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ABSTRACT. The two-constant’ theory introduced first by Laplace in 1805 still forms the basis of
current theory describing isotropic, linear elasticity, describing the capillarity. By using “two-constant“
theory, the Navier-Stokes equations are formulated. These equations with the two coefficients in the
ratio 1 : 3 originated from Poisson 16] in 1831. Moreover, these equations contained both a linear and
a nonlinear term developed earlier in Navier $s$ equations $|20]$ in 1827.

We show the process of formulation of calculus of vareations using the two functions characterized
from the attraction and repulsion, and his criticism to Laplace imaging the Gaussian function as the
rapidly decreasing function by Gauss in 1830. And we introduce a contribution to the hydromechanics,
partly because he was a comtenporary of the epock of formulation of the Navier-Stokes equations, which
are our main theme in our paper.

Particularly, from the viewpoint of mathematics, several important topics such as integral theory in
\S 4.3 which are his selling points. We show his unique rapidly decreasing function (we call it $RDF$

below) and reduction of integral from sextuplex to quadruplex, in the sections \S 4.1. In and after \S 4.2,
we show his calculus of variations in the capillarity against the $RDF$ and calculation of it by Laplace.

1. INTRODUCTION
1 . At first, in section \S 2, we discuss thc “two-constant” theory. In 1805, Laplace introduced the

“two-constant‘’ theory, so-called because of the prominence of two constants in his theory, in regard
to capillary action with constants denoted by $H$ and K. (cf. Table 1, 2). Thereafter, contributing
investigators in formulating $NS$ equations, i.e. equations describing equilibrium or capillary situations,
have presented various pairs of constants. The original two-constant theory is commonly accepted as
describing isotropic, linear elasticity. [3, p.121]. However, the persistence of just two constants in later
developments is to be particularly noted.. Next. another topic discussed in section \S 3 is the RDFs which were kerneled in the “two-constant“ and
which provided the common, mathematical interpretation of fluid properties among the then progenitors,
in particular by Gauss, a contemporary of thc progenitors of the $N_{1}9$ equations, who contributed to the
formulation of fluid mechanics in the development of Laplace $s$ capillarity.. Then, we uncover reasons for thc practice in naming these fundamental equations of fluid motion
“ $NS$ equations”. In Table 2, we present a chronology outlining this practice. The last entry $hom$ 1934
by Prandtl [27] grouped the equations containing three terms: (1) the nonlinear term, (2) the Laplacian
term multiplied by $\nu$ , (3) the gradient term of divergence multiplied by $\frac{\nu}{3}$ , which takes its rise in the fluid
equation by Poisson, and uscd the nomenclature “ the Navier-Stokes equations“ for this set of equations.
These equations with the two coefficients in the ratio 1: 3 originated from Poisson [16] in 1831. Moreover,
these equations contained both a linear and a nonlinear term developed earlier in Navier $s$ equations [20]
in 1827. Still earlier, the nonlinear term was introduced by Euler [7] in 1752-5. cf. Table 2.. Finally, In section \S 4, we discuss Gauss’ Latin paper2 including the conceptions of microscopically-
descriptive (we call it $MD$ ’ below) formulation and $RDF$, which was published following the paper of
the theory on curved surface [5].

2. A UNIVERSAL METHOD FOR THE $TWO-CONSTANT$” THEORY

In this section, we propose a universal method to describe the kinetic equations that arise in isotropic,
linear elasticity. This method is outlined as follows:

Date; 2010/11/20.
lThroughout this paper, in citation of bibliographical sources, by surrounding our own paragraph or sentences of com-

mentaries between $(\Downarrow)$ and $(\Uparrow)$ ( $(\Uparrow)$ is used only when not following to next section, ) and by $=*$ or $\Rightarrow^{*}$ , we detail the
statement by Gauss, because we would like to discriminate and to avoid confusion from the descriptions by original authors.
The mark : $\Rightarrow$ mean transformation of the statements in brevity by ours.

$2_{(\Downarrow)}$ This free translation from Latin to English is of ours.
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$\Phi$ The partial differential equations describing waves in elastic solids or flows in elastic Huids are
expressed by using one constant or a pair of constants $C_{1}$ and $C_{2}$ such that:
for elastic solids: $\frac{\partial^{2}}{\partial t}u\tau-(C_{1}T_{1}+C_{2}T_{2})=f$, for $elas^{\backslash }tic$ fluids : $\frac{\partial u}{\partial t}-(C_{1}T_{1}+C_{2}T_{2})+\cdots=f$ ,
where $\prime l_{1}^{\gamma},$ $T_{2},$ $\cdots$ are the terms depending on tensor quantities constituting our equations.. The two coefficients $C_{1}$ and $C_{2}$ associated with thc tensor terms are the two constants of the
theory, definitions of which depend on the contributing author. For example, $\epsilon$ and $E$ were
introduced by Navier, $R$ and $G$ by Cauchy, $k$ and $K$ in elastic and $(K+k)\alpha$ and $\frac{(K+k)\alpha}{3}$ in fluid
by Poisson, $\epsilon$ and - by Saint-Venant, and $\mu$ and $\mu 3$ by Stokes. Since Poisson, the ratio of two
coefficient in fluid was fixed by 3. Moreover, $C_{1}$ and $C_{2}$ can be expressed in the following form:

$\{\begin{array}{l}C_{1}\equiv \mathcal{L}r_{1}g_{1}S_{1}.\{\end{array}$

$S_{1}= \int\int g_{3}arrow C_{3}$ ,
$C_{2}\equiv \mathcal{L}r_{2}g_{2}S_{2}$ . $S_{2}= \int\int g_{4}arrow C_{4}$ ,

$\Rightarrow$ $\{\begin{array}{l}C_{1}=C_{3}\mathcal{L}r_{1}g_{1}=\frac{2\pi}{15}\mathcal{L}r_{1}g_{1}.C_{2}=C_{4}\mathcal{L}r_{2}g_{2}=\frac{2\pi}{3}\mathcal{L}r_{2}g_{2}.\end{array}$

Here $\mathcal{L}$ corresponds to either $\sum_{0}^{\infty}$ as argued for by Poisson or $\int_{0}^{\infty}$ as argued for by Navier.
A heated debatc had developed between the two over this point. It is a matter of personnel
preference as to how the two constants should be expressed.

3. THE RDFs KERNELED IN THE $TWO-CONSTANT$
”

In Table 1, we show the form of $g_{1}$ and $g_{2}$ , which are kernel functions and with which the progenitors
of the fluid equation developed their formulae. Here we refer to these functions as rapidly decreasing
functions (RDFs). 3 While formulating the equilibrium equations, we obtain the competing theories of
‘two-constant“ in capillary action between Laplace \‘and Gauss.

In 1830, after Laplace‘s death. Gauss [6] started publishing his studies on capillarity following his
famous paper on curvcd surfaces [5]. In the paper, Gauss criticized Laplace $s$ calculations of 1805-7 in
which the “two-constant“ in his calculation of capillary action werc introduced. At about this time,
Gauss had studied what became to be called Gaussian function or Gaussian curve and using this as his
$RDF$ Gauss criticised Laplace’s examplc function $e^{-if}$ as the cquivalent function of $\varphi(f)$ . Here, $\varphi(f)$

is the $RDF$ , which depends on distance $f$ . In that paper, Gauss [6] pointed out various deficiencies: .
1. Laplace had mentioned only attractive action without considering the repulsive action; . 2. Laplace
could not identify the correct example function as the equivalent function of the $RDF$ ; and . 3. Laplace
lacked \‘any proof from say a geometrical point of view. The following are Gauss’ criticisms to Laplace in
the preface of [6].

$0$ Judging from the second dissertation: $\prec$ Suppk’ment \‘a la tfoeorie de l’action capil-
laire $\succ$ . Mr. Laplace investigated a little, not only the complete attraction, but also the
partial one by $\varphi(f)$ , and tacitly understood incompletely the general attraction; by the
way, if we would refer the latter by him about our sensible modification, it is easy to see
being conspicuous about it. 4. He considers exponential $e^{-\iota f}$ as an example of equivalent function with $\varphi(f)$ , de-
noting the large quantity by $i$ , or $\frac{1}{i}$ becomes infinitesimal.

But it is not at all necessary to limit the generality by such a large quantity, the
things are more clear than words, we would see easiest, only to investigate if these inte-
grations would be extended, not only infinite but also to an arbitrary sensible distance,
or if anything, occurring wider in the finitely measurable distance in experiment. [6,
p.33]

$3_{We}$ show the then family of $RDF$ by using our notation $f\in \mathcal{R}\mathcal{F}D$ , and $f$ is a function kernelized in the two-constant
belonging to the then rapidly decreasing function.

$4(\Downarrow)$ N.Bowditch, the editor of the complete works of Laplace, cites only the title of Gauss’ paper : [6] but siding with
Laplace with the following comments :

This theory of capillary attraction was first published by La Place in 1806, and in 1807 he gave a
supplement. In neither of these works is the repulsive force of the heat of fluid taken into consideration,
because he supposed it to be unnecessary. But in 1819, he observed that this action could be taken
into account, by supposing the force $\varphi(f)$ to represent the difference between the attractive force of the
particles of the fluid $A(f)$ , and the repulsive force of the heat $R(f)$ so that the combined action would
be expressed by, $\varphi(f)=A(f)-R(f)$ ;. . [9, p.685]

Maybe this was stated under the covering fire from Gauss’ criticisms of Laplace. Gauss may not have read Laplace’
works after 1819 in which he had changing his thoughts. As yet we have not been able to investigate this fact.
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TABLE 1. Thc expression of the total momentum of molecular actions by Laplace, Gauss,
Navier, Cauchy, Poisson, Saint-Venant & Stokes. (Remark. 6-8 : capillarity, exccpt for
euiliblium)

Here, we can consider these arguments on the RDFs as simple examples of today’s distributions
and hypergeometric functions of Schwarz in 1945, but which were popular in the $1830s$ , during the time
the $NS$ equations were being discussed in their microscopically-descriptive formulation.

In his historical descriptions about the study of capillariy action, we would like to recognize that there
is no counterattack to Gauss, but the correct valuation. Gauss [7] stated his conclusion about Laplace‘s
paper “his calulations in the pages, p.44 and the followings it,have non effect in vain.”

