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1 Introduction

The real options approach, in which option pricing theory is applied to capital budgeting deci-
sions, better enables us to find the optimal investment strategy and undertake project valuation
under uncertainty than is possible under more classical methods. The early literature has inves-
tigated a real option that has a rather simple payoff structure, assuming that the dynamics of
project value follow a one-dimensional stochastic process (see [9]). Naturally, the studies have
developed into a more complicated analysis on the basis of a multidimensional process (e.g.,
[10, 15, 16, 1, 20] $)$ . For example, [10] investigates land development timing with an alternative
land use choice. In [10], the option’s payoff depends on the maximum of several underlying
asset prices. This type of option is called a max-option, which has been also investigated in
$[$22, 13, 5, 23, 8$]$

This paper extends the previous max-option literature to a model that allows the Poisson
arrival or death of an alternative project in which to invest. The uncertain occurrence or
disappearance of the investment opportunity will be caused by changes in regulation, the exit
and entry of rival firms3, technological innovation, political risk, catastrophes, etc. The model
captures these risks in addition to uncertainty about the future market values of projects. For
example, the model applies to land development with an alternative land use choice under
uncertainty about changes in zoning and development regulations. Especially in an emerging
country, regulatory and political changes frequently happen, and hence, a firm is required to
evaluate the option value and optimize the investment strategy taking account of these risks.

Conventionally, numerous studies on financial derivatives have modeled the catastrophic risks
as a stock price following a discontinuous stochastic process withjumps. Most of the real options
studies have followed this convention. For example, [17] investigates both a growth option and
an extension option involving various types of rare events, assuming the underlying asset value
follows a jump diffusion process. [3] presents the option values and the optimal investment
strategies for both one-shot investment with fixed costs and incremental capacity expansion,
assuming the underlying asset value follows a geometric L\’evy process.

A distinction between this paper and the previous works is that this paper directly models the
possibility that an opportunity in which to invest occurs or disappears. This direct approach

lThis paper is an abbreviated version of [19]. For all proofs, refer to [19]. This work was supported by
KAKENHI 22710142.

2 [20] reveals the nature of a combination of a max-option and a spread option.
3An alternative approach is the game-theoretic approach. Strategic interactions among several firms are

investigated in [11, 12, 24, 14] among others.
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can provide a simpler and more appropriate valuation of the real options than the previous
approach. The model directly captures the effects of the uncertain disappearance or occurrence
of an alternative. To my knowledge, this is the first paper that reveals the interactions among the
random disappearance or occurrence of an alternative project, investment timing, and project

choice. Technically, this study links the standard option to the max-option via the Poisson
arrival or death. In other words, I investigate an option that may change to the max-option by
the Poisson arrival and a max-option that may change to the standard option by the Poisson
death.

In the model, I reveal how the possibility of the occurrence or disappearance influences the
optimal exercise policy and the option value. Naturally, a higher intensity of the occurrence
(disappearance) plays the role in increasing (decreasing) the value of the option to defer the
investment timing and discouraging (encouraging) investment. In addition, the properties, such
as the monotonicity and convexity shown by the max-option literature (e.g., [10, 5, 8]), hold
true even if the occurrence or disappearance of the alternative are taken into consideration. The
result ensures the robustness of these properties.

Furthermore, the numerical analysis reveals the following characteristics. The possibility
of uncertain changes influences the option value and the optimal investment policy for the
option that may change to the max-option greater than the max-option that may change to the
standard option. Indeed, for the rational parameter values, the prospective future occurrence of
an alternative has the potential to enhance the option value by almost 50%. The effect becomes
larger, especially for a weaker or negative correlation between the project values, because a
weaker or negative correlation increases the value of the max-option that may appear in future.

This paper also entails real-world implications. For example, the results offer rational ex-
planations for the behavior of an owner of farmland which has not been cultivated in many
years. Recently, an increase in idled farmland has been a serious issue in Japan. Typically,
idled farmland is restricted within the agricultural use because the zoning and development

ordinances prohibit nonagricultural uses. However, prospective future regulatory and environ-
mental changes may enable an owner to develop land for residential or commercial uses. That
is, an owner of idled farmland has the option that may change to the max-option. In addition
to the relatively high value of residential or commercial land, the weak correlation between the
alternative use and the agricultural use increases the option value and deters an owner from
cultivating farmland.

2 Preliminaries

Consider a firm that has an option to invest in a project. There are two exclusive projects $i=1$

and 2. The risk-adjusted values of the projects, $X(t)=(X_{1}(t), X_{2}(t))$ , are random and follow
GBMs (Geometric Brownian Motion)

$dX_{i}(t)=\mu_{i}X_{i}(t)dt+\sigma_{i}X_{i}(t)dB_{i}(t)$ , (1)

where $B_{1}(t),$ $B_{2}(t)$ are Brownian Motions (BM) with correlation coefficient $\rho$ satisfying $|\rho|<1$ .
Constants $\mu_{i}$ and $\sigma_{i}(>0)$ denote the risk-adjusted growth rate and volatility of the project
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value, respectively. Investing in project $i$ requires an irreversible capital expenditure of $I_{i}(>0)$ .
Mathematically, the model is built on the filtered probability space $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ generated by
$(B_{1}(t), B_{2}(t))$ . The set $\mathcal{F}_{t}$ represents the set of available information at time $t$ , and the firm
optimizes the investment policy under this information. The risk-free rate is a constant $r(>0)$ .
For convergence, I assume that $r>\mu^{4}$ The maturity of the options is $T(>0)$ .

