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Abstract

This paper derives semi-analytic solutions for dynamic optimization of factor portfo-

lios in a mean-variance framework with transaction costs and regime switches which

drive discontinuous changes of model parameters. The optimal portfolio is composed

of a linear combination of (current” and “target” portfolios the latter of which is

more influenced by regimes. For some special cases, we derive analytic solutions that

have much simplified form and easy to understand. Numerical experiments are also

conducted to confirm economically intuitive sensitivities of the optimal solutions to

changes in key parameters that are regime-dependent.
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1 Introduction

Over the course of past decades, the financial markets have exhibited drastic changes in return

generating processes that deviate from those in long-term expectations. For example, in late

$1970s$ and early $80s$ that are known as a lost decade, equity markets were stuck under the

stagflation macro economy. In late $1990s$ , the market participants experienced instability in

currencies driven by fragile underpinning in economies across emerging countries. A recent

decade includes the US equity market having dropped significantly throughout internet bubble

and the global crisis in economy and in the financial markets triggered by subprime loan that

turned out to bring out bankruptcy of the Lehman Brothers.

In decision making processes such as asset allocation in both of strategic and tactical invest-

ment horizon, investors try to predict returns and estimate risks and transaction costs. Contrary

to the drastic and discontinuous behavior in financial markets, the traditional practices in in-

vestment management have relied on rather simple models mainly because of their simplicity.

Prediction models often consist of a single set of key financial variables such as expected returns,

volatility and correlation between assets, or even in dynamic models, key parameters are fixed

and financial variables changes continuously.
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On the other hand, academic endeavor and empirical analyses among several areas in macro
economics had already made significant progress in figuring out nature of the drastic and dis-
continuous changes of economic variables by introducing regime switches. In earlier studies in
finance, regime switching models have been applied to wide ranges of assets and markets to
successfully explain their dynamic behavior. Figure 1 shows estimated regime probabilities of
a 2 regime Markov switching vector autoregressive (VAR) process of 3-factor model by Fama
and French [10] and Carhart [7]. We observe jagged regime probabilities flipping between $0$

and 1 and some persistent periods to stay either regime. In this example, regime 1 exhibits
higher returns, lower volatilities, lower correlation and lower decay rates across three factors
while regime 2 shows opposite characteristics.

Figure 1: Estimated regime probabilities of 3-factor model by Fama and French [10]

Initiated by Baum and Petrie [5] and extensively studied in the statistics and econometrics
literature, e.g., Titterington, Smith and Markov [16] and Hamilton [14], Markov mixture of
dynamic models have attracted increasing interest. The model has an advantageous nature
of flexibility to approximate a broad range of dynamics in the real world. Ang and Bekaert
[1, 2] construct and numerically solve a regime switching model of international equity markets
and report that ignoring the regimes could cost under a presence of cash in asset allocation
problems. Among well known factors in individual stock markets, market risk, value, small
cap and momentum, Arshanapalli, Fobbozi and Nelson [4] reports that the behavior of these
premia under different macro economic scenarios is different across factors. The study implies
potential presence of different mechanism to drive the equity factor returns from those handled
in traditional linear models. Coggi and Manescu [8] presents a state-dependent version of Fama
and French [10] model to overcome the shortcoming that the original model exhibits quite poor
performance in some periods. Ang and Kristensen [3] finds that time dependency of alpha and
beta in the Fama-Firench model by introducing kernel regression for non-parametric estimation.
Although much is left for further research to understand what leads the alpha to deviate from
zero, this suggests that some dynamics drive the alpha and beta over time.

Choices of underlying models in the regime switching process are also important decisions
to approximate highly complicated actual returns. For example, recently portfolio managers
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tend to pay attentions not only to cross-sectional information across assets in terms of return
forecast but also to time series nature of forecasted returns for measuring persistency of the

forecasts. Grinold [13] points out that vintage of information can be found in portfolios under
a presence of transaction costs. Sneddon [15] solves mean-variance optimal portfolio problem
with transaction costs and reveals that the optimal portfolio should trade fast decay assets more
aggressively than slow decay assets.

