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On estimations for parametrized operator means
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For a nonnegative operator monotone function f on [0, 00), Kubo and Ando [2] intro-

duced an operator mean for positive operators m;:
AmsB = Al f (A—%BA—%) At

where the semi-continuity lim, o(A+eI)ms(B+el) | Am;B assures that we may assume
operators are invertible. Recently Kittaneh-Manasrah [1] gave a refined Young inequality,
which is immediately extended to an inequality among operator means in the sense of by
Furuichi-Lin [3] : Let ¢ be a weight ¢ € [0, 1], then

AV:B — A#,B > min{2t,2(1 — t)} (AVB — A#B)

where AV, B = (1 — t)A + tB; the arithmetic mean and A#,B = A% (A“%BA‘%)tA%;
the geometric one (for convenience’ sake, we omit ¢ if ¢ = 1).

In this talk, we generalize it for parametrized operator means: For —1 < r £ 1, it is
known that the functions f,:(z) = (1 -t + tx’)% are operator monotone, so they define

operator means
1
Am,,B = A ((1 — I + t(A‘%BA‘%)T> T A%
If r =0, A#;B is the limit lim, .o Am,;B. Then we have

Theorem. For0<s<r <1,

Am,;B — Am,;B > min{(2t)7,(2(1 — t))*} (Am,B — Am,B).

We have only to show the numerical inequality:

(0) Frt(®) = Fual) Z mind(20)F, (201 — )7} (£, 3(2) — £,3(2))

It is easy to show the above inequality if r = 1/n, but I have not yet a simple proof for
the general case. I have shown it by the following properties:

Lemma. The following properties hold:
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(0) f is operator monotone.
(1) F(r)=Q1-t+ tz")* is monotone-increasing for 7.

(2) £,(r) = £=! is monotone-increasing for .

1

(3) fO<z <1, then Hrr) =g(r)7'=(1-t+ tz")*~! is monotone-increasing for

T.

(4) Let Jpg(t) = (1 —t +tz7)7. Then, rtJ.  (t) = Jra(t) — Jra(t)"
Moreover, if 0 < z £ 1, then J] () 2 J; .(?).

Proof. (0) Considering the analytic continuation off to the upper half plane Imz > 0, we

have
0< Arg(l—t+t2") < Arg2z,

so that
0 < Arg fri(2) =Arg(1 -t + t2")V" < Arg .

It follows that Im f,:(z) > 0, which shows f is operator monotone.
(1) Let g(r) = 1 —t+ta", y = F,,(r) = g(r)"/". Then logy = logg(r)/r. By the

convexity of n(z) = xlog z, we have

FL(r)=y = iz’((:)) _ yloig(r) _ yl"’:zg’(r) _ yloi 29(7‘)
= L (7 oga” ~ g(r)logg(r)) = L (tn(a") — n(g(r)))
> L7 @) — (1~ On() — tn(a)) =0,

which shows F; ;(r) is monotone increasing.
(2) By the Klein inequality logy =21 —1/y,

_rz"logr—(z" - 1) a"logz” — (2" - 1)
- r2 - )

7 —1—(z"—1)

>

0.

4 (r)
(3) Suppose 0 < z<land1—t+tz" S 1. Byl—r <1—sand (1), we have
Hr)= (1 —t+tz") " > (1 =t +t25) 375 2 (1 — t + t2°)179/* = H{(s).

(4) The former inequality follows from

1—r

Fzm =) =(1—t+ta") T (1 —t+tz" — 1)

1—r

= Jpa(t) = Jra(t)

rtJ) (t) = t(1 —t +tz")
=(1—t+tz")r —(1—t+tz")
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Since

-1
Jra(t)=(1—1t+ txr)l/’"_l—r—,

It follows from (2) and (3) that J] ,(t) = J. (¢). O

Proof of theorem. Suppose 0 < z < 1. For t < 1/2, put K(t) = %—’—@ It follows
from Lemma that

ko) = O = Tiall) 2 (0) = Jyalt)

(2t)V/r o (2t)1/r+1

= g (L0 = 1.0) = Uralt) — Jua(0)

2 2

— ——r(2t)1/7"+1 (Js’z(t)l's — Jr,a:(t)l_"'") — W (H(S) — H(T‘)) g 0,

which shows K is monotone decreasing and attains the minimum J, ;(1/2) — J, -(1/2) at
t=1/2.

Next suppose ¢ > 1/2. Putting L(t) = Zoz®)=Jes®

, we have by Lemma that

T -
L’(t) = r(z(]_ _2t))1/r+1 ((1 — t)T‘(J;,z(t) - Jsl’m(t)) + (Jr’x(t) _ Js,z(t)))
- 7’(2(1 —Zt))l/?‘—H (T(J’rl‘,w(t) - J;,z(t)) + (Jrvx(t)l—r — Js,x(t)l‘s))

2

= o (T = TLa(0) + (H(r) — H(s)) 2 0.

Thus L is monotone decreasing and attains the maximum at ¢ = 1/2. Therefore

Tra(t) = Joo(t) 2 (2min{l — ¢,8})7 (Jre(1/2) — J,2(1/2)),

that is,
1 r\ 1/r 1 s\ 1l/s
(1 —t+tz")" — (1 —t +tz°)V* > (2min{l — ¢,¢})7 (( zx ) - ( zx )
holds for 0 < z < 1. By the homogeneity of z, it also holds for = > 1. a

If the following conjecture holds, we immediately have a simple proof for (0):

Conjecture. For 0 < s<r <1,

1

L 1
( (1—t+w)%—(t(1+zr))%) "> ( (1—t+tx5)%—(t(1+z3))%) ’ (t< 1)

1-(26)7 1-(2)7

1

r %_ _ r % T _ s %_ _ x5 ;1: s
((Hm) (=027 ) > ((1 SELRCEEED) ) (t>1).
1-(2(1-¢)F 1-(2(1-t)7

1=
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In fact, it is also shown easily for r = % > s: For the case t < 1/2, the Jensen inequality
for the power function for ns < 1 implies

3|-

(1—t+txn) 2t "\
e (P )

1\ k sy
B (2t l—t-l-tzn)n k— 1( 2n)
. a2
k\ s
'n, 12t 1—t+t$n)ns)n k— 1((1+zn) )
>
o (2t)F
n e . k %
_ (St -t )R ()
roo(2t)
(1—t+ta: ) — (1 + )™ ):_RHS.
(2t)”
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