2.1 Standard option

As a benchmark, I consider a firm that has an option to invest in a given project $i$ . A firm
cannot invest in project $j(\neq i)$ . For $X_{i}(t)=x_{i}$ , the option value is equal to the value function
of the optimal stopping problem as follows:5

$V_{i}(x_{i}, t):= \sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x}{}^{t}[1_{\{\tau\leq T\}}e^{-r(\tau-t)}(X_{i}(\tau)-I_{i})]$ , (2)

where $\mathcal{T}_{t}$ denotes the set of all stopping times $\tau\geq t$ and $E_{t}^{x_{i}}$ $[$ . $]$ denotes the expectation conditional
on $X_{i}(t)=x_{i}$ . The subscript $i$ denotes the option to invest in project $i$ . Note that problem
(2) is analogous to an American call option written on a stock with a dividend. The optimal
stopping time for problem (2) becomes $\tau_{i}(t)$ $:= \inf\{s\geq t|X(s)\in S_{i}^{i}(s)\}$ , where the stopping
region $S_{i}^{i}(s)$ is defined by

$S_{i}^{i}(s)$ $:=\{x\in \mathbb{R}_{++}^{2}|V_{i}(x_{i}, s)=x_{i}-I_{i}\}$ . (3)

The superscript $i$ means the immediate exercise region for project $i$ . The optimal policy is that
a firm makes investment in project $i$ as soon as $X(s)$ hits $S_{i}^{i}(s)$ . The following properties are
well known (e.g., [8]):
(Convexity of the value function) $V_{i}(x_{i}, t)$ is convex with respect to $x_{i}$ .
(Monotonicity of the stopping region) $x\in S_{i}^{i}(t)\Rightarrow x’\in S_{i}^{i}(t)(\forall x_{i}’\geq x_{i}, \forall x_{j}’\in \mathbb{R}_{++})$ ,
where $i\neq j$ .
The monotonicity implies that $S_{i}^{i}(t)$ can be expressed as $\mathscr{S}_{i}(t)=\{x\in \mathbb{R}_{++}^{2}|x_{i}\geq x_{i}^{*}(t)\}$, where
$x_{i}^{*}(t)$ denotes the threshold. This type of optimal policy is called the threshold policy.

Next, consider a case in which the investment opportunity for project $i$ is killed at an
instantaneous rate $\lambda dt$ , where a positive constant $\lambda$ denotes the intensity of the Poisson death. I
assume that the disappearance is independent of $X(t)$ . The disappearance of an opportunity in
which to invest wiu be caused by the enforcement of new regulations, preemption by rival firms,
political changes, natural disasters, etc. For $X_{i}(t)=x_{i}$ , the option value prior to the death is
equal to the value function of the optimal stopping problem as follows:

$V_{iarrow\emptyset(x_{i},t):=\sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x_{i}}[\int_{0^{1_{\{\tau\leq T\}^{1}\{\tau<t+y\}}}}^{\infty}e^{-r(\tau-t)}(X_{i}(\tau)-I_{i})\lambda e^{-\lambda y}dy]}$ , (4)

4Refer to [9] for the economic rationale for this assumption.
5When the maturity is infinite, I have only to replace $1_{\{\tau\leq T\}}$ with 1 $\{\tau<\infty\}$ .
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where the subscript $iarrow\emptyset$ means that project $i$ may be killed. I have

$E_{t}^{x_{i}}[\int_{0}^{\infty}11e^{-r(\tau-t)}(X_{i}(\tau)-I_{i})\lambda e^{-\lambda y}dy]$

$=$ $E_{t}^{x_{i}}[1_{\{\tau\leq T\}}e^{-r(\tau-t)}(X_{i}(\tau)-I_{i})l_{-t}^{\infty}\lambda e^{-\lambda y}dy]$

$=$ $E_{t}^{x_{i}}[1_{\{\tau\leq T\}}e^{-(r+\lambda)(\tau-t)}(X_{i}(\tau)-I_{i})\int_{0}^{\infty}\lambda e^{-\lambda y}dy]$

$=$ $E_{t}^{x_{i}}[1_{\{\tau\leq T\}}e^{-(r+\lambda)(\tau-t)}(X_{i}(\tau)-I_{i})]$ . (5)

Then, problem (4) can be rewritten as follows:

$V_{iarrow\emptyset}(x_{i}, t)= \sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x_{i}}[1_{\{\tau\leq T\}}e^{-(r+\lambda)(\tau-t)}(X_{i}(\tau)-I_{i})]$ . (6)

That is, the problem with the random disappearance is equivalent to the standard problem (2)
with the augmented discount rate $r+\lambda$ . This has also been shown in [24]. Then, problem (6)
satisfies the same properties, such as the convexity of the value function and the monotonicity
of the stopping region, as problem (2). Until the death the option value follows the continuous
process $V_{iarrow\emptyset}(X_{i}(t), t)$ , and itjumps downward to zero at the random death. In addition, because
of $V_{iarrow\emptyset}(x_{i}, t)\leq V_{i}(x_{i}, t)$ , the stopping region $S_{iarrow\emptyset}^{i}(t)$ for problem (6) is larger than $S_{i}^{i}(t)$ . Note
that $V_{iarrow\emptyset}(x_{i}, t) \downarrow\max\{x_{i}-I_{i}, 0\},$ $S_{iarrow\emptyset}^{i}(t)\uparrow\{x\in \mathbb{R}_{++}^{2}|x_{i}>I_{i}\}(\lambda\uparrow\infty)$ and $V_{iarrow\emptyset}(x_{i}, t)\uparrow$