As well as explaining behaviors of assets in the markets, how optimally investors should
behave is similarly important to understand asset returns under the regime switching structure.
This paper addresses an optimal portfolio problem with regime switches. Our model extends
G\^arleanu and Pedersen [12], who derive a closed form solution for the model with multiple

securities and multiple return predictors with different mean-reversion speeds, to regime switch-
ing structure that drives key parameters in factor returns, transaction costs and investors risk

tolerance.
The optimal portfolio is regime-dependent and consists of a linear combination of “current“

and “target“ portfolios. Decay speed of the vector autoregressive factor process is influenced
by parameters that characterize nature of regime switching. Numerical experiments illustrate

intuitive behaviors of the solutions. For example, the higher transaction cost anticipated to a
regime to switch into, the slower to change asset weights. The less likely to switch into other

regimes, the more rapidly asset weights adjust to those in a regime to switch into. The faster
decay in factor returns anticipated to a regime to switch into, the smaller asset weights in a
current regime. The more likely to switch into other regimes, the closer asset amount to hold in

a current regime to those in a regime to switch into.
This paper contributes to literature in several ways. We obtain semi-analytic solutions of dy-

namic portfolio optimization problems in a mean-variance framework with transaction costs and

regime switches. The model assumes regime switches within key parameters in factor portfolios
including those related to expected returns modeled by VAR(I) which is sufficiently general to
approximate complicated actual returns observed in the markets as well as covariance, transac-
tion costs, factor loadings and investors’ risk tolerance. Sensitivity of the optimal solutions to
the key parameters are also demonstrated through numerical examples.

The outline of this paper is as follows. Section 2 describes a discrete-time dynamic portfolio
optimization problem with regime switches. In Section 3, we solve the problem by dynamic

programming and obtain the optimal portfolios. Some special cases are also discussed. Section
4 exhibits numerical examples to investigate properties of the optimal portfolios. Finally, we
conclude the paper in Section 5.

2 Model description

We consider an economy with $N$ securities traded at time $t=1,2,$ $\ldots$ . The price changes of
security $i$ between time $t$ and $t+1$ is $r_{i}(t+1)=p_{i}(t+1)-p_{i}(t)$ . We assume that an $N\cross 1$

return vector $r(t)=(r_{1}(t), \ldots, r_{N}(t))^{T}$ is given by

$r(t+1)=\theta(t)+\alpha(t)+u(t)$ , (2.1)
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where $\theta(t)$ is the fair return from the CAPM, $\alpha(t)$ is the predictable excess return known to
the investor at time $t$ and $u(t)$ is an unpredictable zero-mean noise ( $T$ denotes transpose). The
predictable excess return $\alpha(t)$ is given by

$\alpha(t)=L_{i}f(t)$ , (2.2)

where $f(t)$ is an $M\cross 1$ vector of factors that predict returns and $L_{i}$ is an $N\cross M$ matrix of factor
loadings when the state of the economy (regime) at time $t$ is $i$ . The dynamics of the factor is
modeled by

$f(t+1)=\mu_{i}+\Phi_{i}f(t)+\epsilon(t)$ , (2.3)

where $\mu_{i}$ determines the level of the factors, $\Phi_{i}$ is an $M\cross M$ positive.definite matrix of mean-
reversion coefficients, and $\epsilon(t)$ is a zero-mean shock affecting the predictors.

As pointed out in Section 1, the financial market sometimes exhibits drastic changes in
return generating processes. One useful way to represent such discontinuous behavior in the
market is to introduce regime switches. By allowing model parameters being regime-dependent,
the dynamics of the model is expected to be well fitted to those of the real market. Following
Hamilton [14], the regime process $I(t)$ follows a Markov chain on $\{$ 1, $\ldots,$

$J\}$ where the transition
probabilities of going from regime $i$ at time $t$ to regime $j$ at time $t+1$ are denoted by $p_{ij}=$

$P(I(t+1)=j|I(t)=i)$ .
The noise terms $u(t)$ and $\epsilon(t)$ are assumed to be conditionary independent in the sense that,

given the regime process $I(s)=i$ and $I(t)=j$ , the noise terms $u(s),$ $u(t),$ $\epsilon(s)$ and $\epsilon(t)$ are
independent of each other for any $s,$ $t,$ $i$ and $j$ . The covariance matrices of $u(t)$ and $\epsilon(t)$ are,
however, regime-dependent and are given by $W_{i}$ and $\Sigma_{i}$ , respectively, when $I(t)=i$ . We also
assume that the factor process $f(t)$ is stationary in time. Conditions for the stationarity of
Markov-switching vector autoregressive processes are given in Francq and Zakoian [11].