4. The $RDF$ of Gauss in the capillary action

4.1. Three basic forces and two RDFs : $f$ derived from $\varphi$ and $F$ derived from $\Phi$ .
We consider the force reducing to three basic forces. . I. Gravity. . II. The attractive force, which itself

corresponds to the points $m.m’,$ $m”,$ $\cdots$ . The intensity of attraction of function is propotional with the

182



増田蔑 (首都大学東京大学院理学研究科博士後期課程数学守攻)

TABLE 2. The kinetic equations of the hydrodynamics until the “Navier-Stokes equa-
tions” was fixed. (Rem. $HD$ : hydro-dynamics, $N$ under entry-no : non-linear, gr.dv :
grad.div. $E: \frac{\Delta}{gr.d_{2}}$ of elastic, $F: \frac{\Delta}{gr.dv}$ and the group of entry 6-13 show $F=3$ in fluid.)
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TABLE 3. Cross-indexed differences on thc RDFs $f\in \mathcal{R}\mathcal{F}\mathcal{D}$ (Remark. 1,5,6: on capillarity)

distance if this function, the $\prec chamcter’istic\succ$ denoted by $f$ in mass and supposed that the attraction
is uniformly concentrated in the point. . III. The forces, $m,$ $m’,$ $m”,$ $\cdots$ are attractive to the infinitesimal
fixed points. For these forces, with the similar way, we will designate the $\prec$ characterstic $F\succ$ such that
the inverse-directional distance is used, and with $M,$ $M’,$ $M”,$ $\cdots$ , which are treated as a fixed point in
one case, or a mass in the other case, which are supposed in these concentrate. For brevity, we express :

$fl=-gc\int zds+\frac{1}{2}c:^{2}\iint ds.ds’.\varphi(ds, d_{i};’)+cC\iint ds.dS.\Phi(ds, dS)$ (1)

where, $s,$ $s’$ are specially denoted spaces (satisfied with the mobile material), however we must integrate
twice with the element to resolve it, because $\varphi$ and $\Phi$ are defined as the functions such that : $-fx.dx=$
$d\varphi x$ , $\int fx.dx=-\varphi x,$ $and-Fx.dx=d\Phi x$ , $\int$ Fx.dx $\equiv-\Phi x_{\text{ノ}}$．Then the integral (1) contains sextuplex
integral. $(\Downarrow)$ Here the integral (1) contains sextuplex integral. $(\Uparrow)$

We would like to show that the spacial elements, depending on the three variables, which imply that
the sextuplex integral are to be reduced to the quadruplex integral. 6 Our integral (I) neglecting the
insensible factors : $=- \int\pi\theta’\rho.d\tau+\int\pi\theta’\rho.d\tau’$. Clearly this is not important, either thc parts $\tau$ and $\tau’$

or to the surface $T$ to $t$ is rather important. The value of the sextuplex integral in the left hand-side of
the following expression becomes

$\iint ds.dS.\varphi(ds.dS)=4\pi\sigma\psi 0-\pi \mathcal{T}\theta 0+\pi \mathcal{T}’\theta 0-\pi\int d\tau.\theta’\rho+\pi\int d\tau’.\theta’\rho$ (2)

$5_{(\Downarrow)}$ Poisson recognizes this Gauss’ achievement in [23].
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4.2. Variation problem to be solved by geometric method.
In the application of previous survey to tho evolution the second term of the expression $\Omega$ in the art.

3, $in$ the art. 6 denote by $S$ in the art.16 $\sigma,$
$\mathcal{T}.\mathcal{T}’$ will be use as $s,$ $t,$ $0$ , if $t$ is the total surface of the space

$s$ , in which the fluid is filled. Therefore whenever this space extensional sensible part however insensible
concentration is kept, this sort of gap (crevice). the part of the second part of the expression $\Omega$ of
(1) becomes $= \frac{1}{2}\pi r^{2}(s\phi 0-t()O)$ . In static equilibrium it is duc to the maximunl value, this turns into
$-gc \int zds+\frac{i}{2}c^{2}s\psi_{0}-\frac{1}{2}\pi c^{2}t\theta_{0}+\pi rC^{Y}T\Theta_{0}$ . In an arbitrary fiuid, of which the figure is yield oneself to the
space $s$ meaning invariant, of which the expression becomes as follows: $\int zds+\frac{\pi c}{2}\lrcorner 1ggt-\ovalbox{\tt\small REJECT}.T$, and in
an equilibrium state which is due to minimum. Here, wc denote $\frac{\pi c\theta}{2g}A\equiv\alpha^{2}$ , $\frac{\pi C}{2}\frac{T\Theta}{g}1\equiv\theta^{2}$ , $t\equiv T+U$,

and by $W$ , then

$W \equiv\int zds+(\alpha^{2}-2\theta^{2})T+\alpha^{2}U$ (3)

Here, we consider : the surface, denoted by $s$ , a part $U$ , on which \‘all the points is determined by thc
coordinate $x,$ $y,$ $z$ , these three values are the distances to an arbitrary horizontal plane. It is capable to
recognize $z$ is, for example, as the indeterminated function by $x.y$ , for these secondary partial differential
with our conventional method, by omitting a bracket, we show it by $\frac{dz}{dx}.dx$ , $\frac{dz}{dy}.dy$ . The structure we
are considering is as follows :

(1) We define the points consisted of an arbitrary and every points on the surface, denoting $s$ with
respect to the rectanglar surface, normal to thc exterior direction of $s$ , and in addition, we sct
an angle by $co$sine between this normal direction to the axis of rectanglar coordinate $x,$ $y$ and $z$

with parallel. which we denote by $\xi,$
$\eta$ and (. Thereby it will be:

$\xi^{2}+\eta^{2}+\zeta^{2}=1$ . $\frac{dz}{dx}=-\frac{\xi}{\zeta}$ , $\frac{dz}{dy}=-\frac{\eta}{\zeta}$ . $\Rightarrow^{*}$ $1+( \frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}=\frac{1}{\zeta^{2}}$ (4)

(2) The boundary of surface $U$ become linear in itself, as the same as denoted by $P$ , and while the
motion is supposed necessarily, this element $dP$ (as the same way of $dU$ as the surfacc) is treated
as positive only.

