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1. INTRODUCTION

The classical approximation theorem due to P. P. Korovkin [11] in 1953,
unified many existing approximation processes such as Bemstein polyno-
mial approximation of continuous functions. Korovkin’s discovery inspired
many researchers that lead to Korovkin-type theorems and Korovkin sets
in various settings such as more general function spaces, Banach algebras,
Banach lattices and operator algebras. Another major advancement was the
discovery of geometric theory of Korovkin sets by Y. A. \v{S}a\v{s}kin [21] and D.
E. Wulbert in 1968 [7]. A detailed survey of most of these developments
can be found in the article of Berens and Lorentz in 1975 [7], monograph
of Altomare and Campiti [1] most recent survey by Aitomare [2] which
contains several new results also.

This article aims at providing a rather short survey of the developments
in the so called noncommutative Korovkin-type approximation theoly and
Korovkin sets (quantization of Korovkin theorems, W. B. Arveson [6]) in
the settings of $C^{*}$ and $W^{*}$ -algebras. Due to technical reasons only impor-
tant theorems are quoted that too without proofs. However an attempt is
made to provide illustrative examples, a few new results and research prob-
lems. First we quote three major theorems due to Korovkin following the
article of Berens and Lorentz [7]. We designate these as Korovkin’s type
I, type II and type III theorems. The survey will be about ‘quantization’ of
these three theorems!

Type I Korovkin’s theorem. Let $\{\Phi_{n} : n=1,2,3, \ldots\}$ be a sequence of
positive linear maps on $C[a, b]$ and for each of the functions $g_{k}(x)=x^{k}$ ,
$x\in[a, b],$ $k=0,1,2$ , let

$\lim_{narrow\infty}\Phi_{n}(g_{k})=g_{k}$ uniformly on $[a, b],$ $k=0,1,2$ .
Then

$\lim_{narrow\infty}\Phi_{n}(f)=f$ uniformly on $[a, b]$ for all $f$ in $C[a, b]$ .

Definition 1.1. A set $S$ in $C[a, b]$ is called a test set or Korovkin set for
positive linear operators on $C[a, b]$ if for every sequence $\{\Phi_{n}\}$ of positive
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linear operators on $C[a, b],$ $\lim_{narrow\infty}\Phi_{n}(s)=s$ uniformly on $[a, b]$ for every
$s$ in $S$ implies that $\lim_{narrow\infty}\Phi_{n}(f_{=}f$ uniformly of $[a, b]$ for all $f\in C[a, b]$ .

Type I theorem says that $\{1, x, x^{2}\}$ is a test set.

Type II Korovkin’s theorem. There is not test set for $C[a, b]$ consisting
only of two functions. Thus the cardinality of a test set is atleast 3.

Type In Korovkin’s theorem. A triple $\{f_{0}, f_{1}, f_{2}\}$ is a test set of $C[a, b]$

exactly when it is a $\check{C}eby\check{s}ev$ system on $a,$
$b$].

This article is divided into four sections. The next three sections are
devoted to noncommutative Type I, Type II and Type III theorems. The
last section contains some aspects of weak Korovkin type theorems and its
geometric formulation.

2. TYPE I THEOREMS

This section deals with type I Korovkin theorems in the settings of $C^{*}-$

algebras. It is assumed that the $C^{*}$ -algebras considered here are over com-
plex numbers and always contain identity unless otherwise specified.

Deflnition 2.1. Let $d$ and $\mathscr{B}$ be complex $C^{*}$ -algebras with identities $1_{d}$

and $1_{\mathscr{D}}$ respectively and let $T$ : $darrow \mathscr{B}$ be a positive linear contraction (a
linear map $T$ that preserves positivity and such that $T(1_{d})\leq 1_{\mathscr{D}})$ . For a
subset $H$ of ,Of the Korovkin closure $K_{+}(H, T)$ is defined as

$\{a\in d|\lim_{\alpha}\Phi_{\alpha}(a)=T(a)$ for every net $\{\Phi_{\alpha}\}_{\alpha\in I}$

of positive linear contractions from to $\mathscr{B}$ such that

$\lim_{\alpha}\Phi_{\alpha}(h)=T(h)$ for all $h$ in $H$ }
Here convergence considered is the norm convergence unless otherwise

stated explicitly. It seems that the first noncommutative Korovkin type the-
orem was due to W. B. Arveson in 1970 for $*$ -homomorphisms where .Of
is $C(X)$ , the $C^{*}$ -algebra of all complex continuous functions on a com-
pact, Hausdorff space $X$ . We recall this, being the first of its kind. Recall
that for a subset $H$ of $C(X)$ , the Choquet boundary $\partial_{H}^{+}(X)$ is defined as
the set of all points $x$ in $X$ such that the evaluation functionals $\epsilon_{x}|H$ has
the unique positive linear extension $\epsilon_{X}$ to $C(X)$ . Also the support $K_{T}$ of
$T$ : $C(X)arrow \mathscr{B}$ is defined as set of all $x$ in $X$ such that $f(x)=0$ whenever
$T(f)=0$ .
2.1. Theorem. Let $H$ be a subset of $C(X)$ containing 1 and let $T:C(X)arrow$
$\mathscr{B}$ be a $*$ homomorphism such that $K_{T}\subseteq\partial_{H}^{+}(X)$ . Then $K_{+}(H, T)=$