If $I(t)=i$ and an investor invests $x_{i}(t)$ to security $i$ at time $t$ , the excess return of the
portfolio $x(t)=(x_{1}(t), \ldots, x_{N}(t))^{T}$ between time $t$ and $t+1$ is $x(t)^{T}\{\alpha(t)+u(t)\}$ , the mean
and variance of which are given by

$E(x(t)^{T}\{\alpha(t)+u(t)\})$ $=$ $x(t)^{T}L_{i}f(t)$ , (2.4)

V $(x(t)^{T}\{\alpha(t)+u(t)\})$ $=$ $x(t)^{T}W_{i}x(t)$ . (2.5)

Trading is costly in the economy and the transaction cost associated with trading $x(t)-x(t-1)$
is given by

$\frac{1}{2}\{x(t)-x(t-1)\}^{T}B_{i}\{x(t)-x(t-1)\}$ , (2.6)

where $B_{i}$ is a positive.definite matrix measuring the level of trading costs. As noted $\ln$ G\^arleanu

and Pedersen [12], the trading cost of the form (2.6) is interpreted as a multi-dimensional version
of Kyle’s $\lambda$ .

We consider a risk averse investor and let $\lambda_{i}$ denote the coefficient of risk aversion in regime
$i$ . The investor $s$ objective is to choose a dynamic trading strategy to maximize the present
value of all future expected excess returns, penelized for risks and trading costs. Given an initial
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portfolio $x(O)$ , regime $I(1)$ , and factor $f(1)$ , the objective function to maximize is expressed as

$E(\sum_{t=1}^{\infty}\rho^{t-1}[x(t)^{T}L_{i}f(t)-\frac{\lambda_{i}}{2}x(t)^{T}W_{i}x(t)-\frac{1}{2}\{x(t)-x(t-1)\}^{T}B_{i}\{x(t)-x(t-1)\}]$

$|x(0),$ $I(1),$ $f(1))$ ,

where $\rho\in(0,1)$ is a discount factor. In the next section, we solve the optimization problem

under the assumption that the regime is observable. Though the regime of the actual market is

not observable, this assumption is not very unrealistic because, as shown in Figure 1, the regime

probabilities estimated from the data often exhibit the property that they flips between $0$ and

lin the most part of the time interval.

3 Optimal investment strategy

In this section, we obtain the optimal strategy and the value function by solving the Bellman‘s
equation. Some special cases of interest are also investigated where the value function can be

much simplified.

3.1 Bellman’s equation

Given an initial portfolio $y$ , factor $f$ , and regime $i$ at time $t=0$ , we define the value function

by

$V_{i}(y, f)$ $=$ $\max_{\{X(t)\}}E(\sum_{t=1}^{\infty}\rho^{t-1}[x(t)^{T}L_{i}f(t)-\frac{1}{2}x(t)^{T}A_{i}x(t)$ (3.1)

$- \frac{1}{2}\{x(t)-x(t-1)\}^{T}B_{i}\{x(t)-x(t-1)\}]|x(0)=y,$ $I(1)=i,$ $f(1)=f)$ ,

where $A_{i}=\lambda_{i}W_{i}$ . By the principle of optimality, $V_{i}(y, f)$ satisfies the Bellman‘s equation

$V_{i}(y, f)= \max_{X}[x^{T}L_{i}f-\frac{1}{2}x^{T}A_{i}x-\frac{1}{2}(x-y)^{T}B_{i}(x-y)+\rho\sum_{j=1}^{J}p_{ij}E(V_{j}(x, \mu_{i}+\Phi_{i}f+\epsilon_{i}))]$

(3.2)

where $\epsilon_{i}$ is a zero-mean noise in (2.3) with the covariance matrix $\Sigma_{i}$ . The guess solution to (3.2)

is
$V_{i}(y, f)=- \frac{1}{2}y^{T}\beta_{i}y+\delta_{i}^{T}y+\frac{1}{2}f^{T}\eta_{i}f+\xi_{i}^{T}f+y^{T}\kappa_{i}f+\zeta_{i}$ ; $i=1,$ $\ldots,$