(3) The angle by cosine, that directions of the element $dP$ are expressed with the axis of coordinate of
$x,$ $y,$ $z$ , denoted by X. $Y,$ $Z$ : since we would avoid giving ambiguous sense about the direction,
we define these angles as follows :

$0$ at first, we assume that the normal direction in the element $dP$ to the surface $U$ , and draw
a tangent $0$ next, looking this line innerward, we draw the second side. . finally, in the normal
direction with respect to the surface, we put the third side in the space $\backslash$ to the exterior, and
constituting similarly the next systcm of three rectangles and the coordinate axis $x$ . $y,$ $z$ .

Thus, we $\sec$ easily the following expressions (cf. Disquisitiones generales circa $supe,rficies$
curvas), using the angle by cosine with thc direction to the axis of the coordinates $x,$ $y,$ $z$ are
respectively

$\eta^{0}Z-(^{0}Y.$ $(^{0}X-\xi^{0}$ $Z$ . $\xi^{0}Y-\zeta^{0}$ $X$ . (5)

Here, wc suppose that $\xi^{0},$ $\eta^{0}$ . $\zeta^{0}$ are the values of $\xi$ . $\eta,$
$\zeta$ for the points of the element $dP$ . (cf.

(20) $)$

Now, we assume a triangle consisted of three points: $P_{1},$ $P_{2},$ $P_{3}^{6}$ We put the element of $U$ by a triangle
$dU$ consisted of these points, of which the coordinates are : $P_{1}$ : $(x, y, z)$ , $P_{2}$ : $(x+dx,$ $y+dy,$ $z+$

$\frac{dz}{dx}.dx+\frac{dz}{dy}.dy)$ . $P_{3}:(x+d’x, y+d’y, z+ \frac{dz}{dx}.d’x+\frac{dz}{dy}.d’y)$ .
If we assume $dx$ .d’y–dy.d’x $>0$ . then the twice area of this triangle is gained by our principle as

follows :

(6)

$\Downarrow(6)$ becomes $\frac{(dx.d’y-dy.d’x)}{\zeta}$ from (4). $(\Uparrow)$. location value by perturbation of $P_{1}$ : $(x+\delta x, y+\delta y. z+\delta z)$ .

$6_{(\Downarrow)}$ The symbols : $P_{1},$ $P_{2},$ $P_{3}$ are of ours insted of “the first point”, etc.
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. Location valuc by perturbation of $P_{2}$ :

$\{\begin{array}{ll}x+dx z+\frac{dz}{dx}dx+\frac{dz}{dy}y.+dy dy\end{array}\}$ . $[ \delta x_{\text{ノ}}+\frac{d\delta x}{}.\cdot\cdot dx+\frac{d\delta x}{\frac d^{d}d\frac A,dydd_{z}^{1}g}.\cdot\cdot dy\delta’y+\cdot,dx+dy\overline{\delta}z+\frac{\underline d\delta d\delta_{\sim}dxdxA}{dx}dx+dy]$ , $[(z+^{(y+\delta y)\frac{(1d\delta}{+d}.(1+\frac{d\delta}{yzd}} \delta z)+(\frac{dz++}{dx}\frac{\mu_{d}d\delta z+}{dx},x+(\frac{d}{d}\frac{d\delta zdydy}{dy}).dy(,\cdot r+\delta^{-}x)\frac{d.\delta x}{x.+)ddx}).dx+\frac{d\delta x}{ydy,+u)}x.\cdot]$

. Location value by perturbation of $P_{3}$ , by the same way : (omitted. )
$(\Downarrow)$ We can also show the matrix with only variation as follows:

$[(1(1 \frac{d\delta x}{d\delta x,dxdx}).dx+\frac{d}{}.dy\delta x \frac{d}{d}x_{\Delta}s..\Delta\underline{d}\delta^{c1x+(1+d.y}dxd’x+(1+\frac{y_{d\delta})}{dy}u)d’y\delta yd. E.dx+D.dyF_{J}.d’x+\Gamma J.d’ y\delta.z]$ wherc, $\{\begin{array}{l}E\equiv\frac{dz}{dx}+\frac{d\dot{\delta}z}{dx},D\equiv\frac{dz}{dy}+\frac{d\delta z}{dy}\end{array}$ (7)

By the way, these principle comes from Lagrangc [8, pp.189-236], 7 in which Lagrange states his me thode
des variation$s^{}$ in hydrostatics. $(\Uparrow)$ The duplex triangles 9 including these points, by the same method,

for brevity, by denoting the sum by $N,$ (6) is expressed as follows: $(dx.d’y-dy.d’x)\sqrt{N}$ .
$(\Downarrow)$ Thesc values : dxd’y–dyd’x. dzd’x–dxd’z and dyd’z–dzd’y are calculated in permutation by
Jacobian $|J|$ of the three determinants extracted from (7) :