$V_{i}(x_{i}, t),$ $S_{iarrow\emptyset}^{i}(t)\downarrow S_{i}^{i}(t)(\lambda\downarrow 0)$ .
Now, consider a case in which the investment opportunity for project $i$ occurs at an instan-

taneous rate $\lambda dt$ , where a positive constant $\lambda$ denotes the intensity of the Poisson arrival. I
assume that the occurrence is independent of $X(t)$ . The occurrence of an opportunity in which
to invest will be caused by deregulation, the exit of rival firms, technological innovation, etc.
For $X_{i}(t)=x_{i}$ , the option value prior to its arrival is equal to the following expectation:

$V_{\emptysetarrow i}(x_{i}, t):= E_{t}^{x_{i}}[\int_{0}^{\infty}e^{-ry}V_{i}(X_{i}(t+y), t+y)\lambda e^{-\lambda y}dy]$ , (7)

where the subscript $\emptysetarrow i$ means that project $i$ may be available in future. A firm waits for
the arrival of the option, and after the arrival it adopts the optimal policy for problem (2). At
the time of arrival, the option value jumps upward from $V_{\emptysetarrow i}(X_{i}(t), t)$ to $V_{i}(X_{i}(t), t)$ . Note that
$V_{\emptysetarrow i}(x_{i}, t)\uparrow V_{i}(x_{i}, t)(\lambda\uparrow\infty)$ and $V_{\emptysetarrow i}(x_{i}, t)\downarrow 0(\lambda\downarrow 0)$ .

2.2 Max-option

As a benchmark, this subsection considers an option to invest in a single project between projects
1 and 2. The model applies not only to a case in which two projects are exclusive (e.g., alternative
land use in [10] $)$ but also to a case where a firm faces a budget constraint. This type of option
is identified as an American max-option. European max-options have been studied in [22, 13],
while American max-options have been studied in [10, 5, 23, 8]. Although a typical max-option
has a multidimensional state variable, [7] studies a max-option based on a one-dimensional state
variable in order to investigate investment timing with an alternative scale choice.
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For $X(t)=x$ , the option value is equal to the value function of the optimal stopping problem
as follows:

$V_{1,2}(x, t):= \sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x}[1_{\{\tau\leq T\}}e^{-r(\tau-t)}]\frac{i1,2\max_{=}\{X_{i}(\tau)-I_{i}\}}{projectchoice}$

, (8)

where the subscript 1, 2 represents the option to invest between projects 1 and 2.
The optimal stopping time for problem (2) becomes $\tau_{1,2}(t)$ $:= \inf\{s\geq t|X(s)\in S_{1,2}(s)=$

$S_{1,2}^{1}(s)\cup S_{1,2}^{2}(s)\}$ , where the stopping region $S_{1,2}^{i}(s)$ is defined by

$S_{1,2}^{i}(s):=\{x\in \mathbb{R}_{++}^{2}|V_{1,2}(x, s)=x_{i}-I_{i}\}$ (9)

for $i=1$ and 2. The max-option literature (e.g., [10, 5]) shows the following properties:
(Convexity of the value function) $V_{1,2}(x, t)$ is convex with respect to $x$ .
(Convexity of each stopping region) $S_{1,2}^{i}(t)$ is a convex set.
(Monotonicity of each stopping region) $x\in S_{1,2}^{i}(t)\Rightarrow x’\in S_{1,2}^{i}(t)(\forall x_{i}’\geq x_{i}, \forall x_{j}’\leq x_{j})$ ,

where $i\neq j$ .
(Behavior on the indifference line) $x_{1}-I_{1}=x_{2}-I_{2}\Rightarrow x\not\in S_{1,2}(t)$ .

The monotonicity of $S_{1,2}^{i}(t)$ implies that an increase (decrease) in the value of project $i(j\neq i)$

facilitates investment in project $i$ . The behavior on the indifference line means that a firm waits
and sees which project is better when the values of two projects equal.

3 Main Results

This section links the standard option in Section 2.1 and the max-option in Section 2.2 via
a random variable distributed exponentially. Section 3.1 investigates a max-option that may
change to the standard option, while Section 3.2 investigates an option that may change to the
max-option. I show several properties of the option values and exercise regions. The model
applies to the decision-making process about land development with an alternative land use
choice under regulatory risks.

3.1 Max-option that will change to the standard option

As in Section 2.2, consider an option to invest between projects 1 and 2. Assume that the

investment opportunity for project 2 is killed at an instantaneous rate $\lambda dt$ which is independent
of $X(t)^{6}$ For $X(t)=x$ , the option value is equal to the value function of the optimal stopping
problem as follows:7

$V_{1,2arrow 1}(x, t)$ $:=$ $\sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x}[\int_{0}^{\infty}1_{\{\tau\leq T\}}\{1\{\tau<t+y\}_{i=1,2}e^{-r(\tau-t)}\max\{X_{i}(\tau)-I_{i}\}$

$+1_{\{\tau\geq t+y\}}e^{-ry}V_{1}(X_{1}(t+y), t+y)\}\lambda e^{-\lambda y}dy]$ , (1)

6[18] models rival preemption for the max-option endogenously. Indeed, [18] derives the equilibrium of a
preemption game in which two firms compete for two alternatives.

7This problem is the same as the max-option problem (8) replaced $X_{2}(t)$ with the killed process.
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where $y$ denotes the term until the death. The subscript 1, $2arrow 1$ represents the max-option
that may change to the standard option to invest in project 1.

