines $arrow$ Automatic] $\}]$

B-field(gauss)

0.00 0.01 0.02 0.03 0.04

Figure 4. Magnetic field of the nut-shaped permanent magnet along the axial
symmetry axis vs. distance from the center of the nut. Square marks are the data
and the solid curve is theoretical field assuming the corresponding current has a
constant density on the base of the nut.
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The solid curve in Fig 4 is the plot of eq (4), however, the strength of the field for
comparing to the data only was adjusted and its abscissa was shifted accordingly.
We have not associated any physical meaning to these adjusted parameters yet.
The trust of the procedure is to learn whether the proposed current distribution
hypotheses is viable. According to Fig 4, for far and close distances the theory over
estimates the data. Most important, at close distances the theory completely over
estimates the data, and it appears there is a disjoint between the theory and data.
From this unsuccessful model we propose a different hypothesis for the current
distribution, the details follows.

Model #2.
In this model we assume the current has a non-uniform distribution. Intuitively
one may assume the current density is in proportion to the surface area and its
associated distance from the center of the nut. In other words, further the distance
the larger the density. One may expand on this idea proposing nonlinear cases.
For time being we assume a linear model such as $j(\rho)=a\rho+b$ , where $a$ and $b$ are
constants and are independent of distance $\rho$ . We also assume the current densities
at the inner and outer radii are: $j_{1}(R_{1})\equiv\alpha j_{0}=a$ $R_{1}+b$ and $j_{2}(R_{2})\equiv\beta j_{0}=$

$a$ $R_{2}+b$ where the value of the constant current density $j_{0}= \frac{i}{\pi(R_{2}^{2}-R_{1}^{2})}$ . Solving

these equations of $a$ and $b$ yields, $\{a, b\}=\{(\frac{\beta-\alpha}{R_{2}-R_{1}})j_{0},$ $( \frac{aR_{2}-\beta R_{1}}{R_{2}-R_{1}})j_{0}\}$ . On the

other hand $i= \int_{R_{1}}^{R_{2}}j(\rho)[2\pi\rho d\rho]$ substituting for $j(\rho)=a$ $\rho+b$ and integrating
over $\rho$ yields, $i=2 \pi[\frac{1}{3}a(R_{2}^{3}-R_{1}^{3})+\frac{1}{2}b(R_{2}^{2}-R_{1}^{2})]$ . Furthermore, by substituting
in the latter the values of $\{a, b\}$ and $j_{0}$ gives,

$\beta=\frac{1}{2R_{2}^{2}-R_{1}(R_{1}+R_{2})}\{3(R_{2}^{2}-R_{1}^{2})-\alpha[R_{2}(R_{1}+R_{2})-2R_{1}^{2}]\}$ .

In other words, $\beta=\beta(\alpha)$ . It is interesting to note that in the limit of $R_{1}arrow R_{2}$

the latter equation becomes independent of the radius and simplifies to $\beta=2-\alpha$

restricting the value of $\alpha=$ I. Utilizing the current density we may also calculate
the magnetic moment of the magnet. Applying its expression from model #1,
namely $\mu=2\pi^{2}\int j(\rho)p^{3}dp$ yields, $\mu=2\pi^{2}[\frac{1}{5}a(R_{2}^{5}-R_{1}^{5})+\frac{1}{4}b(R_{2}^{4}-R_{1}^{4})]$ . Also
as explained in the previous section magnetic field is $B(z)=2 \pi k’\int j(\rho)\frac{\rho^{3}}{r^{3}}d\varphi d\rho$ .
Utilizing this equation for the case in hand gives,

$B(z)=(2 \pi)^{2}k’[a\int_{R_{1}}^{R_{2}}\frac{\rho^{4}}{(\rho^{2}+z^{2})^{\frac{3}{2}}}d\rho+b\int_{R_{1}}^{R_{2}}\frac{\rho^{3}}{(\rho^{2}+z^{2})^{\frac{3}{2}}}d\rho]$

