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An “invariant subspace” T for a linear operator T on a vector space is, precisely, a linear subspace $Y$

for which

01 $T(Y)\subseteq Y\subseteq X$ .

The point of an invariant subspace is the restriction operator

02 $T_{Y}:Yarrow Y$ ,

where of course $T_{Y}(y)=Ty$ for each $y\in Y$ . The relationship between $T$ and its restriction $T_{Y}$ involves also
the induced quotient

03 $T_{Y}’$ : $X/Yarrow X/Y$ ,

where $T_{Y}’(x+Y)=(Tx)+Y$ for each $x\in X$ . Now the “three space property” of invertibility says that if
any two of the three operators $T,$ $T_{Y}$ and $T_{Y}’$ is invertible then so is the third. Recalling that invertibility is
the same as one one and onto, this follows from the six implications ([1] Theorems 3.11.1, 3.11.2)

0.4 $T_{Y},$ $T_{Y}’$ on$e$ on$e\Rightarrow T$ on$eone\Rightarrow T_{Y}$ one one;

0.5 $T_{Y},$ $T_{Y}’onto\Rightarrow Tonto\Rightarrow T_{Y}$ onto;

0.6 $T$ one on$e,$ $T_{Y}$ on$to\Rightarrow T_{Y}’$ on$e$ one;

0.7 $T$ onto, $T_{Y}’$ one on$e\Rightarrow T_{Y}$ onto.

All this remains valid for bounded operators on Banach spaces, when of course we only consider closed
invariant subspaces. In terms of the spectrum

$\sigma(T)=$ { $\lambda\in C:T-\lambda I$ not invertible},

the spectrum of each of the operators $T,$ $T_{Y}$ and $T_{Y}’$ is contained in the union of the other two. Equivalently

0.8 $\sigma(T)\subseteq\sigma(T_{Y})_{\cup}\sigma(T_{Y}’)\subseteq\sigma(T)_{\cup}(\sigma(T_{Y})_{\cap}\sigma(T_{Y}’)$ .

This leads to a new kind of invariant subspace ([3] (2.3)):

数理解析研究所講究録
第 1737巻 2011年 40-45 40



1. Definition An invariant subspace $Y\subseteq X$ is called spectrally invariant for $T$ if

1.1 $\sigma(T_{Y})_{\cap}\sigma(T_{Y}’)=\emptyset$ ,

in which case also

1.2 $\sigma(T)=\sigma(T_{Y})_{\cup}\sigma(T_{Y}’)$ .

Of course (0.2) is a consequence of (1.1) and (0.8). For bounded operators on Banach spaces, spectrally
invariant subspaces are both reducing and hyperinvariant: there is a projection $P=P^{2}\in B(X)$ for which

1.3 $ST=TS\Rightarrow SP=PS$

with

1.4 $Y=P(X)$ .

Naturally the projection comes from the splitting of the spectrum via functional calculus ([1] Definition
9.7.1):

1.5 $P=f(T) \equiv\frac{1}{2\pi i}\oint_{\sigma(T)}(zI-T)^{-1}dz$

with the function $f$ given by the characteristic function of the restriction spectrum,

1.6 $f=\chi_{K}$ where $K=\sigma(T_{Y})$ .

Since both the range $P(X)$ and its complement $P^{-1}(0)$ are invariant under $T$ it is clear that $P(X)$ is a
reducing subspace for $T$ ; since by (1.5) the range of $P$ is invariant under everything which commutes with
$T$ it is also hyperinvariant. It is also clear that the restriction and the quotient of $T$ with respect to $P(X)$

are the same as with respect to $Y$ : with a little more work it turns out that $Y$ and $P(X)$ are the same.
Intermediate between the invariant and the hyperinvariant are two further kinds of invariant subspace

([3] Definition 1):
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2. Definition The invariant subspace $Y\subseteq X$ is called holomorphically invarian$t$ for $T$ if

2.1 $f\in$ Holo$(\sigma(T))\Rightarrow f(T)Y\subseteq Y$ ,

and comm square invariant for $T$ if

2.2 $S\in$ comm$2(T)\Rightarrow SY\subseteq Y$ .

Evidently
spectrally invariant $\Rightarrow$ hyperinvariant $\Rightarrow$ comm square invariant

$\Rightarrow$ holomorphically invariant $\Rightarrow$ invariant;

we claim that none of these implications is reversible. Our counterexamples will all be built from the forward
and the backward shifts $u$ and $v$ , and the standard weight $w$ , where for each $x=(x_{1}, x_{2}, x_{3}, \ldots)\in E=\ell_{p}$

with $p=2$ and each $n\in N$

2.3 $(ux)_{1}=0,$ $(ux)_{n+1}=x_{n}$ ; $(vx)_{n}=x_{n+1}$ ; $(wx)_{n}=(1/n)x_{n}$ .