Using the similar calculation to (5), I can rewrite problem (1) as

$V_{1,2arrow 1}(x, t)= \sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x}[1_{\{\tau\leq T\}}e^{-(r+\lambda)(\tau-t)_{i}}\max_{=1,2}\{X_{i}(\tau)-I_{i}-V_{\emptysetarrow 1}(X_{1}(\tau), \tau)\}]+V_{\emptysetarrow 1}(x_{1}, t),$ $(2)$

where $V_{\emptysetarrow 1}(x_{1}, t)$ is defined by (7). The optimal stopping time for problem (2) becomes
$\tau_{1,2arrow 1}(t);=\inf\{s\geq t|X(s)\in S_{1,2arrow 1}(s)=S_{1,2arrow 1}^{1}(s)\cup S_{1,2arrow 1}^{2}(s)\}$ , where the stopping re-
gion $S_{1,2arrow 1}^{i}(s)$ is defined by

$S_{1,2arrow 1}^{i}(s)$ $:=\{x\in \mathbb{R}_{++}^{2}|V_{1,2arrow 1}(x, s)=x_{i}-I_{i}\}$ (3)

for $i=1$ and 2.

Proposition 1
(Convexity of the value function) $V_{1,2arrow 1}(x, t)$ is convex with respect to $x$ .
(Convexity of each stopping region) $S_{1,2arrow 1}^{i}(t)$ is a convex set.
(Monotonicity of each stopping region) $x\in S_{1,2arrow 1}^{i}(t)\Rightarrow x’\in S_{1,2arrow 1}^{i}(t)(\forall x_{i}’\geq x_{i},$ $\forall x_{j}’\leq$

$x_{j})$ , where $i\neq j$ .
(Behavior on the indifference line) $x_{1}-I_{1}=x_{2}-I_{2}\Rightarrow x\not\in S_{1,2arrow 1}(t)$ .
(Comparison) $\max\{V_{1}(x_{1}, t), V_{2arrow\emptyset}(x_{2}, t)\}\leq V_{1,2arrow 1}(x, t)\leq V_{1,2}(x, t),$ $S_{1,2}^{1}(t)\subset S_{1,2arrow 1}^{1}(t)\subset$

$S_{1}^{1}(t)$ , and $S_{1,2}^{2}(t)\subset S_{1,2arrow 1}^{2}(t)\subset S_{2arrow\emptyset}^{2}(t)$ .

Proposition 1 extends previous findings by [10, 5, 8] to a case in which the investment
opportunity may be killed. The properties for the max-option in Section 2.2 remain true for the
generalized case. The monotonicity of $S_{1,2arrow 1}^{i}(t)$ implies that an increase (decrease) in the value
of project $i(j\neq i)$ encourages investment in project $i$ . The behavior on the indifference line
means that a firm will wait and see which project is better when the values of both projects are
equal. Clearly, $V_{1,2arrow 1}(x, t)(S_{1,2arrow 1}^{i}(t))$ monotonically decreases (increases) with the intensity
$\lambda$ . This means that an increased possibility of the disappearance reduces the value of waiting
and encourages investment. Note that $V_{1,2arrow 1}(x, t) \downarrow\max\{x_{2}-I_{2}, V_{1}(x_{1}, t)\},$ $S_{1,2arrow 1}^{1}(t)\uparrow S_{1}^{1}(t)\backslash$

$\{x\in \mathbb{R}_{++}^{2}|x_{2}-I_{2}\geq V_{1}(x_{1}, t)\},$ $S_{1,2arrow 1}^{2}(t)\uparrow\{x\in \mathbb{R}_{++}^{2}|x_{2}-I_{2}>V_{1}(x_{1}, t)\}(\lambda\uparrow\infty)$ and
$V_{1,2arrow 1}(x, t)\uparrow V_{1,2}(x, t),$ $S_{1,2arrow 1}^{i}(t)\downarrow S_{1,2}^{i}(t)(\lambda\downarrow 0)$ .

A higher volatility $\sigma_{i}$ increases $V_{1,2}(x, t)$ and $V_{1}(x_{1}, t)$ , and hence, it increases (decreases)
$V_{1,2arrow 1}(X(t), t)(S_{1,2arrow 1}(t))$ . On the other hand, an increase in the correlation coefficient $\rho$ tends
to decrease (increase) $V_{1,2arrow 1}(X(t), t)(S_{1,2arrow 1}(t))$ . This is because $V_{1,2}(x, t)$ tends to increase with
$\rho$ (see [10, 8]). Note that the option value jumps downward from $V_{1,2arrow 1}(X(t), t)$ to $V_{1}(X_{1}(t), t)$

at the time of the Poisson death (see Figure 1). The jump size is endogenously determined as
$V_{1,2arrow 1}(X(t), t)-V_{1}(X_{1}(t), t)^{8}$ The jump size decreases with $\lambda$ and $\rho$ . Typically, $V_{1}(X_{1}(t), t)$

is more volatile than $V_{1,2arrow 1}(X(t), t)$ in which $X_{1}(t)$ and $X_{2}(t)$ diversify the risk. Accordingly,

8In contrast, in a model based on the discontinuous stochastic process the jump size must be exogenously
presumed.
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the volatility of the option value jumps upward on the same timing. This may account for
empirical observations (e.g., [2, 6]) that the volatility of a stock price increases when the stock
price decreases.

$0$ Poisson $t$

death

Figure 1: The downward jump caused by the disappearance of the alternative.