$C(X)$ .
The proof of the above theorem uses the lattice theoretic properties of the

selfadjoint part of $C(X)$ . It is to be recalled that the selfadjoint pall of a
$C^{*}$ -algebra is a lattice in the natural order if and only of .Of is commu-
tative. In 2009, W. B. Arveson published a paper [6] in which he worked
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out a relation between ‘noncommutative Choquet boundary’ and ‘hyper-
rigid subspaces’ (Korovkin sets) for general $C^{*}$ algebras. In what follows a
brief sketch of the developments from 1970 to 2010 is provided. Important
theorems that appeared in the articles published during the above period by
various authors, are regarding the following two questions.

(1) When does the Korovkin closure has an algebraic stmcture
(2) When is the Korovkin closure the full $C^{*}$ algebra. Mainly four types

of maps are considered in this settings. A linear map $\Phi$ : $arrow \mathscr{B}$ is called
(a) Positive if $\Phi(x^{*}x)$ is positive for all $x\in A$

(b) Schwarz map if $\Phi(x^{*}x)\geq\phi(x)^{*}\Phi(X)$ for all $x\in$
(c) Completely positive if $\Phi^{(n)}$ : $\otimes M_{n}(\mathbb{C})arrow \mathscr{B}\otimes M_{n}(\mathbb{C})$ is a positive

for all positive integers $n$, where $M_{n}(\mathbb{C})$ is the set of all $n\cross n$ matrices
over $\mathbb{C}$ and $\Phi^{(n)}$ is the map on $\otimes \mathscr{B}$ defined by

$\Phi^{(n)}(a_{ij})=(\Phi(a_{ij}))$ , where $(a_{ij})\in\otimes M_{n}(\mathbb{C})$

(d) Completely contractive if $\Phi^{(n)}$ is contractive for each positive integer $n$ .
The main tools being used in the development of the commutative theory

for positive linear maps are Kadison-Schwarz type inequalities and Choquet
boundary theory. It is to be mentioned that every completely positive map of
norm $\leq 1$ is a Schwarz map and the very definition of Schwarz map implies
the Schwarz type inequality. For general positive linear map $\Phi$ : $arrow \mathscr{B}$

with norm $\leq 1$ Kadison proved that
$\Phi(x^{2})\geq\Phi(x)^{2}\forall x\in,$ $x^{*}=x$ .

This fundamental inequality is known as Kadison-Schwarz inequality and
has been improved by many mathematicians like M. D. Choi [9] and T.
Fumta [10]. These improvements will have some effect on the study of
Korovkin sets. However this possibility is yet to be investigated.

Using Kadison-Schwarz inequality, W. M. Priestley [17] proved the fol-
lowing theorem in 1976.

2.2. Theorem. Let be a $C^{*}$ -algebra and let $\{\Phi_{\alpha}\}_{\alpha\in I}$ be a net of positive
linear maps on such that

$\Phi_{\alpha}(1_{\ovalbox{\tt\small REJECT}})\leq 1_{\ovalbox{\tt\small REJECT}}$ $\forall\alpha\in I$ .

Then the set

$J$ $:= \{x\in|\lim_{\alpha}\Phi_{\alpha}(a)=a\forall a\in\{x, x^{*}\circ x, x^{2}\}\}$

is a $J^{*}$ -algebra in .
Recall that a $J^{*}$-algebra in is a norm closed, $*$ closed subset of

which is also closed under the Jordan product $0$ , namely

$a\circ b=ab+ba,$ $a,$ $b\in$

For Schwarz maps A. G. Robertson [18] proved the following theorem.
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2.3. Theorem. Let be a $C^{*}$ -algebra with identity $1_{d}$ and let $\{\Phi_{\alpha}\}_{\alpha\in I}$

be a net of Schwarz maps on such that
$\Phi_{\alpha}(1_{d})\leq 1_{d}$ , $\forall\alpha\in I$ .

Then the subset

$K= \{x\in|\lim_{\alpha}\Phi_{\alpha}(a)=a$ for $a\in\{x,$ $x^{*}x,$ $xx^{*}\}\}$

is a $C^{*}$ -algebra in $d$ .
Subsequently B. V. Limaye and M. N. N. Namboodiri [12] improved the

results of Priestley and Robertson to obtain the following theorem in 1982:

2.4. Theorem. Let and $\mathscr{B}$ be $C^{*}$ -algebras with identities $1_{d}$ and $1_{\mathscr{D}}$

respectively. Let $\{\Phi_{\alpha}\}_{\alpha\in I}$ be a net of positive linear maps from $d$ to $\mathscr{B}$

such that
$\Phi_{\alpha}(1_{d})\leq 1_{\ovalbox{\tt\small REJECT}}$ $\forall\alpha\in I$ .

Let $T$ : $arrow \mathscr{B}$ be $a*$-homomorphism. Then the subset
$J$ $:= \{x\in|\lim_{\alpha}\Phi_{\alpha}(a)=T(a)$ , for $a\in\{x,$ $x^{*}ox\}\}$

is a $J^{*}$ -algebra in .Of.
If all $\Phi_{\alpha},$ $\alpha\in I$ are Schwarz maps and $Ta*$-homomorphism, then $J$ is

a $C^{*}$ -algebra in .
In the above cases the test set was symmetric with respect to $*$ operation.