$(x.y)$ : $|1+ \underline{d}_{4^{\delta}}dx\frac{d\tilde{\delta}x}{dx}1^{\frac{d\check{\delta}x}{+dy}}\frac{d\delta}{d}uy|$ . . $x.z)$ : $|E1+ \frac{d\delta x}{dx}D\frac{d\delta x}{dy}|$ . .... z) : $|D1+ \frac{d\delta}{d}gy$ $F_{J} \frac{d\delta}{d}\dot{xA}|$ $(\Uparrow)$

We denote temporarily the following sum by $N$ , then

$N$ $=$ $[(1+ \frac{d\delta x}{dx})(1+\frac{d\delta y}{dy})-\frac{d\delta x}{dy}.\frac{d\delta y}{dx}]^{2}+[(1+\frac{d\delta x}{dx})(\frac{dz}{dy}+\frac{d\delta z}{dy})-\frac{d\delta x}{dy}(\frac{dz}{dx}+\frac{d\delta z}{dx})]^{2}$

$+$ $[(1+ \frac{d\delta y}{dy})(\frac{dz}{dx}+\frac{d\delta z}{dx})-\frac{d\delta y}{dx}(\frac{dz}{dy}+\frac{d\delta z}{dy})]^{2}=*C^{2}+[D_{1}^{2}+D_{2}^{2}]D^{2}+[E_{1}^{2}+E_{2}^{2}]E^{2}-2[D_{1}E_{2}+E_{1}D_{2}]$,

where, $C \equiv(1+\frac{d\delta x}{dx})(1+\frac{d\delta y}{dy})-\frac{d\delta x}{dy}.\frac{d\delta y}{dx}=1+\frac{d\delta x}{dx}+\frac{d\delta y}{dy},$ $D \equiv\frac{dz}{dy}+\frac{d\delta z}{dy},$ $E \equiv\frac{dz}{dx_{\text{ノ}}}+\frac{d\delta z}{dx}$ (8)

and $D_{1},$ $D_{2},$ $E_{1},$ $B_{2}^{\backslash }$ are the two terms consisting of $D$ and $E$ respcctively, and these coefficients are
correspond to thc variables of the equation on the theory of curved surface by Gauss [5]. Extending (8)
with ncglecting the second order of $\delta$ , for example, $\frac{d\delta x}{dy}.\frac{d\delta}{d}x\simeq$ or $(_{dy}^{\underline{d}\delta}A)^{2}$ , etc., and for brevity, dcnoting the
sum by $L$ , then

$\sqrt{N}=([1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}].[1+\frac{L}{1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}}])^{\frac{1}{2}}=^{*}(L+1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2})^{\frac{1}{2}}$

where, $L$ is gained by extracting only one order terms in the expanded terms from (8) :
$(\Downarrow)$ Herc, we see the coefficient 2 included in $L$ in (9) come from two triangles, mentioned in the footnote
(9). 10

$N$ $=$ $C^{2}+(\cdot)D^{2}+(\cdot)E^{2}+(\cdot)DE$

$=$
. 2 $[ \frac{d\delta x}{dx}\{[1+(\frac{dz}{dy})^{2}\}-\frac{dz}{dx}\frac{dz}{dy}(\frac{d\delta x}{dy}+\frac{d\delta y}{dx})+\frac{d\delta y}{dy}\{[1+(\frac{dz}{dx})^{2}\}+(\frac{dz}{dy}\frac{d\delta z}{dy}+\frac{dz}{dx}\frac{d\delta z}{dx})]$

$+$ $[1+( \frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}]=$
.

$2L+[1+( \frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}]$ (9)

$7(\Downarrow)$ Section 7. De l’equilibre des fluids incompressibles, \S 2. Oli l’on deduit les dois $\mathfrak{X}$ n\’emles de l’equibre des fluides
incompressibles de la nature des particules $qu\iota$ les composent. [8, pp.204-236]

$8_{(\Downarrow)}$ Lagrange$|$8, p.201]. Today’s mathematical nomenclature is calculus of vanations or calcul des vanations by The
mathematical dictionary (4th edition in 2007) edited by MSJ, 1954, p.432, (Japanese).

$9(\Downarrow)$ The duplex triangles mean a rectangle made of two adjoining triangles.
$10_{(\Downarrow)}$ We show the four terms in $N(9)$ as follows:

$C^{2}=(1+ \frac{d\delta x}{dx}+\frac{d\delta y}{dy})^{2}\cong 1+2(\frac{d\delta x}{dx}+\frac{d\delta y}{dy}),$ $.[(1+ \frac{d\delta x,}{dx})^{2}+(\frac{d\delta y}{dx})^{2}]D^{2}\cong(\frac{dz}{dy})^{2}+2\frac{d\delta x}{dx}(\frac{dz}{dy})^{2}+2\frac{dz}{dy}\frac{d\delta z}{dy}$,

. $[( \frac{d\delta x}{dy})^{2}+(1+\frac{d\delta y}{dy})^{2}]E^{2_{\underline{\simeq}}}(\frac{dz}{dx})^{2}+2\frac{d\delta y}{dy}(\frac{dz}{dx})^{2}+2\frac{dz}{dx}\frac{\mathfrak{X}z}{dx}$ ,