3.2 Option that will change to the max-option

This subsection considers an option that may change to the max-option. This option contrasts
with the option studied in Section 3.1. Assume that the investment opportunity for project 2
is created at an instantaneous rate $\lambda dt$ which is independent of $X(t)$ . For $X(t)=x$ , the option
value prior to the Poisson arrival is equal to the value function of the optimal stopping problem

as follows:

$V_{1arrow 1,2}(x, t)$ $;=$ $\sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x}[\int_{0^{1_{\{\tau\leq T\}}\{1_{\{\tau<t+y}}}^{\infty}I^{e^{-r(\tau-t)}(X_{1}(\tau)-I_{1})}$

$+1_{\{\tau\geq t+y\}}e^{-ry}V_{1,2}(X(t+y), t+y)\}$Ae$-\lambda ydy]$ (4)

where $y$ denotes the term until the arrival. The subscript $1arrow 1,2$ denotes the option that may
change to the max-option. Note that $V_{1arrow 1,2}(x, t)$ , unlike $V_{1}(x_{1}, t)$ , depends not only on $x_{1}$ but
also on $x_{2}$ because of the potential arrival of project 2.

Using the similar calculation to (5), I can rewrite problem (4) as

$V_{1arrow 1,2}(x, t)= \sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x}[1_{\{\tau\leq T\}}e^{-(r+\lambda)(\tau-t)}(X_{1}(\tau)-I_{1}-V_{\emptysetarrow 1,2}(X(\tau), \tau))]+V_{\emptysetarrow 1,2}(x, t)$ , (5)

where $V_{\emptysetarrow 1,2}(x, t)$ is defined by

$V_{\emptysetarrow 1,2}(x, t)= E_{t}^{x}[\int_{0}^{\infty}e^{-ry}V_{1,2}(X(t+y), t+y)\lambda e^{-\lambda y}dy]$ . (6)
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The optimal stopping time for problem (5) becomes $\tau_{1arrow 1,2}(t):=\inf\{s\geq t|X(s)\in S_{1arrow 1,2}^{1}(s)\}$ ,
where the stopping region $S_{1arrow 1,2}^{1}(s)$ is defined by

$S_{1arrow 1,2}^{1}(s):=\{x\in \mathbb{R}_{++}^{2}|V_{1arrow 1,2}(x, s)=x_{1}-I_{1}\}$. (7)

Note that, the exercise region $S_{1arrow 1,2}^{1}(s)$ exists only for project 1 although it also depends on the
value of project 2.

Proposition 2
(Convexity of the value function) $V_{1arrow 1,2}(x, t)$ is convex with respect to $x$ .
(Convexity of the stopping region) $S_{1arrow 1,2}^{1}(t)$ is a convex set.
(Monotonicity of the stopping region) $x\in S_{1arrow 1,2}^{1}(t)\Rightarrow x’\in S_{1arrow 1,2}^{1}(t)(\forall x_{1}’\geq x_{1},\forall x_{2}’\leq$

$x_{2})$ .
(Comparison) $V_{1}(x_{1}, t)\leq V_{1arrow 1,2}(x, t)\leq V_{1,2}(x, t)$ and $S_{1,2}^{1}(t)\subset S_{1arrow 1,2}^{1}(t)\subset S_{1}^{1}(t)$ .

To my knowledge, there has been no studies that investigates the option that will change
to the max-option. Proposition 2 presents the first result for this type of option. Propositions
1 and 2 bridge the gap between the standard option and the max-option from both sides. The
exercise region $S_{1arrow 1,2}^{1}(t)$ has the same convexity and monotonicity as $S_{1,2}^{1}(t)$ for the max-option.

The monotonicity of $S_{1arrow 1,2}^{1}(t)$ implies that an increase (decrease) in the value of project 1 (2)

accelerates investment in project 1. In the presence of the potentially available project 2, a high
value of project 2 increases the option value and delay investment in project 1. It follows from
expression (5) that $S_{1arrow 1,2}^{1}(t)$ is contained in $\{x\in \mathbb{R}++|x_{1}\geq I_{1}+V_{\emptysetarrow 1,2}(x, t)\}$ . In particular,
by

$V_{\emptysetarrow 1,2}(x, t)$ $\geq$ $E_{t}^{x}[\int_{0}^{\infty}e^{-ry}(X_{2}(t+y)-I_{2})\lambda e^{-\lambda y}dy]$

$=$ $\frac{\lambda x_{2}}{r+\lambda-\mu}-\frac{\lambda I_{2}}{r+\lambda}$ ,

I can show that $x_{1}\geq I_{1}+\lambda x_{2}/(r+\lambda-\mu)-\lambda I_{2}/(r+\lambda)$ for $x\in S_{1arrow 1,2}^{1}(t)$ . This indicates
that for a high $x_{2},$ $S_{1arrow 1,2}^{1}(t)$ is much smaller than $S_{1}^{1}(t)=\{x\in \mathbb{R}_{++}^{2}|x_{1}\geq x_{1}^{*}(t)\}$ . Clearly,
$V_{1arrow 1,2}(x, t)(S_{1arrow 1,2}(t))$ monotonically increases (decreases) with the intensity $\lambda$ . This means that
an increased possibility of the arrival enhances the value of waiting and discourages investment.
I have $V_{1arrow 1,2}(x, t)\uparrow V_{1,2}(x, t),$ $S_{1arrow 1,2}^{1}(t)\downarrow S_{1,2}^{1}(t)(\lambda\uparrow\infty)$ and $V_{1arrow 1,2}(x, t)\downarrow V_{1}(x_{1}, t),$ $S_{1arrow 1,2}^{1}(t)\uparrow$

$S_{1}^{1}(t)(\lambda\downarrow 0)$ .
As in Section 3.1, $V_{1arrow 1,2}(X(t), t)(S_{1arrow 1,2}(t))$ increases (decreases) with the volatility $\sigma_{i}$ and

decreases (increases) with the correlation coefficient $\rho$ . Note that the option value jumps upward

from from $V_{1arrow 1,2}(X(t), t)$ to $V_{1,2}(X(t), t)$ at the time of the Poisson arrival (see Figure 2). The

jump size, which is endogenously determined as $V_{1,2}(X(t), t)-V_{1arrow 1,2}(X(t), t)$ , decreases with
$\lambda$ .