For the case when this symmetry is not assumed, B. V. Limaye, M. N.
N. Namboodiri in 1984 [14] and A. G. Robertson in 1986 [19] proved the
following theorems.

It is known that Korovkin type approximation theory leads to deeper un-
derstanding of the stmcture under consideration. The following interesting
theorem in [14] reveals this.

2.5. Theorem. Let $=\mathscr{B}$ be a noncommutative $C^{*}$ algebra with identity
$1_{d}$ and let

$D= \{x\in d|\lim_{\alpha}\Phi_{\alpha}(a)=a$ for all $a\in\{x,$ $x^{*}x\}\}$

where $\{\Phi_{\alpha}\}_{\alpha\in I}$ is a net of Schwarz maps on $d$ with norm $\leq 1$ . Then $D$ is
a subalgebra of $d$ . Also $D$ is $*$ closed if and only if .Of $=M_{2}(\mathbb{C})$ , the set
of all $2\cross 2$ matrices over $\mathbb{C}$ .

The above theorem shows that $M_{2}(\mathbb{C})$ behaves like a commutative $C^{*}-$

algebra and this is the only noncommutative one! In fact, Limaye and
Namboodiri proved that, among all finite dimensional noncommutative $C^{*}$

algebra $M_{2}(\mathbb{C})$ is the only one for which $D$ in Theorem 2.5 is $*$ closed.
Robertson proved that finite dimensionality assumption can be dropped.

We bypass several important developments of Korovkin approximation
theory for commutative as well as noncommutative Banach algebras. Ex-
cellent exposition can be found by Micheal Panneberg, [1, Appendix $A$],

Ferdinand Beckhoff [1, Appendix $B$ ] and F. Altomare [2]. However M.
Uchiyama’s paper [23] give estimates the norm related to Schwarz map. He
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al so obtains several extensions of Korovkin type theorems by using operator
monotone functions and T. Ando’s inequality. In this paper he also unified
several earlier results by introducing $0^{*}$ -subalgebras and the associated gen-
eralized Schwarz maps with respect to the product $0$ . More over the proofs
that he gives are simpler than the earlier ones.

For the sake of completion we quote a couple of theorems of Uchiyama
[23] for the $C^{*}$ algebra $C(X)$ .
2.6. Theorem. [23, Theorem 3.1]

Let $S\subset C(X)$ and $C^{*}(S)$ be the $C^{*}$ -algebra generated by $S$ . Let $f$ be
a operator monotone function defined on $[0, \infty]$ such that $f(O)\leq 0$ and
$f(\infty)=\infty$ . Set $g=f^{-1}$ then we have

$C^{*}(S)\subseteq K_{C(X)}(SU\{g(|u|^{2}) : u\in S\})$

if $f(0)=0$ or $1\in S$ . Where the set on the right side denotes the Korovkin
closure.

2.7. Theorem. [23, Theorem 2.12] Let $\{\Phi_{n}\}$ be a sequence of Schwarz
maps from to $\mathscr{B}$ where and $\mathscr{B}$ are $C^{*}$ -algebras with identities, and
let $\Phi$ : $arrow \mathscr{B}$ be $a*$ -homomorphism. Let $f$ be an operator monotone
function on $[0, \infty]$ with $f(0)=0,$ $f(\infty)=\infty$ . Set $g=f^{-1}$ . Then the set

$C=\{a\in|\Phi_{n}(x)arrow\Phi(x)$ for $x=a,$ $g(a^{*}a)$ and $g(aa^{*})\}$

is a $C^{*}$ -subalgebra.
Another important development was the use of Krein-Millman theorem

for compact convex sets and the associated unique extension property. For
noncommutative $C^{*}$ -algebras, the following theorem was proved by Taka-
hasi in 1979 [22].

2.8. Theorem. Let $\phi$ be an extreme state of a $C^{*}$ algebra and let $x\in_{+}$

peaks for $\phi$ , that is the supports of $x$ and $\phi$ in the enveloping von Neumann
algebra add up to 1. Let $\{\phi_{\alpha}\}_{\alpha\in I}$ be a net of positive linear functionals of

and assume that $\lim_{\alpha}\phi_{\alpha}(1-)=1$ and $\lim_{\alpha}\phi_{\alpha}(x)=0$ . Then we
have

$\lim_{\alpha}\phi_{\alpha}(a)=0$ for all $a$ om .Of.

Though the above theorem is elegant, for an arbitrary $C^{*}$ -algebras there is
no way of finding extreme states (or pure states), where as for commutative
$C^{*}$ algebras extreme states are point evaluations. In the case of $C^{*}$ -algebra
$B(H),$ $H$ a Hilbert space, $\phi$ a vector state better results are known to exist.
See for example Limaye-Namboodiri (1979) [1, Appendix B.], Altomare
1987 [1] and Dieckmann 1992 [1].