$J$, (3.3)

where $\beta_{i}$ is an $N\cross N$ positive definite matrix, $\eta_{i}$ is an $M\cross M$ positive definite matrix, $\kappa_{i}$ is an
$N\cross M$ matrix, $\delta_{i}$ is an $N\cross 1$ vector, $\xi_{i}$ is an $M\cross 1$ vector and $\zeta_{i}$ is a scalar. By substituting

(3.3) into (3.2) and calculating the expectation with respect to $\epsilon_{i}$ , the right hand side of (3.2)

becomes a quadratic function of $x$ . The first order optimality condition then yields

$x_{i}^{*}=\rho C_{i}(\hat{\delta}_{i}+\hat{\kappa}_{i}\mu_{i})+B_{i}y+(\rho\hat{\kappa}_{i}\Phi_{i}+L_{i})f$; $Ci=(\rho\hat{\beta}_{i}+A_{i}+B_{i})^{-1}$ , (3.4)

where we define

$\hat{z}_{i}=\sum_{j=1}^{J}p_{ij}z_{j}$ ; $z=\beta/\delta/\eta/\xi/\kappa/\zeta$ . (3.5)
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Substituting (3.4) into the right hand side of (3.2) and equating it to (3.3), we get the following
system of equations of unknown coefficient matrices of the value function for $i=1,$ $\ldots,$

$J$ :

$\beta_{i}$ $=$ $B_{i}-B_{i}(\rho\hat{\beta}_{i}+A_{i}+B_{i})^{-1}B_{i}$ , (3.6)

$\delta_{i}$ $=$ $\rho B_{i}C_{i}(\hat{\delta}_{i}+\hat{\kappa}_{i}\mu_{i})$ , (3.7)

$\eta_{i}$ $=$ $\rho\Phi_{i}^{T}\hat{\eta}_{i}\Phi_{i}+(\rho\hat{\kappa}_{i}\Phi_{i}+L_{i})^{T}C_{i}(\rho\hat{\kappa}_{i}\Phi_{i}+L_{i})$, (3.8)

$\xi_{i}$ $=$ $\rho[\Phi_{i}^{T}(\hat{\eta}_{i}^{T}\mu_{i}+\hat{\xi}_{i})+(\rho\hat{\kappa}_{i}\Phi_{i}+L_{i})^{T}C_{i}(\hat{\delta}_{i}+\hat{\kappa}_{i}\mu_{i})]$ , (3.9)

$\kappa_{i}$ $=$ $B_{i}C_{i}(\rho\hat{\kappa}_{i}\Phi_{i}+L_{i})$ , (310)

$\zeta_{i}$ $=$ $\rho[\frac{1}{2}\mu_{i}^{T}\hat{\eta}_{i}\mu_{i}+\frac{1}{2}E(\epsilon_{i}^{T}\hat{\eta}_{i}\epsilon_{i})+\hat{\xi}_{i}^{T}\mu_{i}+\hat{\zeta_{i}}+\frac{1}{2}\rho(\hat{\delta}_{i}+\hat{\kappa}_{i}\mu_{i})^{T}C_{i}(\hat{\delta}_{i}+\hat{\kappa}_{i}\mu_{i})]$ . $(3.11)$

Hence, the problem of obtaining the optimal portfolio is reduced to solving nonlinear simulta-
neous equations (3.6) through (3. 11).

3.2 Optimal portfolio

From (3.6) to (3.11), the equation we should solve first is (3.6) because all other equations
contain $\beta_{i}$ in $C_{i}$ . Unfortunately, however, (3.6) constitutes a system of nonlinear equations that
makes it difficult to obtain an explicit solution. We therefore develop the following procedure
for numerically computing $\beta_{i}$ .

Substituting $H_{i}=B_{i}^{-1/2}\beta_{i}B_{i}^{-1/2}$ and $K_{i}=B_{i}^{-1/2}A_{i}B_{i}^{-1/2}$ into (3.6), we get after some
algebras a system of matrix quadratic equations

$\rho H_{i}\hat{H}_{i}+H_{i}(K_{i}+I)-\rho\hat{H}_{i}-K_{i}=O$ , (312)

where we define $\hat{H}_{i}=\sum_{j=1}^{J}p_{ij}H_{j}$ as before. By solving (3.12), $H_{i}$ can be expressed in terms
of $H_{k}$ for $k\neq i$ as

$H_{i}=- \frac{1}{2\rho p_{ii}}[D_{i}+(1-\rho p_{ii})I\pm\{[D_{i}+(1-a_{i})I]^{2}+4a_{i}D_{i}\}^{1/2}]$ , (3.13)

where

$D_{i}=K_{i}+ \rho\sum_{k=1,k\neq i}^{J}p_{ik}H_{k}$ . (3.14)

Combining (3.13) and (3.14) leads us to the following iterative procedure for computing $H_{i}$ .