. $-2[(1+ \frac{d\delta x}{dx})\frac{d\delta x}{dy}+(1+\frac{\mathscr{O}y}{dy})\frac{d\delta y}{dx}]DE\cong-2\frac{dz}{dx}\frac{dz}{dy}(\frac{\mathscr{O}x}{dy}+\frac{d\delta y}{dx})$
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$(\Uparrow)$ From (9)

$L$ $=$ $[ \frac{d\delta x}{dx}\{[1+(\frac{dz}{dy})^{2}\}-\frac{dz}{dx}\frac{dz}{dy}(\frac{d\delta x}{dy}+\frac{d\delta y}{dx})+\frac{d\delta y}{dy}\{[1+(\frac{dz}{dx})^{2}\}+(\frac{dz}{dy}\frac{d\delta z}{dy}+\frac{dz}{dx}\frac{d\delta z}{dx})]$

$=*$ $\frac{1}{2}[N-\{1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy}I^{2}\}]$ (10)

11 Herc we may recall (4), then the followings hold : the ratio of the first triangle to the second and plus
1 becomes, $1+ \frac{zL}{1+(_{\partial\overline{x}})^{2}+(_{\partial}^{d}\frac{z}{y})^{2}}=*1+\frac{1sttriang1e}{2ndtriang1e}=*1+\zeta^{2}L$. $12$ Moreover, this is independent of the figure
of a trianglc $dU$ , then, it turns out,

$\delta dU=\frac{LdU}{1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}}=*C^{2}LdtI$ (11)

Expanding $L$ in (11) using (4) and (10), then

$\delta dU=dU[\frac{d\delta x}{dx}(\eta^{2}+\zeta^{2})-(\frac{d\delta x}{dy}+\frac{d\delta y}{d\prime x})\xi\eta+\frac{d\delta y}{dy}(\xi^{2}+\zeta^{2})-\frac{d\delta\approx}{rl\prime x}\xi\zeta-\frac{d\delta z}{dy}\eta\zeta]$ , (12)

4.3. Integral expression by decomposing $dU$ into $dQ$ and $dU$ .
From (12), all variation of the surface $U$ is obtaincd by the following two integrals :

$[dU[( \eta^{2}+(^{2})\frac{d\delta x}{dx}-\xi\eta(\frac{d\delta y}{dx})-\xi(\frac{d\delta z}{dx}]\equiv A,$
$\int dU[-\xi\eta\frac{d\delta x}{dy}+(\xi^{2}+(^{2})\frac{d\delta y}{dy}-\eta\zeta\frac{d\delta z}{dy}]\equiv B$, (13)

and these are separately treated. We consider as follows : . at first, we take the plane, rectangle to
the coordinate axis $y$ , and such as, the value determinated by itself, suitable it, it is between peripheral,
the last value, which $y$ has in the surface U. . next, for this plane, on the peripheral $P$ , we cut in two
part, or four, or six, etc., the points, of which the first coordinate will be followed by $x^{0},$ $x’,$ $x”,$ $\cdots;$ .
then, as if the other quantities, we put suitablly the indicies for these points : by the same way, we cut
the surface with other plane, this infinite neighbourhood and parallel, which encounters with the second
coordinate at the point of $y+dy;\circ$ finally, between these planes, we could get the elements of peripheral
$dP^{0},$ $dP’,$ $dP”,$ $\cdots$ , then we could see easily the left-hand side being expressed as follows :

$dy=-Y^{(j}dP^{0}=+Y’dP’=-Y^{\prime/}dP’’=+Y’’’dP’’’$ etc. (14)
If, in addition to, we consider the infinitely many planes, rectangles to the coordinatc axis $x$ , of which
the element $dx$ between $x^{0}$ and $x’$ , or between $x”$ and $x”’$ , or etc., it corresponds to the element : 13

$dU= \frac{dx.dy}{\zeta}$ , (15)

$\int\delta dU=$ $\int[dU(\eta^{2}+\zeta^{2})\frac{d\delta x}{dx}-\frac{d\delta y}{dx}\xi\eta-\frac{d\delta z}{dx}\xi(]+\int dU[(\xi^{2}+\zeta^{2})\frac{d\delta y}{dy}-\frac{d\delta x}{dy}\xi\eta-\frac{d\delta z}{dy}\eta\zeta]$

$=$ $dy.[dx \frac{1}{\zeta}[(\eta^{2}+\zeta^{2}).\frac{d\delta x}{dx}-\frac{d\delta y}{dx}\xi\eta-\frac{d\delta z}{dx}\xi\zeta]+dx\int dy\frac{1}{(}[(\xi^{2}+\zeta^{2}).\frac{d\delta y}{dy}-\frac{d\delta x}{dy}\xi\eta-\frac{d\delta z}{dy}\eta\zeta]$

$(\Uparrow)$

Therefore, from here, it is clear for a part of integration by parts : $A$ , that corresponds to the part
of the surface depending on between the interval : $y,$ $y+dy$ , to have by the following integral, i.e.,
substituting the right hand-side of (15) into $A$ of (13), then $A=dy \int d_{X}(\frac{\eta^{2}+\zeta^{2}}{\zeta}.\frac{d\delta x}{dx}-g_{\frac{d\delta}{d}A-\xi d\delta z)}$ , by
extending from $x=x^{0}$ to $x=x’$ , next, from $x=x”$ to $x=x”’$ etc. In fact, considering the limit of this
integration by parts, we express $A$ and $B$ by (14) and (15), as follows:

$A$ $=$ $\int(\frac{\eta^{2}+\zeta^{2}}{\zeta}\delta x-\frac{\xi\eta}{(}\delta y-\xi\delta z)YdP-\int\zeta dU(\delta x\frac{\frac{\eta^{2}+\zeta^{2}}{\zeta}}{dx}-\delta y\frac{d_{\zeta}^{\xi_{\Delta}}}{dx}-\delta z\frac{d\xi}{dx})$ (16)

$B= \int(\frac{\xi\eta}{(}\delta x-\frac{\xi^{2}+\zeta^{2}}{\zeta}\delta y-\eta\delta z)XdP+\oint(dU(\delta x\frac{\frac{\xi\eta}{\zeta}}{dy}-\delta y\frac{d_{\zeta}^{22}\simeq+}{dy}+\delta z\frac{d\eta}{dy})$ (17)

$11(\Downarrow)$ According to Gauss’ notation, $L$ denotes a first triangle, of which $N$ is consisted.
$12(\Downarrow)$ The two triangles of first and second are contiguous and construct a quadrilateral by two $dU$ .
$13(\Downarrow)$ In fact, comparerig the two expressions: (13) with (16) and (13) with (17) respectively, then this correspondence

is deduced.
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Herc we detcrmine for all the circumference $P$ , we get $\zeta Q$ from the first terms of both (16) and (17),

$[X\xi\eta+Y(\eta^{2}+(^{2})]\delta x-[X(\xi^{2}+(^{2})+Y\xi\eta]\delta y+(X\eta\zeta-Y\xi\zeta)\delta z=\zeta Q$ . Moreover, for every point of

the surface $U$ , we get $V$ from the second terms of both (16) and (17).

$( \frac{d_{\dot{\zeta}}^{g}}{dy}-\frac{d\frac{\eta^{2}+\zeta^{2}}{\zeta}}{dx})\zeta\delta x+(\frac{d_{(}^{g}}{dx}-\frac{d\frac{\epsilon^{2}+c^{2}}{\zeta}}{dy})\zeta\delta y+(\frac{d\xi}{dx}+\frac{d\eta}{dy})\zeta\delta z\equiv V$ (18)

That is, we can put

$\delta U=\int QdP+\int VdU$ (19)

The first integral is to be extended along all the circumference $P$ , and the sccond is on all surface U. 14

Formulae for $Q$ and $V$ notably contradict $X\xi+Y\eta+Z\zeta=0^{15}Q$ has always the symmetric form as
follows :

$Q=(Y\zeta-Z\eta)\delta x+(Z\xi-X\zeta)\delta y+(X\eta-Y\xi)\delta z$ $\Rightarrow$

.
$Q=$ $|\begin{array}{lll}\delta x \delta y \delta zX Y Z\xi \eta (\end{array}|$ (20)

When we see the form of $V$ , we can reduce from the formulae (4), and moreover, from $\xi^{2}+\eta^{2}+\zeta^{2}=1$ ,

we can deduce $\xi_{dx}^{d}\angle+\eta_{x}^{\frac{d}{d}4}+\zeta_{\overline{d}x}^{d}\angle=0$ , then by dividing this expression with $\zeta$ from the both side of
hand, then

$\Rightarrow$ $\frac{\xi}{\zeta}\frac{d\xi}{dx}=-(\frac{\eta}{\zeta}\frac{d\eta}{dx}+\frac{d(}{dx})$ $\Rightarrow$

$\frac{d\frac{\eta^{2}+\zeta^{2}}{\zeta}}{dx}=\eta\frac{d_{\zeta}^{2}}{dx}+(\frac{\eta}{(}.\frac{d\eta}{dx}+\frac{d\zeta}{dx})=\eta\frac{d_{\zeta}^{q}}{dx}-\frac{\xi}{\zeta}.\frac{rd\xi}{dx}$ (21)

We may rcplace the coefficient of $\zeta\delta x$ in $V$ of (18), using (4) and (21),

$\frac{d_{\zeta}^{g}}{dy}-\frac{d\frac{\eta^{2}+\zeta^{2}}{\zeta}}{dx}=$ $\frac{d_{\zeta}^{g}}{dy}-\eta\frac{d_{\zeta}^{q}}{dx}+\frac{\xi}{\zeta}.\frac{d\xi}{dx}=(\frac{\xi}{\zeta}\frac{d\eta}{dy}+\eta g_{y})-\eta\#_{y}\zeta+\frac{\xi}{\zeta}.\frac{d\xi}{dx}=\frac{\xi}{\zeta}(\frac{d\xi}{dx}+\frac{d\eta}{dy})$

Similarly for $\zeta\delta y,$
$\frac{d_{7^{1}}^{\xi\prime}}{dx}-\frac{d\frac{\epsilon^{2}+c^{2}}{c}}{dy}=q((\frac{d}{d}\xi x+\Delta ddy)\cdot$ Then $V$ of (18) is reduced as follows : $V=(\xi\delta x+$