2.9. Theorem (Altomare [1]). Let $T\in B(H)$ , be a non zero compact
operator, $\lambda$ a simple eigenvalue of $T$ such that $\Vert T\Vert=|\lambda|,$ $x$ a corresponding
unit eigenvector and let $\phi=\langle\cdot x,$ $x\rangle$ be the vector state corresponding to $x$ .

Put $S=I_{H}+ \frac{1}{|\lambda|^{2}}T^{*}T-\frac{1}{\lambda}T_{\lambda}^{1}-arrow T^{*}$ . Then

$K_{+}(\{I_{H}, S\}, \phi)=B(H)$ .
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Here $I_{H}$ denotes the identity operator on $H$ .
The following theorem is due to Dieckmann

2.10. Theorem (Dieckmann). Let $T\in B(H)$ be a strictly positive com-
pact operator on $H$ and let $d(H)=C^{*}(I_{H}, K(H))$ , where $K(H)$ is the
set of all compact operators on $H$ . Let $\phi$ be the complex homomorphism on
$(H)$ defined by $\phi(\lambda I_{H}+K)=\lambda,$ $K\in K(H)$ . Then $K_{+}(\{I_{H}, T\}, \phi)=$

$(H)$ .
Finally we go through Arveson’s contributions to noncommutative Ko-

rovkin type theorems and Korovkin sets in 2009 [6] via his own theory of
noncommutative Choquet boundary theory of operator systems. In the fun-
damental papers during 1969-70 and 2008, he introduced and proved many
concepts and the theorems related to non commutative Choquet boundary
and Silov boundary ideals $co$lTesponding to operator systems. This is quite
analogous to classical theory of Choquet and Silov boundaries for func-
tion systems. Analogous to the work of Saskin, Arveson studied the rela-
tion between noncommutative Korovkin sets and noncommutative Choquet
boundary in 2009 [6]. He proved many interesting theorems in this settings,
though some of these results were already known to exist. We start with the
notion of hyperrigid set of generators of $C^{*}$ algebras [6].

2.11. Definition. A finite of countably infinite set $G$ of generators of $C^{*}$ al-
gebra .Of is said to be hyperrigid if for every faithful representation $\pi()\subseteq$

$B(H)$ of al on a Hilbert space $H$ and $evel\gamma$ sequence of unit preserving
completely positive maps (UCP) $\Phi_{n}$ : $B(H)arrow B(H),$ $n=1,2,3,$ $\ldots$

$\lim_{narrow\infty}\Vert\Phi_{n}(\pi(g)-\pi(g))\Vert=0\forall g\in G\Rightarrow\lim_{narrow\infty}\Vert\Vert\Phi_{n}(\pi(a)-\pi(a))\Vert=0$ ,

$\forall a\in$ . He then proves the following basic theorem.

2.12. Theorem. For $evel\gamma$ separable operator system $S$ that generates a
$C^{*}$ -algebra , the following are equivalent.
(i) $S$ is hypemigid
(ii) For $evel\gamma$ non degenerate representation $\pi$ : $arrow B(H)$ on a separable
Hilbert space $H$ and every sequence $\Phi_{n}$ : $arrow B(H)$

of UCP maps;
$\lim_{narrow\infty}\Vert\Phi_{n}(s)-\pi(s)\Vert=0$ $\forall s\in S\Rightarrow\lim_{narrow\infty}\Vert\Phi_{n}(a)-\pi(a)\Vert=0$

for all $a\in d$ .
(iii) For every non degenerate representation $\pi$ : $arrow B(H)$ on a separable
Hilbert space, $\pi/S$ has the unique extension property. That is, $\pi/S$ has a
unique completely positive linear extension to ,Of.

(iv) For every unital $C^{*}$ algebra $\mathscr{B}$, every unital homomorphism of $C^{*}-$

algebras $\theta$ : $arrow \mathscr{B}$ and every UCP map $\Phi$ ‘ : $\mathscr{B}arrow \mathscr{B}$

$\Phi(x)=x$ $\forall x\in\theta(S)\Rightarrow\Phi(x)=x\forall x\in\theta(d)$ .

One of the main results (Theorem 3.3 [6]) that Arveson obtains as a conse-
quence of the above theorem, is known to exist. In fact much better theorem
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can be found in [6]. However he proves a $vel\gamma$ strong theorem [6, Theorem
5.1] which is as follows.

2.13. Theorem. Let $S$ be a separable operator system whose generated
$C^{*}$ -algebra ,Of has countable spectrum such that $evei\gamma$ irreducible represen-
tation of is a boundary representation for $S$ . Then $S$ is hyperrigid.

2.14. Arveson’s conjecture. If every irreducible representation of is a
boundary representation for a separable operator system $S$ , then $S$ is hyper-
rigid.

Now recall that the following theorem was proved by Y. A. Saskin for
positive linear contractions and D. E. Wulbert for linear contractions [7].

2.15. Theorem. Let $G$ be a subset of $C(X)$ that separates points of $X$

and contains the constant function $1_{X}$ . Then $G$ is a Korovkin set for linear
contractions or positive linear contractions if and only if $\partial_{Ch}G_{0}=X,$ $G_{0}=$

span $G$ .
The noncommutative Choquet boundary was defined by Arveson [6] in

the following way.