1. Set $H_{i}^{(0)}=O$ for $i=1,$ $\ldots,$
$J$ and set $t=1$ .

2. Compute $D_{i}^{(t)}$ and $H_{i}^{(t)}$ for $i=1,$ $\ldots,$
$J$ from

$D_{i}^{(t)}$ $=$ $K_{i}+ \rho\sum_{k=1,k\neq i}^{J}p_{ik}H_{k}^{(t-1)}$ , (3.15)

$H_{i}^{(t)}$ $=$ $\frac{1}{2\rho\rho_{ii}}[\{(D_{i}^{(t)}+(1-\wp_{ii})I)^{2}+4\rho p_{ii}D_{i}^{(t)}\}^{1/2}-(D_{i}^{(t)}+(1-\rho p_{ii})I)](3.16)$

3. The procedure converges if $H_{i}^{(t-1)}$ and $H_{i}^{(t)}$ are close enough for all $i=1,$ $\ldots,$
$J$ . Other-

wise, increment $t$ by 1 and goto Step 2.
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It can be proved by an inductive argument that both $D_{i}^{(t)}$ and $H_{i}^{(t)}$ are positive definite that
together with the fact that a positive definite matrix has a matrix square root (e.g., Bhatia
[6] $)$ assures that $H_{i}^{(t)}$ in (3.16) is well-defined. Note also that the solution $H_{i}$ obtained by the
procedure is positive definite, and so is $\beta_{i}=B_{i}^{1/2}H_{i}B_{i}^{1/2}$ .

Once $\beta_{i}$ ’s are at hand, we can solve (3.6) through (3.11) sequentially. For $K\cross L$ matrix
$M=[m_{ij}]$ , we define a $KL\cross 1$ vector by

vec $(M)=(m_{11}, \ldots, m_{K1}, \ldots, m_{1L}, \ldots, m_{KL})^{T}$.

First, we solve (3.9) to get

$\{\begin{array}{l}vec(\kappa_{1})|vec(\kappa_{J})\end{array}\}=[I_{MNJ}-\rho\Gamma(P\otimes I_{MN})]^{-1}\{\begin{array}{l}vec(B_{1}C_{1}L_{1})|vec(B_{J}C_{J}L_{J})\end{array}\}$ , (3.17)

where $I_{k}$ is an identity matrix of dimension $k,$ $\otimes$ denotes the Kronecker $s$ product, and

$\Gamma=\{\begin{array}{lll}\Phi_{1}^{T}\otimes(B_{1}C_{1}) O \ddots O \Phi_{J}^{T}\otimes(B_{J}C_{J})\end{array}\}$ .

By solving (3.6), we obtain $\delta_{i}$ ’s as

$\{\begin{array}{l}\delta_{1}\vdots\delta_{J}\end{array}\}=\rho[I_{NJ}-\rho\Theta(P\otimes I_{N})]^{-1}\{\begin{array}{l}B_{1}C_{1}\hat{\kappa}_{1}\mu_{1}\vdots B_{J}C_{J}\hat{\kappa}_{J}\mu_{J}\end{array}\}$ , (3.18)

where

$\Theta=\{\begin{array}{lll}B_{1}C_{1} O \ddots O B_{J}C_{J}\end{array}\}$ .

$\eta_{i}$ ’s are obtained from (3.7) as

$\{\begin{array}{l}vec(\eta_{1})|vec(\eta_{J})\end{array}\}=[I_{M^{2}J}-\rho\Psi(P\otimes I_{M^{2}})]^{-1}\{\begin{array}{l}vec((\rho\hat{\kappa}_{1}\Phi_{1}+L_{1})^{T}C_{1}(\rho\hat{\kappa}_{1}\Phi_{1}+L_{1}))|vec((\rho\hat{\kappa}_{J}\Phi_{J}+L_{J})^{T}C_{J}(\rho\hat{\kappa}_{J}\Phi_{J}+L_{J}))\end{array}\}$ ,

(3.19)

where

$\Psi=\{\begin{array}{lll}\Phi_{1}^{T}\otimes\Phi_{1}^{T} O \ddots O \Phi_{J}^{T}\otimes\Phi_{J}^{T}\end{array}\}$ .