The spectrum $\sigma$ , the onto spectrum $\tau^{right}$ and the eigenvalues $\pi^{left}$ are given by

2.4 $\tau^{right}(v)=\partial D\subseteq D=\sigma(v)=\sigma(u)=\tau^{right}(u)$ ,

2.5 $\sigma(w)=O\cup N^{-1}$ ; $\sigma(wu)=O\equiv\{0\}$

and

2.6 $\pi^{left}(u)=\emptyset$ ; $\pi^{left}(v)=$ int $D$ ,

where $D=\{|z|\leq 1\}\subseteq C$ is the closed unit disc. The eigenvalues of the backward shift $v$ all have one
dimensional eigenspaces:

$|\lambda|<1\Rightarrow 1-\lambda u$ invertible and $v-\lambda=v(1-\lambda u)$ ,

giving

2.7 $v^{-1}(0)=(1-uv)(E)=C\delta_{1}=\{(\lambda, 0,0, \ldots):\lambda\in C\}$

and

2.8 $(v-\lambda)^{-1}(0)=(1-\lambda u)^{-1}v^{-1}(0)=(1-\lambda u)^{-1}(1-uv)(E)$ .

In fact our examples are on the direct sum $X=E\oplus E$ of two copies of $E=\ell_{p}=P_{2}$ , and appear is operator
matrices.
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Not every invariant subspace is holomorphically invariant ([3] Example 1):
3. Example With

3.1 $U=(\begin{array}{lll}u l- uv0 v \end{array})$ , $V=(\begin{array}{lll}v 01- uv u\end{array})$ , $P=(\begin{array}{ll}1 00 0\end{array})$

and

3.2 $Y=P(X)\subseteq X$ ,

3.3 $U(Y)\subseteq Y$

$but$ not

3.4 $U^{-1}Y=V(Y)\subseteq Y$ .

Not every comm square invariant subspace is hyperinvariant ([3] Example 2):
4. Example With

4.1 $u=(\begin{array}{ll}u 00 u\end{array}),$ $v=(\begin{array}{ll}v 00 v\end{array})$

4.2 $P=(\begin{array}{ll}l 00 0\end{array});Q=(\begin{array}{ll}0 l0 0\end{array})$

we have

4.3 $uP-Pu=vP-Pv=O$

and

4.4 $uQ-Qu=vQ-Qv=O$ ,

but

4.5 $PQ\neq QP$ ,

so that

4.6 $P\in$ comm$(v)\backslash comm^{2}(v)$

and

4.7 $P\in$ comm$(u)\backslash comm^{2}(u)$

and

4.8 $Y=P(X)$ invariant under v, u, $P$ but not $Q$ .
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Not every holomorphically invariant subspace is comm square invariant ([3] Example 3). This is the
most delicate of our examples: we need in particular to see that not everything in the double commutant
need be a holomorphic function [2]:
5. Example With

5.1 $T=(\begin{array}{lll}u 0 0 l- u\end{array}),$ $S=(\begin{array}{lll}v 0 0 l- v\end{array}),$ $P=(\begin{array}{ll}1 00 0\end{array})$

we have

5.2 $P\in comm^{2}(S)\backslash$ Holo$(S)$

and

5.3 $P\in$ comm$2(T)\backslash$ Holo$(T)$ .

Also
$W=(S-\lambda I)^{-1}(0)=(\begin{array}{l}(v-\lambda)^{-1}(0)(1-v-\lambda)^{-1}(0)\end{array})$

$=(\begin{array}{ll}(l-\lambda u)^{-1} 00 (1-(l-\lambda)u)^{-1}\end{array})(\begin{array}{l}(l-uv)E(l-uv)E\end{array})$

is (hyper)invariant under $S$ , and

5.4 $Y=(\begin{array}{lll}(1-\lambda u)^{-1} 0 0 (1-(l- \lambda)u)^{-1}\end{array})Y’$ where $Y’=(\begin{array}{ll}1- uv1- uv\end{array})E$

is (holomorphically) invariant under $S$ but not invariant under $P$ .
Indeed since the diagonal elements of $S$ do not have disjoint spectrum, $P$ cannot ([2] Theorem 1) be a

holomorphic function of $S$ :
$\sigma(v)_{\cap}\sigma(v-1)\neq\emptyset\Rightarrow P\not\in$ Holo$(S)$ .

On the other hand

$(\begin{array}{ll}a mn b\end{array})\in$ comm$(S)\Rightarrow m(1-v)-vm=(1-v)n-nv=0$

$\Rightarrow m=n=0\Leftrightarrow(\begin{array}{ll}a mn b\end{array})\in$ comm$(P)$

and there is ([2] Theorem 2) implication

$x=vx+xv\Rightarrow(1-v)x(1-u^{n}v^{n})=0(n\in N)$

$\Rightarrow x=xuv=xu^{2}v^{2}=xu^{3}v^{3}=\ldots\Rightarrow x=0$ .
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Not every hyperinvariant reducing subspace is spectrally invariant ([3] Example 4):
6. Example With

61 $R=(\begin{array}{ll}v 00 wu\end{array})$

the null space $R^{-1}(0)$ is $hyp$erinvariant and reducing for $R$ , but not spectrally invariant.
Alternatively

6.2 $W=(S-\lambda I)^{-1}(0)$

is hyperinvariant and reducing for $S$ but not spectrally invariant.
Neither hyperinvariance nor reducing implies the other ([3] Example 5):

7. Example The subspace
$P(X)=E\oplus O$

$is$ comm square invariant and reducing but not hyperinvariant for $u$ and for $v$ , and is hyperinvariant but not
reducing for $Q$ .

Alternatively, on $\ell_{\infty}$ the closure of the range of $w$ is hyperinvariant but ([1] Theorem 5.10.2) uncomple-
mented.

We remark that each of the operators $u$ and $v$ satisfies the condition (1.2) but not the disjointness (1.1).
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