2.16. Definition. Let $S$ be an operator system in a $C^{*}$ -algebra , i.e., a
self adjoint linear subspace of such that $1_{d}\in S$ and $=C^{*}(S)$
the $C^{*}$ -algebra generated by $S$ and $1_{d}$ . A boundary representation for $S$

is an $i_{lT}educible$ representation $\pi$ of such that $\pi/S$ has a unique com-
pletely positive linear extension to $d$ . The set $\partial_{S}$ of all unitary equivalence
classes of all boundary representations for $S$ id defined as the noncommu-
tative Choquet boundary of the operator system $S$ .

Since $i_{lT}educible$ representation of the function space $C(X)$ can be iden-
tified with points in $X$ itself, Arveson’s notion of Choquet boundary for
operator systems is an exact noncommutative analogue of the classical one
for function systems.

In what follows we examine the possibility of extending Arveson’s theo-
rem quoted here for linear contractions. Since extension theorem for com-
pletely positive maps is not available, we need to define hypernigidity sep-
arately. So we introduce strong hyperrigidity so as to suit completely con-
tractive maps.

2.17. Definition. A finite or countably infinite set $G$ of generators of a $C^{*}-$

algebra is said to be strongly hyperrigid if for every faithful represen-
tation $\pi$ of in $B(H)$ and for every sequence $\Phi_{n}$ completely contractive
maps from $\pi()$ to $B(H)$

$\lim_{narrow\infty}\Vert\Phi_{n}(\pi(g))-\pi(g)\Vert=0$ $\forall g\in G$

$\Rightarrow\lim_{narrow\infty}\Vert\Phi_{n}(\pi(a))-\pi(a)\Vert=0$ $\forall a\in$ .
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2.18. Remarks. It can be seen that the strong hyperrigidity coincide with
hyperrigidity for UCP as a consequence of Arveson’s extension theorem for
CP maps. However hyperrigidity of $G$ need not imply strong hyperrigidity.
To overcome this difficulty it would be reasonable to assume that $G$ is closed
under $*$ operation if necessary.

In what follows we aim at identifying ‘obstmctions’ to strong hyperrigid-
ity. We also assume that the operator system is $*$ closed and contains iden-
tity element.

2.19. Characterisation theorem. For separable operator system $S$ that
generates a $C^{*}$ -algebra ,Of, the following are equivalent:

(i) $S$ is strongly hyperrigid.
(ii) For every non degenerate representation $\pi$ : $arrow B(H)$ on a sep-

arable Hilbert space $H$ and every sequence $\Phi_{n}$ : $darrow B(H)$ completely
contractive maps,

$\lim_{narrow\infty}\Vert\Phi_{n}(s)-\pi(s)\Vert=0$
$\forall s\in S$

$\Rightarrow\lim_{narrow\infty}\Vert\Phi_{n}(a)-\pi(a)\Vert=0$
$\forall a\in$ .

(iii) For every non degenerate representation $\pi$ : $darrow B(H)$ on a sepa-
rable Hilbert space $H,$ $\pi/S$ has the unique extension property.

(iv) For $evei\gamma$ unital $C^{*}$ -algebra $\mathscr{B}$ , every unital homomorphism of $C^{*}-$

algebras $\theta$ : $darrow \mathscr{B}$ and every (for every UCP map $\Phi$ : $\theta(d)arrow \mathscr{B}$) map
$\Phi\thetaarrow \mathscr{B}$

$\Phi(x)=x$ $\forall x\in\theta(S)\Rightarrow\Phi(x)=x$ $\forall x\in\theta(d)$ .

Proof. The proof is more or less the same as that of Arveson. However the
details are provided. We show that

$(i)\Rightarrow(ii)\Rightarrow(iii)\Rightarrow(iv)\Rightarrow(i)$.
$(i)\Rightarrow(ii)$

Let $\pi$ : $arrow B(H)$ be a non degenerate representation of on a
separable Hilbert space $H$ and let $\Phi_{n}$ : $darrow B(H)$ be a sequence of
(completely contractive) linear maps such that

$\lim_{narrow\infty}\Vert\Phi_{n}(s)-\pi(s)\Vert=0$
$\forall s\in S$.

Let $\sigma$ : $arrow B(H)$ be a faithful representation of on another separable
Hilbert space $K$ .

Then $\sigma\oplus\pi$ : $arrow B(K\oplus H)$ is a faithful representation of $d$ on
$K\oplus H$ . Define maps $\mu_{n}$ : $(\sigma\oplus\pi)(d)arrow B(K\oplus H)$ by

$\mu_{n}(\sigma(a)\oplus\pi(a))=\sigma(a)\oplus\Phi_{n}(a)$ , $a\in$ .

Then $\mu_{n}$ is completely contractive.
Also $\mu_{n}(\sigma(s)\oplus\pi(s)arrow\sigma(s)\oplus\pi(s))$ , for all $s\in S$ .
Also $\mu_{n}(\sigma(a)\oplus\pi(a)arrow\sigma(a)\oplus\pi(a))$ , for all $a\in$ .
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Now,

$\lim_{narrow\infty}\sup\Vert\Phi_{n}(a)-\pi(a)\Vert\leq\lim_{narrow\infty}sub\Vert\sigma(a)\oplus\Phi(a)-\sigma(a)\oplus\pi(a)\Vert$

$=$ sub $\Vert\mu_{n}(\sigma(a)\oplus\pi(a))-\sigma(a)\oplus\pi(a)\Vert$

Therefore
$\lim_{narrow\infty}\Vert\Phi_{n}(a)-\pi(a)\Vert=0$ $a\in$ .