From (3.8), $\xi_{i}$ ’s are given by

$\{\begin{array}{l}\xi_{1}|\xi_{J}\end{array}\}=\rho[I_{MJ}-\rho\Phi^{T}\{P\otimes I_{M}\}]^{-1}\{\begin{array}{l}\Phi_{1}^{T}\hat{\eta}_{1}^{T}\mu_{1}+(\rho\hat{\kappa}_{1}\Phi_{1}+L_{1})^{T}C_{1}(\hat{\delta}_{1}+\hat{\kappa}_{1}\mu_{1})\vdots\Phi_{J}^{T}\hat{\eta}_{J}^{T}\mu_{J}+(\rho\hat{\kappa}_{J}\Phi_{J}+L_{J})^{T}C_{J}(\hat{\delta}_{J}+\hat{\kappa}_{J}\mu_{J})\end{array}\}$ ,

(3.20)
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where

$\Phi=\{\begin{array}{lll}\Phi_{1} O \ddots O \Phi_{J}\end{array}\}$ .

Finally, we get from (3.11)

$\{\begin{array}{l}\zeta_{1}|\zeta_{J}\end{array}\}=\rho(I_{J}-\rho P)^{-1}\{\begin{array}{l}\frac{1}{2}\mu_{1}^{T}\hat{\eta}_{1}\mu_{1}+\frac{1}{2}E(\epsilon_{1}^{T}\hat{\eta}_{1}\epsilon_{1})+\hat{\xi}_{1}^{T}\mu_{1}+\frac{1}{2}\rho(\hat{\delta}_{1}+\hat{\kappa}_{1}\mu_{1})^{T}C_{1}(\hat{\delta}_{1}+\hat{\kappa}_{1}\mu_{1})|\frac{1}{2}\mu_{J}^{T}\hat{\eta}_{J}\mu_{J}+\frac{1}{2}E(\epsilon_{J}^{T}\hat{\eta}_{J}\epsilon_{J})+\hat{\xi}_{J}^{T}\mu_{J}+\frac{1}{2}\rho(\hat{\delta}_{J}+\hat{\kappa}_{J}\mu_{J})^{T}C_{J}(\hat{\delta}_{J}+\hat{\kappa}_{J}\mu_{J})\end{array}\}$ ,

(3.21)

where $E(\epsilon_{i}^{T}\hat{\eta}_{i}\epsilon_{i})=\sum_{j=1}^{M}\sum_{k=1}^{M}(\hat{\eta}_{i})_{jk}(\Sigma_{i})_{jk}$ .
The optimal portfolio in (3.4) is expressed as

$x_{i}^{*}=(I-B_{i}^{-1}\beta_{i})y+B_{i}^{-1}\beta_{i}\{\beta_{i}^{-1}(\kappa_{i}f+\delta_{i})\}$ . (3.22)

(3.22) implies that the optimal portfolio is the weighted average of the current portfolio $y$ and
the target portfolio $\beta_{i}^{-1}(\kappa_{i}f+\delta_{i})$ with an weight matrix $B_{i}^{-1}\beta_{i}$ .

3.3 Regime independent cost parameters

When the covariance matrix $W_{i}$ of a noise $u(t)$ in (2.1), a risk aversion coefficient $\lambda_{i}$ and the
transaction cost matrix $B_{i}$ are regime-independent, i.e., $W=W_{i},$ $\lambda=\lambda_{i},$ $B=B_{i}$ , we can get
the optimal portfolio explicitly. Because $B$ is regime-independent, (3.12) is reduced to a single
matrix quadratic equation which has the explicit positive definite solution

$H= \frac{1}{2\rho}[\{(K+(1-\rho)I)^{2}+4\rho K\}^{1/2}-(K+(1-\rho)I)]$ . (3.23)