3.3 Extensions and limitations

This section explains several extensions of the results. First, consider the $\max$ option that has
$n$ investment opportunities. Assume that projects $n,$ $n-1,$ $\ldots,$ $m+1$ will be killed sequentially
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$0$ Poisson $t$

a rrival

Figure 2: The upward jump caused by the occurrence of the alternative.

with the intensity $\lambda$ . For $X(t)=x$ , the option value prior to the Poisson death is equal to the

value function of the optimal stopping problem as follows:

$V_{1,\ldots,narrow 1,\ldots,n-1arrow\cdotsarrow 1,\ldots,m}(x, t)$

$:=$ $\sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x}[\int_{0}^{\infty}1_{\{\tau\leq T\}}\{1_{\{\tau<t+y\}}e^{-r(\tau-t)_{i1,\ldots,n}}\max_{=}\{X_{i}(\tau)-I_{i}\}$

$+1_{\{\tau\geq t+y\}}e^{-ry}V_{1,\ldots,n-1arrow 1,\ldots,n-2arrow\cdotsarrow 1,\ldots,m}(X(t+y), t+y)\}\lambda e^{-\lambda y}dy]$ $(n>m)$ ,

which is defined backward from

$V_{1,\ldots,marrow 1,\ldots,m}(x, t)$

$;=$ $V_{1,\ldots,m}(x, t)$

$;=$ $\sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x}[1_{\{\tau\leq T\}}e^{-r(\tau-t)}\max_{i=1,\ldots,m}\{X_{i}(\tau)-I_{i}\}]$
.

This is a generalized version of problem (1). Note that $V_{1,\ldots,m}(x, t)$ is convex with respect to $x$ .
Then, using backward induction, I can show the same properties as Proposition 1.

Similarly, a generalized version of problem (4) is expressed as

$V_{1,\ldots,marrow 1,\ldots,m+1arrow\cdotsarrow 1,\ldots,n}(x, t)$

$:=$ $\sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x}[\int_{0}^{\infty}1_{\{\tau\leq T\}}\{1_{\{\tau<t+y\}}e^{-r(\tau-t)_{i1,\ldots,m}}\max_{=}\{X_{i}(\tau)-I_{i}\}$

$+1_{\{\tau\geq t+y\}}e^{-ry}V_{1,\ldots,m+1arrow\cdotsarrow 1,\ldots,n}(X(t+y), t+y)\}\lambda e^{-\lambda y}dy]$ .

I can show the same properties as Proposition 2 by the backward induction. Of course, it does

not matter if the intensities vary over projects. Furthermore, I can show the same properties

even if the order of the disappearances or occurrences is not presumable.

For the problem in Section 3.2, a new value $X_{2}(t)$ may be unobservable until the arrival.
For example, value of an alternative that proceeds from some technical innovation may not
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be evaluated correctly prior to the innovation. This partial information problem is essentially
different from problem (4) in that the option value and the investment strategy depend only on
$X_{1}(t)$ .

4 Numerical Examples

This section provides numerical examples of the options studied in the previous section. I use
base parameter values as $follows^{9}$ :

$r=$ 8%, $\mu_{1}=\mu_{2}=0\%,$ $\sigma_{1}=\sigma_{2}=20\%$ , $\rho=$ 0%. (1)

For expositional purposes, I set the investment cost $I_{1}=I_{2}=100$ and the option values are
computed at the money, i.e., $x=(100,100)$ . The maturity of the option is set at $T-t=3$
years. For the intensity $\lambda$ , the probability that an opportunity in which to invest disappears or
occurs within 3 years is expressed as

$\int_{0}^{3}\lambda e^{-\lambda t}dt=1-e^{-3\lambda}$ .

I set this probability at 25%, 50%, and 75%. These correspond to $\lambda=0.096$ , 0.231, and 0.462.
In the numerical procedure, I make a discretization with 200 time steps per 1 year, and use a
bivariate version of the lattice binomial method (e.g,, [4]). Technically, I compute the lattice
model for maturity $T=4$ years, and draw the investment regions for $t=1$ year.

First, I set the intensity $\lambda=0.231$ . Figure 3 illustrates the exercise regions $S_{1,2arrow 1}(t)=$

$S_{1,2arrow 1}^{1}(t)\cup S_{1,2arrow 1}^{2}(t)$ and $S_{1arrow 1,2}^{1}(t)$ for the base parameter values (1). For comparison, the
figure also presents the exercise regions $S_{1,2}(t)=S_{1,2}^{1}(t)\cup S_{1,2}^{2}(t)$ and $S_{1}^{1}(t)$ . I can check the
convexity and monotonicity of $S_{1,2arrow 1}^{i}(t)$ and $S_{1arrow 1,2}^{1}(t)$ , as well as the relationship that $S_{1,2}^{1}(t)\subset$

$S_{1,2arrow 1}^{1}(t)\subset S_{1}^{1}(t),$ $S_{1,2}^{2}(t)\subset S_{1,2arrow 1}^{2}(t)$ , and $S_{1,2}^{1}(t)\subset S_{1arrow 1,2}^{1}(t)\subset S_{1}^{1}(t)$ .
In Figure 3, let us take a look at the max-option that will change to the standard option.