Generically speaking, since $\{a, b\}\sim j_{0}$ one may follow the procedure outlined in
the previous section and by eliminating $j_{0}$ between the magnetic moment $\mu$ and
$B(z)$ express the Iatter in terms of $\mu$ , this results a lengthy expression. However,
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similar to eq (4), the ratio of $( \frac{B(z)}{\mu})_{nut}$ becomes a function of distance $z$ , which
is also modified with an overall $\{R_{1}, R_{2}\}$ dependent function. Noticing the fact
that the $\{R_{1}, R_{2}\}$ dependent multiplier factor is a scaling factor, for the purpose
of current investigation it may be suppressed. Therefore, to illustrate the generic
impact of the proposed current distribution we evaluate the $B(z)$ according to

$B(z) \sim a\int_{R_{1}}^{R_{2}}\frac{\rho^{4}}{(\rho^{2}+z^{2})^{\frac{3}{2}}}d\rho+b\int_{R_{1}}^{R_{2}}\frac{\rho^{3}}{(\rho^{2}+z^{2})^{\frac{3}{2}}}d\rho$ (5)

and the Mathematica codes are as follows,

$intp\overline{-}\{\int\frac{pd\rho}{(\rho^{2}+z^{2})^{\frac{J}{2}}}’\int\frac{\rho^{3}d\rho}{(\rho^{2}+z^{2})^{\frac{3}{2}}}\}j$

$\{\beta, jO\}--t_{2R2^{2}-R1}^{\underline{1}}(Rl+R2)$ $($ 3 $(R2^{2}-R1^{2})-\alpha(R2$ $(Rl +R2)-2R1^{2})),$ $\frac{1}{\pi(R2^{2}-R1^{2})}\}$ ;

$\{a, b\}--\{(\frac{\beta-\alpha}{R2-R1})jO$ , $( \frac{\alpha R2-\beta R1}{R2-R1})jo\}//Simp1i$ fy;

$BNut\rho R2=$ ( $($ a intp $[1 \prod+b$ intp $\mathbb{I}2\prod$ ) $/$ . $\rhoarrow$ R2 $)$ ;

$BNut\rho Rl--$ ((a intp [11 $+b$ intp $[2 \prod)$ $/$ . $\rhoarrow$ Rl $)\}$

$BNut\rho RlR2=(BNut\rho R2-BNut\rho Rl)$ //Simplify

1

2 $\pi$ (Rl – R2) 2 (Rl $+2$ R2)

$[-$ $($ 2 $(R1^{2}+2z^{2})(2R2^{2}\alpha+R1^{2}(-3+2\alpha)+$ Rl R2 $(-3+2\alpha)))/((R1+R2)\sqrt{R1^{2}+z^{2}})+$

$($ 2 $(R2^{2}+2z^{2})(2R2^{2}\alpha+R1^{2}(-3+2\alpha)+$ Rl R2 $(-3+2\alpha)))/((R1+R2)\sqrt{R2^{2}+z^{2}})+$

$3(-1+\alpha)$ $| \frac{R1^{3}+3R1z^{2}}{\sqrt{R1^{2}+z^{2}}}-3z^{2}$ Lo$g[2(R1+\sqrt{R1^{2}+z^{2}})])-$

3 $( \sim 1+\alpha)[\frac{R2^{3}+3R2z^{2}}{\sqrt{R2^{2}+z^{2}}}-3z^{2}$ Lo$g[2(R2+\sqrt{R2^{2}+z^{2}})]\Vert$

And for two values of a we display the associated fields vs. distance $z$ .