Thus, both $\beta$ and $C$ becomes regime-independent and are given by

$\beta=B^{1/2}HB^{1/2}$ , $C=(\rho\beta+A+B)^{-1}$ , (3.24)

where $A=\lambda W$ . Though other coefficients $\delta_{i},$
$\eta_{i},$ $\xi_{i},$ $\kappa_{i},$

$\zeta\iota$ are regime-dependent, they can be
obtained from (3.17) to (3.21). The optimal portfolio in this case is

$x_{i}^{*}=(I-B^{-1}\beta)y+B^{-1}\beta\{\beta^{-1}(\kappa_{i}f+\delta_{i})\}$ , (3.25)

where the weight matrix $B^{-1}\beta$ of the current portfolio $y$ is also regime-independent.

3.4 Transaction cost matrix proportional to the covariance matrix

In addition to the regime-independence assumptions in Section 3.3, we further assume that
the transaction cost matrix $B$ is proportional to the covariance matrix $W$ . See G\^arleanu and
Pedersen [12] for the justification of this assumption.
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A straightforward calculation shows that matrix $\beta$ and $C$ are given by

$\beta$ $=$ $\frac{\sqrt{\{\lambda+(1-\rho)\gamma\}^{2}+4\rho\lambda\gamma}-\{\lambda+(1-\rho)\gamma\}}{2\rho}W$ , (3.26)

$C$ $=$ $\frac{2}{\sqrt{\{\lambda+(1-\rho)\gamma\}^{2}+4\rho\lambda\gamma}+\lambda+(1+\rho)\gamma}W^{-1}$ . (3.27)

The optimal portfolio in this case then becomes

$x_{i}^{*}= \frac{2\gamma}{\sqrt{\{\lambda+(1-\rho)\gamma\}^{2}+4\rho\lambda\gamma}+\lambda+(1+\rho)\gamma}y+\frac{1}{\gamma}W^{-1}(\kappa_{i}f+\delta_{i})$ , (3.28)

that states that, independent of the current regime $i$ , it is optimal to hold fixed portion of the
current portfolio $y$ .

4 Numerical experiments

Because optimal solutions are regime-dependent in general, it is difficult to intuitively understand
how model parameters affect the optimal investment behavior. In order to understand the
optimal solutions from financial viewpoint, we conduct numerical experiments. As a benchmark
of the experiments, we set the base case with 5 assets $(N=5),$ $3$ regimes $(I=3)$ and 3 factors
$(M=3)$ . Other parameters in the base case are summarized in Appendix A.

As we show in Figure 1, the regime switches observed in the real market flips one to the
others frequently. For understanding the nature of the optimal solution, let us suppose that the
regime switches take place as slowly as the factor process reaches at the stationary mean. Figure
2 shows optimal holding of asset 5 if the process starts at regime 1 and changes into regime 2
at $t=5$ when the residual terms of factor returns are ignored. In addition to the base case,
two other cases are plotted. The dashed line shows the trajectory when the process remains in
regime 1 while the dotted line shows trajectories when the process changes to regime 3 at $t=5$ .
Because a transaction cost is lowest in regime 1 and highest in regime 3, the higher transaction
cost anticipated to regime switches into, the slower to reduce asset weights.

Another aspect of the optimal solutions that is worth to discuss is how transition probabilities
influence the asset allocation. We show four trajectories including the one for the base case and
three others with different transition probability matrices in Figure 3.

$P_{base}=\{\begin{array}{lll}0.975 0.0125 0.01250.0250 0.950 0.02500.0375 0.0375 0.925\end{array}\}$ , $P_{1}=\{\begin{array}{lll}0.9990 0.0005 0.00050.0250 0.9500 0.02500.0375 0.0375 0.9250\end{array}\}$ ,

$P_{2}=\{\begin{array}{lll}0.9000 0.0500 0.05000.0750 0.8500 0.07500.0875 0.0875 0.8250\end{array}\}$ , $P_{3}=\{\begin{array}{lll}0.8000 0.1000 0.10000.l250 0.7500 0.12500.1350 0.1375 0.7250\end{array}\}$ .

$P_{1}$ indicates the most sticky among others and $P_{3}$ represents the most transient one. One should
note that significant difference is found not only in the speed of convergence of the trajectories
but also in the level of initial holding of asset 5. The less likely to switch into other regimes,
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Figure 2: Trajectories of holding of asset 5.

amount of current holding before the regime switch is less affected by other regimes to switch
into, and the more rapidly asset weights adjust to those in a switching regime once the switch
comes out.