Now $(iii)\Rightarrow(iv)$ : Let $\theta$ : $arrow \mathscr{B}$ be an identity preserving homomorphism
of $C^{*}$ -algebras and let $\Phi$ : $arrow \mathscr{B}$ be a UCP that satisfies $\Phi(\theta(s))=\theta(s)$ ,
$s\in S$ . We have to show that

$\Phi(\theta(a))=\theta(a)$ $\forall a\in$ 2.

Let $B_{0}$ be the separable $C^{*}$ -algebra in $\mathscr{B}$ generated by
$\theta()\cup\Phi(\theta())\cup\Phi^{2}(\theta())\cup\cdots$

It is clear that $\Phi(B_{0})\subseteq B_{0}$ .
By considering a faithful representation of $B_{0}$ on a separable Hilbert space
$H$, we may assume that $B_{0}\subseteq B(H)$ . Let $\tilde{\Phi}$ : $B(H)arrow B(H)$ is a UCP map
either $\overline{\Phi}/B_{0}=\Phi$ . Here $\overline{\Phi}(\theta(s))=\theta(s),$ $\forall s\in S.$ $S$ ince $\theta$ : $arrow B(H)$ is
a representation on $H$, we must have

$\Phi(\theta(a))=\overline{\Phi}(\theta(a))=\theta(a)$ $\forall a\in A$ .
Hence the proof.
$(iv)\Rightarrow(i)$ Let $\pi$ : $arrow B(H)$ be a faithful representation of on $B(H)$

for some Hilbert space $H$ . Put $\mathscr{B}=B(H)$ . Consider the $C^{*}$ -algebras of
all bounded seqences $l^{\infty}()$ and $l^{\infty}(\mathscr{B})$ in and $\mathscr{B}$ respectively. Let
$\Phi_{n}$ : $\pi(A)arrow B(H)$ be the sequence of all completely contractive maps
such that

$\lim_{narrow\infty}\Vert\Phi_{n}(\pi(s)-\pi(s))\Vert=0$ $\forall s\in S$ .

To show that

$\lim_{narrow\infty}\Vert\Phi_{n}(\pi(a)-\pi(a)\Vert>0$ $\forall a\in$ .

Let
$\tilde{\Phi}$ : $l^{\infty}()arrow l^{\infty}(\mathscr{B})$ be defined as
$\tilde{\Phi}(a_{1}, a_{2}\ldots a_{n}, \ldots)=(\Phi_{1}(a_{1}), \Phi_{2}(a_{2}), \ldots)$

$(a_{1}, a_{2}, \ldots, a_{n}, \ldots)\in l^{\alpha}()$

First we show that $\tilde{\Phi}$ is completely contractive. It is quite easy to see that
$l^{\infty}()\otimes M_{n}(C)$ can be identified isometrically with $l^{\alpha}(\otimes M_{n}(C))$ . The
same way identify $l^{\infty}(\mathscr{B}\otimes M_{n}(C))$ with $l^{\infty}(\mathscr{B})\otimes M_{n}(C)$ .

Thus $\tilde{\Phi}^{(n)}$ can be regarded as a map from $l^{\infty}(\otimes M_{n}(C))$ to $l^{\infty}(\mathscr{B}\otimes$

$M_{n}(C))$ , for each positive integer $n.\tilde{\Phi}^{(n)}$ is the map induced by $\tilde{\Phi}$ for each
$n$ .
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It is easy to see that $\tilde{\Phi}^{(n)}$ is contractive since $\Phi^{(n)}$ is contractive and
$\Phi^{(n)}(\pi(I))arrow\pi(I)$ as $narrow\infty$ .

Let $C_{0}()$ (respectively $C_{0}(\mathscr{B})$ ) denotes the ideal of all sequences in $\mathscr{A}$

(respectively $\mathscr{B}$) that converges to zero in norm. Consider the map

$\tilde{\Phi}_{0}:\frac{l^{\infty}()}{C_{0}()}arrow\frac{l^{\infty}(\mathscr{B})}{C_{0}(\mathscr{B})}$

defined by
$\tilde{\Phi}_{0}(x+C_{0}())=\tilde{\Phi}(x)+C_{0}(\mathscr{B})$ , $x\in l^{\infty}()$

Then $\tilde{\Phi}_{0}$ is completely contractive. Consider the embedding $\theta$ : $arrow$

$l^{\infty}(d)$ defined by
$\theta(a)=(a, a, \ldots)+C_{0}(d)$

Therefore $\tilde{\Phi}_{0}(\theta(s))=(\Phi_{1}(s), \Phi_{2}(s), \ldots)+C_{0}()$