GraphicsArray $[\{$ Show $[\{Plot[\{BNut\rho RlR2/$ . $\{R2arrow 1.0 , Rl arrow 0.5\}/$ . $aarrow 0.05$ ,

$BNut\rho RlR2/$ . $\{R2 arrow 1.0, Rlarrow 0.5\}/$ . $\alphaarrow 1.9\},$ $\{z, 0,3\}$ ,
PlotRange $arrow\{\{0,3\}, \{0,0.25\}\}$ , AxesLabel $arrow\{\prime\prime z, cm , " \sim B_{-}field’’\}$ ,
PlotStyle $arrow$ { $\{$ Thick, Blue}, {Thick, Red}}, GridLines $-\rangle$ Automatic] $\}]$ ,
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Plot $[\beta/$ . $\{R2arrow 1.0, Rlarrow 0.5\}/$ . $\alphaarrow Y’,$ $\{y, 0 , 2\}$ , AxesLabel $arrow t”\alpha$ “, “
$\beta$ “},

PlotStyle $arrow$ {Thick , Black} , $GridLinesarrow$ Automatic],

Plot $[$ 1 $0^{-6}$ $(a p+b)/$ . values /. $\alphaarrow 0.2,$ $\{\rho, 0.5,1\}$ ,
$PlotRangearrow\{\{0,1.5\}, \{0,1.5\}\}$ , PlotStyle $arrow$ { Thick , Black} ,
AxesLabel $arrow\{\prime\prime p$ , cm“, “

$j(\rho),$ $Amp/m^{2}$ or ?? $cm^{2\cdot\prime}\}$ , GridLines $arrow$ Automatic $]\}$

, ImageSi ze $arrow 600]$

$-!\}_{-}tidd$ $\beta$

$j(p)\phi mp/m^{2}or??\ovalbox{\tt\small REJECT}$$25-$
$os$ 1.0 $s$ 21)

Figure 5. Magnetic field along the axial symmetry axis of the nut-shaped
magnet vs. distance from the center of the nut. The black and grey curves
correspond to values of $\alpha=0.05$ , and 1.9, respectively (left graph). The middle
graph is the display of the parameter $\beta$ vs. $\alpha$ . A plot of a typical e.g. $\alpha=0.5$

linearly increasing current density distribution function vs. radial distance $\rho$ (the
right graph).

Plots displayed in Fig 5 are interpreted as follows. According to the left graph, the
tails of the magnetic fields for distances far from the magnet irrespective the values
of $\alpha$ and $\beta$ , i.e. the character of the current distributions are indistinguishably
identical. One needs to recall according to $j_{1}(R_{1})=\alpha j_{0}$ and $j_{2}(R_{2})=\beta j_{0}$ the
values of $\alpha$ and $\beta$ are the factors determining the portion of the entire currents that
runs in the inner and the outer circumference of the nut. The overlapping tails
of the fields at far distances, therefore, means, knowing the current distribution
is irrelevant. This is not true for close distances. The blue curve corresponds
to a small $a$ and the red curve corresponds to a large $\alpha$ , respectively. We have
compared these two curves vs. data, but not shown in this report. However, it
is obvious that the curve with a small $\alpha$ favors the data. On the other hand,
according to the middle graph of Fig 5, the small value of a corresponds to a large
value of $\beta$ . And because $\beta$ is the factor that determines the portion of the current
that runs in the outer edge, we then conclude [to make the current distribution
model conducive to the measured field, the current on the surface of the nut needs
a higher concentration at the outer edge]. Graphically this is depicted by the right
most graph of Fig 5. In short, by implementing Model #2 we learned the current
on the base surface of the nut is not distributed evenly. Moreover, a steeper linear
increment is favored. With these insights we propose the next model.

Model #3.
Guided with the outcome of Model #2, we propose our upgraded model. In this
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model the current is concentrated only on the rim of the outer radius of the nut.
For this simple situation eq (1) gives,

$B(z)=2k^{f} \frac{\mu}{(R^{2}+z^{2})^{\frac{3}{2}}}$
, where the magnetic

moment is $\mu=(\pi R^{2})i$ . We refer the field as field-ring. Utilizing the specifications
of the nut, we plot the last expression, $($ $f_{\mu}^{ie1d})_{Ring}$ ,

values -

$\{R1arrow 0.005,$ $R2arrow 0.01$ , kp $arrow\frac{1}{10000000}||$

BRingpermoment $[z_{-}]$ $:=\underline{2kp}\}$

$(R2^{2}+z^{2})^{-}2$

Show [

{ListPlot [Table [{dataNutmagnetDec16 [ $i,$ $1I$ , Mean [dataNutmagnetDec16 $[ i, 2\prod]//N\}$ ,