Next we are interested in how return generating processes in factors contribute to form op-
timal portfolios. In our model, the factor process is modeled by VAR(I) with regime-dependent
transition coefficient matrix $\Phi_{i}$ that plays important roles in portfolio construction. Figure 4
shows optiliial portfolios when all regilne-dependent parameters are fixed over time except for
$\Phi_{i}$ . Bars in regime $i(i=1,2,3)$ respectively show how optimal holdings of 5 assets should be if
$\Phi_{i}$ continues all the time. Among others, $\Phi_{1}$ has the highest level of autoregressive coefficients
while $\Phi_{3}$ has the lowest level, i.e., zero autocorrelation. Amount of optimal holding decreases
as the level of $\Phi_{i}$ decreases from positive to $0$ . The faster decay in factor returns anticipated to
a regime to be switched into, the smaller asset weights in a current regime.

5 Conclusion

Our study incorporates into G\^arleanu and Pedersen [12] a regime switching structure and mean-
reverting levels to derive a semi-analytic solution in the mean-variance framework with transac-
tion costs. The optimal portfolio is a linear combination of a “current“ portfolio and a “target“
portfolio which is more influenced by regimes that are more likely to take place than others.
Decay speed of the factor process is influenced by parameters that characterize nature of regime
switches. Through numerical experiments, we found that the higher transaction cost anticipated
to a regime to switch into, the slower to change asset weights. Moreover, the less likely to switch
into other regimes, the more rapidly asset weights adjust to those in a regime to switch into.

The contribution of our paper is two folds. First, we derive a semi-analytic solution for
optimal portfolios which is easy to compute. From practical viewpoint, our observations about
the properties of the optimal portfolio are useful for investment practices because our model is
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Figure 4: Portfolio selection for different coefficient matrices of the factor return process.
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sufficiently flexible to approximate complex behaviors observed in the actual financial markets.
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A Parameters in the base case in Section 4

This section summarizes the parameters in the base case in Section 4.

$\Phi_{i}=\phi_{i}I$ ; $\phi_{1}=0.9,$ $\phi_{2}=0.5,$ $\phi_{3}=0$ ,

$\mu_{i}=\frac{(1-\phi_{i})\mu_{i}}{250}1$ ; $\mu_{1}=0.25,$ $\mu_{2}=0,$ $\mu_{3}=-0.25$ ,

$\Sigma_{i}=\frac{\sigma_{i}}{250}\{\begin{array}{lll}1 r_{i} r_{i}r_{i} 1 r_{i}r_{i} r_{i} 1\end{array}\}$ ;

$\sigma_{1}=\frac{0.01(1-\phi_{1}^{2})}{250},$ $\sigma_{2}=\frac{0.05(1-\phi_{2}^{2})}{250}$ $\sigma_{3}=\frac{0.10(1-\phi_{3}^{2})}{250}$ $r_{1}=-0.3,$ $r_{2}=0,$ $r_{3}=0.3$ ,

$L_{1}=L_{2}=L_{3}=\{\begin{array}{lll}1 1 175 75 7550 50 5025 25 25l0 10 10\end{array}\}$ ,

$W_{i}=L_{i} \Sigma_{i}L_{i}^{T}+\frac{0.5}{250}I$ ,

$B_{i}=b_{i}I$ ; $b_{1}=0.10,$ $b_{2}=0.15,$ $b_{3}=0.20$ ,

$P=\{\begin{array}{lll}0.975 0.0125 0.01250.0250 0.950 0.02500.0375 0.0375 0.925\end{array}\}$ ,

$\lambda_{1}=0.10,$ $\lambda_{2}=0.05,$ $\lambda_{3}=0.01$ ,

$\rho=0.9$ .

Here, $I$ and 1 respectively stand for an identity matrix and a column vector of $1$ ’s of an appro-
priate dimension.

For the sake of clarity and simplicity, factor loadings for the individual assets are set to be
regime-independent. Some parameters are divided by 250 to transform the annual data to daily
ones. In the base case, regime 1 exhibits a tranquil state with higher returns, lower volatilities
and correlation, regime 3 exhibits an adverse state and regime 2 inbetween.
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