$=(s, s, \ldots, s, \ldots)+C_{0}(d)$

$=\theta(s)$ $\forall s\in S$

Thus
$\tilde{\Phi}_{0}:\frac{l^{\infty}(d)}{C_{0}()}arrow\frac{l^{\infty}(\mathscr{B})}{C_{0}(\mathscr{B})}$

such that
$\tilde{\Phi}_{0}(\theta(s))=\theta(s)$ $s\in S$ . $\Rightarrow\tilde{\Phi}_{0}$

is a UCP since identity $1_{d}\in S$ . This is because, if and $\mathscr{B}$ are $C^{*}-$

algebras with identities $1_{d}$ and $1_{\ovalbox{\tt\small REJECT}}$ and if $\Phi$ : $darrow \mathscr{B}$ is a contractive
linear map such that

$\Vert\Phi(1_{d})\Vert=\Vert\Phi\Vert$ ,

then $\Phi$ is positivity preserving. Then $\tilde{\Phi}_{0}(\theta(a))=\theta(a)$ for all $a\in$ . That
is,

$(\Phi_{1}(a), \Phi_{2}(a), \ldots)+C_{0}(d)$

$=(a, a, \ldots)+C_{0}()$ $a\in$

$\Rightarrow\Vert\Phi_{n}(a)-a\Vertarrow 0$ as $narrow\infty$

$\square$

2.20. Remarks. The above theorem is a noncommutative analogue ofWul-
berts theorem for hyperrigidity in function spaces such as $C(X)$ . This is
because every contractive linear map on $C(X)$ is completely contractive
[3, 4]. So most of Arveson’s theorem for hyperrigidity for $C^{*}$ algebras is
valid for strong hyperrigidity also. We state some of these without proof.

2.21. Corollary. Let $S$ be a strongly hyperrigid separable operator system,
with generated $C^{*}$ -algebra $d_{1}$ let $K$ be an ideal in and let $a\in\mapsto\dot{a}\in$

$d/K$ be the quotient map. Then $\dot{S}$ is a strongly hyperrigid operator system
in $/K$.
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2.22. Theorem. Let $x\in B(H)$ be a self adjoint operator with atleast 3
points in its spectmm and let be the $C^{*}$ -algebra generated by $x$ and 1.
Then

(i) $G=\{1, x, x^{2}\}$ is a strongly hypeiTigid operator system for , while
(ii) $G_{0}=\{1, x\}$ is not a strongly hyperrigid generator for .Of.

2.23. Theorem. Let $\{u_{1}, u_{2}, \ldots u_{n}\}$ be a set of isometrices that generate a
$C^{*}$ -algebra ,Of and let

$G=\{u_{1}, u_{2}, \ldots u_{n}, u_{1}^{*}, u_{1}+u_{2}^{*}u_{2}+\cdots+u_{n}^{*}u_{n}\}$ .

Then $G$ is a strongly hyperrigid generator for .

2.24. Corollary. The set $G=\{u_{1}, u_{2}, \ldots, u_{n}\}$ , where $\sum_{k=1}^{n}u_{k}u_{k}^{*}=I$ , of
generators of the Cuntz algebra $\theta_{n}$ is strongly hyperrigid.

We conclude this section by remarking that many more implication of
‘ strong hyperrigidity theorem’ are to be investigated. However such results
will appear elsewhere.

3. TYPE II KOROVKIN THEOREMS

Recall that this section deals with the size of a test set $H$ in a $C^{*}$ -algebra
.Of generated by $H$ . In $C[a, b]$ , there is no test set containing only two
elements.

Observe that (i) of 2.22 is already known, where as (ii) does not seem to
exist in this generality. Does this result have a noncommutative analogue?

3. 1. Question. Let $x\in B(H)$ . Let be the $C^{*}$ -algebra generated by $I$ ad
X. Then it is known that $\{I, x, x^{*}x+xx^{*}\}$ is hyperrigid in . If spectmm
$\sigma(x)$ has atleast 3 distinct points, then is it tme that $\{I, x\}$ is not a hyperrigid
generator of ?

The following simple modification of 2.22 is possible.

3.2. Proposition. Let $x\in B(H)$ be normal. Then $G=\{1, x, x^{*}x\}$ is a
hyperrigid set of generators for ,Of $=C^{*}(x)$ . If $\sigma(x)$ contains three dis-
tinct points $\lambda_{1},$ $\lambda_{2}$ and $\lambda_{3}$ , on some straight line, then $\{$ 1, $x\}$ will not be a
hyperrigid generator for .

We provide the proof for the sake of completion.

Proof. Statement (i) is already known. Now we prove (ii) using Arveson’s
argument. Let $S=$ span $\{$ 1, $x\}$ and let $\sigma(x)$ denote the spectmm of $x$ . For
$f\in C(\sigma(x))$ , let $\phi_{k}(f(x))=f(\lambda_{k}),$ $k=1,2,3$ .

Then $\phi_{k}$ is a multiplicative positive linear functional of norm 1 which is
an irreducible representation of on $\mathbb{C}$ . But

$\phi_{k}(\lambda 1_{\alpha}+\mu_{x})=\lambda+\mu\phi_{k}(x)$

$=\lambda+\mu\lambda_{k},$ $k=1,2,3$ .