{ $i,$ $1$ , Length [dataNutmagnetDec16]} $]$ , GridLines $arrow$ Automatic,

PlotMarkers $arrow t\blacksquare$ }, $PlotRangearrow\{\{0$ , 0.04}, $\{0$ , 1400} $\}]$ ,
Plot [125 $+$ 5700 BRingpermoment $[z]/$ . values, { $z$ , 0.001 , 5 R2 /. values} ,

$PlotRangearrow$ All , AxesLabel $arrow\{ z , m’’ , gauss/moment’’\}$ , PlotStyle $arrow$ Thick,

PlotLabel $arrow”$ Ring“] $\}$ , AxesLabel $arrow\{’’z,m^{\prime t}$ , “
$B_{-}field/\mu’’\}]$

B-field

0.00 0.01 0.02 0.03 OD4

Figure 6. Magnetic field of a nut-shaped magnet along the axial symmetry axis
through the center of the nut. The curve is due to current distribution confined
to the outer circumference of the nut. The filled squares is the data.

Figure 6 shows Model #3 works the best. For distances far from the magnet
the theory matches perfectly with data. For close distances the theoretical model
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curve over weighs the data. Comparing Fig 6 vs. Fig 4 we see a great deal of
improvement. Meaning, by concentrating the current to the outer rim of the nut
the agreement between the data and theory improves. Encouraged with this result,
we adjust the model.

Model #4.
Building on the descriptive conclusions of Model #3, here we propose a current
distribution that is partially stretched beyond the outer rim of the nut. One
may think of the similarity of the proposed current to the notion of Maxwell $s$

displaced current [7]. The latter comes about from time variation of the electric
field, here, the “displaced” current comes about from stretching the conduction
current beyond the physical dimension of the nut. We assume a current density
such as:

$j(\rho)=\{\begin{array}{ll}0 0\leqq\rho<R_{2}\frac{i}{N}e^{-\lambda\rho} \rho\geqq R_{2}\end{array}$ (6)

where $\lambda$ is is the decay constant of the current and $N$ is the normalization factor.
Utilizing $j= \frac{di}{d\alpha}$ we determine the normalization factor accordingly, namely $i=$

$\int_{0}^{\infty}j(\rho)[2\pi\rho d\rho]=\frac{i}{N}\int_{R_{2}}^{\infty}e^{-\lambda\rho}[2\pi\rho d\rho]$ . The actual outer radius of the nut is

$R_{2}=$ lcm this yields, $N=2 \pi e^{-\lambda}\frac{(1+\lambda)}{\lambda^{2}}$ . As expected the normalization factor is
$N=N(\lambda)$ . We insert the current distribution in the recipe of the magnetic field,
namely, $B(z)=2 \pi k’\int j(\rho)\frac{\rho^{3}}{r^{3}}d\varphi d\rho$ , this gives

$B(z)=ik’(2 \pi)^{2}\int_{R_{2}}^{\infty}\frac{e^{-\lambda p}}{N(\lambda)}\frac{\rho^{3}}{(\rho^{2}+z^{2})^{\frac{3}{2}}}d\rho$ (7)

For the sake of coding only, we replace $N$ with Al, and compose a code allowing
to plot the field for various values of $\lambda$ this is shown in Fig 7.