When $X(t)$ hits the boundary of $S_{1,2arrow 1}^{1}(t)$ (the lower-right curve), a firm invests in project
1. On the contrary, when $X(t)$ hits the boundary of $S_{1,2arrow 1}^{2}(t)$ (the upper-left curve), the firm
invests in project 2. The firm delays the decision on project choice for $X(t)$ between the two
curves, although project 2 may be killed in the waiting time. The figure indicates that the
difference between $S_{1,2arrow 1}^{2}(t)$ and $S_{1,2}^{2}(t)$ is greater than the difference between $S_{1,2arrow 1}^{1}(t)$ and
$S_{1,2}^{1}(t)$ . The prospective disappearance of project 2 encourages investment in project 2 prior to
the disappearance, while it does not have a significant influence on the investment timing in
project 1. The boundary of $S_{1,2arrow 1}^{2}(t)$ approaches the threshold $x_{2}^{*}(t)$ replaced $r=0.08$ with
$r+\lambda=0.08+0.231=0.311$ when $x_{1}arrow 0$ . Then, for $x_{1}\approx 0,$ $S_{1,2arrow 1}^{2}(t)$ is much larger than
$S_{1,2}^{2}(t)$ . On the other hand, both boundaries of $S_{1,2}^{1}(t)$ and $S_{1,2arrow 1}^{1}(t)$ converges to the threshold
$x_{1}^{*}(t)$ when $x_{2}arrow 0$ . Then, for $x_{2}\approx 0,$ $S_{1,2arrow 1}^{1}(t)$ is almost the same as $S_{1,2}^{1}(t)$ .

In Figure 3, let us now turn to the option that may change to the max-option. When $X(t)$

$\frac{hitstheboundaryofS_{1arrow 1_{)}2}^{1}(t)(the10}{9Theseparameterva1uesaresimilarto[1}0,8|Icarriedoutalotofcomputationswithvaryingparameterwer-.rightcurve),afirminvestsinprojectl.Otherwise$

,

values and distilled robust results into this section.
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the firm delays investment, and in the waiting time project 2 may become available. I see that

the gap between $S_{1arrow 1,2}^{1}(t)$ and $S_{1}^{1}(t)$ increases with $x_{2}$ . This is because a higher $x_{2}$ increases

an incentive for the firm to wait for the occurrence of project 2. On the other hand, for $x_{2}\approx 0$

the boundary of $S_{1arrow 1,2}^{1}(t)$ converges to the threshold $x_{1}^{*}(t)$ , and hence there is no gap between

them.
Now, consider the comparative statics. First, I explore the effects of the intensity $\lambda$ . Figures

4 and 5 draw the exercise regions $S_{1,2arrow 1}(t)=S_{1,2arrow 1}^{1}(t)\cup S_{1,2arrow 1}^{2}(t)$ and $S_{1arrow 1,2}^{1}(t)$ with varying

levels of $\lambda$ . As mentioned in Section 3.2, $S_{1,2arrow 1}^{i}(t)$ increases with $\lambda$ , while $S_{1arrow 1,2}^{1}(t)$ decreases

with $\lambda$ . For the max-option that may change to the standard option for project 1, a higher
$\lambda$ increases an incentive for a firm to invest in project 2 prior to the disappearance. On the

other hand, for the option that may change to the max-option, a higher $\lambda$ increases the value of

waiting for project 2. Comparing Figures 4 and 5, I find that the impact of $\lambda$ on the exercise

policy is stronger for the option that will change to the max-option. This suggests that a firm

should take into careful consideration an alternative which may be available in future rather

than an alternative which may disappear in future.
Next, I explore the effects of the correlation coefficient $\rho$ . Figures 6 and 7 illustrate the

exercise regions $S_{1,2arrow 1}(t)=S_{1,2arrow 1}^{1}(t)\cup S_{1,2arrow 1}^{2}(t)$ and $S_{1arrow 1,2}^{1}(t)$ with varying levels of $\rho$ . In both

figures, the intensity $\lambda$ is fixed at $\lambda=0.231$ . I see that $S_{1,2arrow 1}^{i}(t)$ and $S_{1arrow 1,2}^{1}(t)$ monotonically

enlarge with $\rho$ . It is known (e.g., [10, 8]) that $S_{1,2}^{i}(t)$ tends to increase with $\rho$ because a higher
$\rho$ decreases the value of the option to delay the decision concerning project choice. Figures 6

and 7 demonstrate that the same result holds even if the disappearance or occurrence of an
alternative is taken into consideration. This means the robustness of the previous findings.