But $\lambda_{2}$ is a convex combination (assume without loss of generality) of $\lambda_{1}$

and $\lambda_{3}$ . Therefore $\lambda_{2}=t\lambda_{1}+(1-t)\lambda_{3},0<t<1$ .
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Therefore $\phi_{2}(\lambda 1_{d}+\mu x)=t\phi_{1}(\lambda 1_{d}+\mu x)+(1-t)\phi_{3}\lambda 1_{d}+\mu x)$ .
Thus the positive linear functional $\phi=t\phi_{1}+(1-\phi)\phi_{3}$ and $\phi_{2}$ are two
different completely positive extensions of $\phi_{2}/S$ . Therefore the irreducible
representation $\phi_{2}$ fails to have unique extension property therefore one $x$ is
not hyperrigid. $\square$

We conclude this section by stating a problem of Arveson [6].

3.3. Question. Let $I=[a, b],$ $f$ : $Iarrow R$ and $A\in B(H)$ be selfadjoint. Is
$[1, A, f(A)]$ hyperrigid in $C^{*}(A)$ ? Arveson observes that in case $A$ has dis-
crete spectmm in $[a, b]$ and if $f$ is either strictly convex or strictly concave,
the answer is affirmative.

4. TYPE III KOROVKIN THEOREMS

Recall the classical Korovkin theorem says that $\{f_{1}, f_{2}, f_{3}\}$ is hyperrigid
in $C[a, b]$ exactly when span $\{f_{1}, f_{2}, f_{3}\}$ is a $\check{C}eby\check{s}ev$ system. It would
be interesting to examine its non commutative counterpart using $\check{C}eby\check{s}$ev

$\vee$

systems in $C^{*}$ -algebra. First we recall the notion of Ceby\v{s}ev system in
Banach spaces.

4.1. Definition. Let $M$ be a subspace of a Banach space. $N$ is called a
$\check{C}eby\check{s}ev$ system if each vector $N$ admits a unique closest point in $M$ .

A. Haar in 1918 [20] obtained the following characterization of finite
dimensional $\check{C}eby\check{s}ev$ subspaces of $C(X),$ $X$ compact and Hausdorff. For
$C^{*}$ algebras the study was camied out by A. G. Robertson, David Yost and
G. K. Pederson [16]

4.2. Proposition. [7] Let $M$ be an n-dimensional subspace of $C(X)$ . Then
$M$ is a $\check{C}eby\check{s}ev$ system if and only if no non zero function in $M$ has more
that $n-1$ zeros.

4.3. Theorem. [7] Let $X$ denote an interval $[a, b]$ or the unit circle $T$ . Then
each $\check{C}eby\check{s}ev$ system $S=\{g_{0}, g_{1}, \ldots, g_{m}\}m\geq 2$ is a Korovkin set (hy-
pernigid)

It is to be remarked that finite Korovkin sets have been studied for func-
tion spaces, commutative Banach algebras and for some special types of
$C^{*}$ algebras [1]. We pose the following problem whose answer is not yet
known.

4.4. Question. Let $M$ be an $n$ dimensional subspace of $C^{*}$ algebras ,
where $n\geq 3$ . Is it tme that $M$ is hyperrigid if it is a $\check{C}eby\check{s}ev$ subspace?

We conclude this section by mentioning few things regarding weak Ko-
rovkin type theorems.

When approximation in the weak sense by completely positive linear
maps on $B(H)$ is considered, Korovkin type results have been obtained
in [13]. For example, recall the definition of weak Korovkin set introduced
in [13]. It is as follows:
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4.5. Definition. A subset $S$ of $B(H)$ is called a weak Korovkin set if for
each net $\Phi_{\alpha}$ of completely positive maps satisfying $\Phi_{\alpha}(I)\leq I$ , the relation
$\Phi_{\alpha}(s)arrow s$ weakly, $s\in S$ implies $\Phi_{\alpha}(T)arrow T$ weakly $T\in B(H)$ .

One of the main theorems proved in [13] is as follows.

4.6. Theorem. Let $S$ be an irreducible set $B(H)$ such that $S$ contains the
identity operator $I$ and $C^{*}(S)$ contains a non zero compact operator. Then $S$

is a weak Korovkin set in $B(H)$ if and only if id $|s$ has a unique completely
positive linear extension to $C^{*}(S)$ namely id $|_{C^{*}(S)}$ .

4.7. Remarks. The condition ‘id $|s$ has a unique completely positive lin-
ear extension to $C^{*}(S)$

’ means that the identity representation of $C^{*}(S)$ is
boundaly representation for $S$ in the sense of Arveson.

The following boundary theorem ofArveson enables to identify a number
of weak Korovkin sets.

4.8. Boundary theorem of Arveson. Let $S$ be a irreducible set in $B(H)$

such that $S$ contains the identity operator and $C^{*}(S)$ contains a non zero
compact operator. Then the identity representation of $C^{*}(S)$ is a bound-
ary representation for $S$ , if and only if the quotient map $q$ : $B(H)arrow$

$B(H)/K(H)$ is not completely isometric on span$(S+S^{*})$ where $K(H)$

denote the set of all compact operators on $H$ .
One of the implications provides the following example.

4.9. Example. Let $S$ be an irreducible operator which is almost normal but
not normal, then the set $S=\{I, s, s^{*}s+ss^{*}\}$ is a weak Korovkin set.
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