Al $=2\pi$ Integrate $[pe^{-\lambda p},$ $\{p, 1 , \infty\}$ , Assumptions $arrow{\rm Re}[\lambda]>0]$ ;

$j1[\rho_{-}]\overline{-}\frac{1}{A1}e^{-\lambda\rho}j$

$tabplotB\lambda=$

Table $[$ Plot $[65.8+221(2\pi)^{2}$ NIntegrate $[j1[\rho]\underline{\rho^{3}}3$ , $\{p , 1. 0 , 3.0\}]$ ,
$(\rho^{2}+(z(*-0.4*))^{2})^{-}2$

$\{z, 0.15,5\}$ , PlotStyle $arrow$ { Th$ick$ , Hue [0.2 $\lambda]$ },

AxesLabel $arrow\{’’z$ , cm”, “
$\epsilon_{-}field$ (gauss) ”

$\}$ , PlotRange $arrow\{\{0,5\},$ $\{O$ , 1200} $\}$ ,

GridLines $arrow$ Automatic $],$ $\{\lambda, 2.0,3.0,0.5\}]$ ;

Show $[ \{tabplotB\lambda[1\prod,$ $tabplotB\lambda[2\prod,$ $tabplotB\lambda[3J\}]$ ;

209



listplotdataNutmagnetDec16CGS – ListPlot [

Table [{dataNutmagnetDec16CGS $Ii,$ $1 \prod$ , Mean [dataNutmagnetDec16CGS$[ i, 2\prod]//N\}$ ,
{ $i,$ $1$ , Length [dataNutmagnetDec16CGS]} $]$ , GridLines $arrow$ Automatic ,

PlotMarkers $arrow t\blacksquare$ }, $PlotRangearrow\{\{0,5.0\},$ $\{0$ , 1000} $\}$ ,
AxesLabel $arrow\{\prime x$ (cm) “, “

$B_{-}field$ (gauss) “
$\}]$ ;

Show [{Flatten [Table $[tabplotB\lambda[nl , \{n, 1 , Length [tabplotB\lambda]\}]]$ , $(*$ ,
tabpl$otB$ [ $1I*)$ listplotdataNutmagnetDec16CGS} , GridLines $arrow$ Automatic]

B-field(gauss)

$0$ 1 2 3 4 5

Figure 7. The curves are associated with the halo currents. The weakest field
(the grey curve) corresponds to $\lambda=2.0$ and the strongest field (the black curve)
corresponds to $\lambda=3.0$ , respectively. The middle curve (the light grey) has a
values of $\lambda=2.5$ .

According to Fig 7, the halo currents with decay parameters within the range of
$2\leqq\lambda\leqq 3$ produce magnetic fields that are most compatible with data. The most
important feature of the halo current is its corresponding field at close distances
to the magnet. Comparing to Fig 4 and 6 the strength of the fields vs. Fig
7 does not over estimate the data and bents according to what data indicates.
Also we notice at distances far from the magnet, say beyond 0.8 cm the halo’s
current decay constant, $\lambda$ appears to be insignificant; all three curves overlap. For
a comprehensive visualization purpose in Fig 8 we have shown a $3D$ plot of the
current density distributions in accordance to what we discussed in four models.
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Figure 8. A $3D$ plot of the current distribution densities corresponding to
models 1-4. Beginning with the fourth quadrant and in counterclockwise direction,
each grey line/curve corresponds to Model #1-4, respectively.

4 Conclusions
In the course of our investigation we stumbled upon a nut-shaped permanent
magnet. Utilizing a popular magnetometer we measure the strength of its magnetic
field along its axial symmetry axis through the center and perpendicular the center
of the nut. In order to interpret the data we assume the electric current is the
source of the field. We begin our analysis with modeling the current distributions.
$\mathbb{R}om$ the short coming of the models we systematically upgrade our thoughts.
Each upgrade improved the previous model and after four attempts we were able to
propose a fresh idea, namely the existence of a halo current; it enables to producing
results compatible with data. The notion of extendin$g$ the conduction current
beyond the physical dimension of a permanent magnet is innovative and fresh.
A thorough scientific literature search reveals no such idea has been considered
before. This article also emphasizes the fact that physics is an empirical science
and data guides the theoretical modeling.
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