The effects of $\rho$ also appear in Tables 1 and 2. The tables present the option values
$V_{1,2arrow 1}(x, t)$ and $V_{1arrow 1,2}(x, t)$ for varying levels of $\lambda$ and $\rho$ . Note that $V_{1,2arrow 1}(x, t)$ and $V_{1arrow 1,2}(x, t)$

are computed at the money, i.e., $x=(100,100)$ . The option values monotonically decrease

with $\rho$ . The impact of $\rho$ on $V_{1,2arrow 1}(x, t)$ weakens with $\lambda$ , while the impact of $\rho$ on $V_{1arrow 1,2}(x, t)$

strengthens with $\lambda$ . This can be explained as follows. When $\lambdaarrow\infty,$ $V_{1,2arrow 1}(x, t)$ approaches
$V_{1}(x, t)$ which is independent of $\rho$ . On the other hand, $V_{1arrow 1,2}(x, t)$ approaches $V_{1}(x, t)$ when
$\lambdaarrow 0$ . Then, a higher (lower) $\lambda$ weakens the impact of $\rho$ on $V_{1,2arrow 1}(x, t)(V_{1arrow 1,2}(x, t))$ . The

impact of $\lambda$ is significant to $V_{1arrow 1,2}(x)$ especially for a low $\rho$ . Indeed, for $\rho=$ -50%, the Poisson

arrival with the intensity $\lambda=0.096,0.231$ , and 0.462 enhances the option value by 21%, 44%,
and 66%, respectively. For $\rho=$ 0% the Poisson arrival with the intensity $\lambda=0.096$ , 0.231, and

0.462 increases the option value by 18%, 36%, and 54%, respectively.

Let us examine Tables 1 and 2 from a different aspect. As mentioned in Section 3.1 and
3.2 (see Figures 1 and 2), the gap between $V_{1,2arrow 1}(x, t)$ and $V_{1}(x, t)=11.7$ is equal to the jump

size at the time of the Poisson death, while the gap between $V_{1arrow 1,2}(x, t)$ and $V_{1,2}(x, t)$ is equal

to the jump size at the time of the Poisson arrival. Comparing Tables 1 and 2, I find that the

downward jump size tends to be larger than the upward jump size. This finding may be related

to empirical findings (e.g., [21]) that the stock price response to bad news is larger than the
stock price response to good news.
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$\frac\frac{Table1:Theoptionva1uesV_{1,2arrow 1}(x,t)}{022.822.1212820.3219.217821598\lambda\backslash \rho-75\%-50\%-2.5\% 0\% 25\% 50.\% 75.\%}$

0.096 21.07 20.46 19.75 18.93 17.97 16.8 15.26
0.231 19.36 18.83 18.23 17.55 16.75 15.79 14.53
0.462 17.5 17.07 16.59 16.04 15.42 14.68 13.73

$\frac\frac{Table2:Theoptionva1uesV_{1arrow 1,.2}(x,t)}{011.711.711.711.711711.711.7\lambda\backslash \rho-75\%-50\%-25\% 0\% 25\% 50\% 75\%}$

0.096 14.42 14.24 14.02 13.77 13.47 13.12 12.65
0.231 17.16 16.81 16.39
0.462 19.93 19.41 18.79

5 Conclusion

15.9 15.33 14.62 13.7
18.07 17.22 16.18 14.8

The paper has investigated the nature of two types of option; the max-option that will change
to the standard option by the Poisson death, and the option that will change to the max-
option by the Poisson arrival. These uncertain changes in real options can be caused by changes
in regulatory, political, competitive, and technological environment. The model, unlike the
previous studies, directly captures these catastrophic risks in capital budgeting. In the model,
I have revealed how the possibility of the disappearance or occurrence influences the optimal
exercise policy and the option value. The results are summarized as follows.

A higher intensity of the disappearance (occurrence) decreases (increases) the option value
and encourages (discourages) investment. The properties, such as the monotonicity and con-
vexity shown by the max-option literature, remain true when the random change is taken into
consideration. The impact of the uncertain change is relatively greater for the option that may
change to the max-option. Notably, the impact is significant for a weaker or negative correlation
between the project values. The results offer rational explanations for the behavior of an owner
of farmland which has not been cultivated in many years. The results have the potential to
account for the asymmetric market reaction to good and bad news, although the model is not
intended to investigate the stock price reactions.
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Figure 4: The exercise regions for the max-option that will change to the standard option.
This figure plots the boundaries of the exercise regions $S_{1,2arrow 1}(t)=S_{1,2arrow 1}^{1}(t)\cup S_{1,2arrow 1}^{2}(t)$ for the
intensity $\lambda=0$ , 0.096, 0.231, and 0.462. For $\lambda=0$ , the region is equal to the exercise region for
the max-option, $S_{1,2}(t)$ . The parameter values are set at the base case (1).
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Figure 5: The exercise regions for the option that will change to the max-option. This figure
plots the boundaries of the exercise regions $S_{1arrow 1,2}^{1}(t)$ for the intensity $\lambda=0$ , 0.096, 0.231, and
0.462. For $\lambda=0$ , the region is equal to the exercise region for the standard option, $S_{1}^{1}(t)$ . The
parameter values are set at the base case (1),
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Figure 6: The exercise regions for the max-option that will change to the standard option.

This figure plots the boundaries of the exercise regions $S_{1,2arrow 1}(t)=S_{1,2arrow 1}^{1}(t)\cup S_{1,2arrow 1}^{2}(t)$ for the
correlation coefficient $\rho=$ -75%, -50%, -25%, 0%, 25%, 50%, and 75%. The intensity is set at
$\lambda=0.231$ . The other parameter values are set at the base case (1).
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Figure 7: The exercise regions for the option that will change to the max-option. This
figure plots the boundaries of the exercise regions $S_{1arrow 1,2}^{1}(t)$ for the correlation coefficient
$\rho=$ -75%, -50%, -25%, 0%, 25%, 50%, and 75%. The intensity is set at $\lambda=0.231$ . The

other parameter values are set at the base case (1).
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