$\eta\delta y+\zeta\delta z)(\frac{d}{d}gx+\Delta^{d}dy)$ . Before going forward, we must illustrate conveniently the important geometrical

expression. Here we restrict the various direction, we would like to present the following its intuitionally
facile method, which we introduced in Dasquisitiones generales circa superficies curvas. We consider the
following geometric structure. . At first, we put the sphcre, of which the radius $=1$ at the center of \‘an

arbitrary surface, we denote the axis of the coordinates $x,$ $y$ and $z$ by the points (1), (2) and (3), . next,

taking exterior domain denoted by $s$ , we number a point denoting by the point (4) toward the normal
direction on surface; . then, at an arbitrary point on surface, drawing various rectangle direction toward
point of itself, which we denote by the point (5), . finally, for the variation of itself, we suppose that
the quantity $\sqrt{\delta x^{2}+\delta y^{2}+\delta z^{2}}$ is always positivc, and we denote the quantity by $\delta e$ for brevity, then 16

$\delta x=\delta e.\cos(1,5)$ . $\delta y=\delta e.\cos(2.5)$ , $\delta z=\delta e.\cos(3,5)$ .
Here, we consider the every point on the surface. In this boundary, if we call the periphery $P$ , we

can consider the two directions. $(\Downarrow)$ (Remark. About the expression of $cos$, when $(\cdot)$ is a unique point
naming, $(\cdot,$ $.)$ means the angle between two points taking an intermidiate of the origin. ) $(\Uparrow)$ . At
first, we denote the corresponding point to $dP$ by the point (6), . next, we draw the rectangle direction
to the surface, which is the inner normally-directed tangential to the surface, then we denote thc point
by (7). . then, by the hypothesis, these points (6), (7) and (4) look toward the same direction, 17.
finally, using above-mentionhed (1), (2) and (3) then (4.6), (4.7) and (6, 7) make a cube, 18 when we
consider the angles as the rectangles. Thus, the above-mentioned equations (5) are transformed into

$14(\Downarrow)$ This is what is called the Gaussian integml formula in two dimensions.
15

$(\Downarrow)$ This means $X\xi+Y\eta+Z\zeta\neq 0$ .
$16_{(\Downarrow)}$ By the way, for understanding Gauss’ method of description of angle, we can see the same method by Lagrange in

1788.
$17(\Downarrow)$ This image is considered that there are three directions emitting from a common point and making a certain angle

with two directions (i.e. points.)
$18(\Downarrow)(4,6),$ $(4.7)$ and (6, 7) make a plane consisting of a cube respectively.
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TABLE 4. Comparison of $Q$ and $V$ in $\delta U=\int QdP+\int VdU$ between two methods

$\eta Z-\zeta Y=\cos(1,7)$ , $\zeta X-\xi Z=\cos(2,7)$ , $\xi Y-\eta X=\cos(3.7)$ . In the previous articlc, these forms
are as follows:

$Q=-\delta e.\cos(5,7)$ , $V= \delta e.\cos(4,5).(\frac{d\xi}{dx}+\frac{d\eta}{dy})$ (22)

$\cos(4,5)$ clearly indicates, the translation of Finally, we get the value of the right-hand side in V. 19

$\frac{d\xi}{dx}+\frac{d\eta}{dy}$ $=$ $\frac{1}{R}+\frac{1}{R}$ $=$ $- \zeta^{3}[\frac{d^{2}z}{dx^{2}}\{1+(\frac{dz}{dy})^{2}\}-\frac{2d_{\sim’}^{2,}}{dx.dy}.\frac{dz}{dx}$ . $\frac{dz}{dy}+\frac{(d^{2}z}{dy^{2}}\{1+(\frac{d,\wedge\prime}{dx})^{2}\}]$ ,

wherc, $\zeta^{3}$ $=$ $[]+( \frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}]^{-\frac{3}{2}}$ , (23)

$furtherthevariationforthe\exp onexpressions^{\backslash }(I)\delta U.=\int QdP+\int^{f}VdlI=-\int_{SC^{\backslash }xpyoffirethespac\cdot es,wc}^{y}where,Ra.ndR’aretheradiiocurVaturerespective1.R_{0}(19),(22,)a.n(23,wegetthefive\delta e.\cos(5.7).dP+\int^{m}\delta e.\cos(45)(\frac{d1}{guR}+\frac{1)}{ofR’})dII.Evo1ving$

would like to start to argue at first, from the variation of the space $s$ . Recalling that we $co$nsider that
the prism with the equal sides and oriented to the solid body, then, on this point, wc can see that this
prism has the following relations : (II) $\delta s=\int dU.\delta e.\cos(4,5)$ . (III) $\delta\int zds=\int zdU.\delta e$ . $\cos(4,5)$ .
(IV) $\delta T=\int dP.\delta e$ . $\cos(5,8)$ , If we introduce here the angle $($ 7, $8)\equiv i$ as the boundary angle, wc can
formulate (V) as follows : (V) $\cos(5,7)=\cos(5,8).\cos i$ , where $\delta e=\sqrt{\delta x^{2}+\delta y^{2}+\delta z^{2}}$.

By the combination of above formulae I, $\cdot\cdot\cdot$ , IV, we get the variational expression of $W$ , where, $W$ is
thc value of (3).

$\delta W=\int dU.\delta e.\cos(4,5).[z+\mathfrak{a}^{2}(\frac{1}{R}+\frac{1}{R’})]-\int dP.\delta e.\cos(5,8).(\alpha^{2}\cos i-\alpha^{2}+2\beta^{2})$ , (24)

where, $z+ \alpha^{2}(\frac{1}{R}+\frac{1}{R})=$ Const. If we set Const $=0$ , then $z=- \alpha^{2}(\frac{1}{R}+\frac{1}{R})$ , and, $z$ is the height of
capillary action, $\alpha$ and $\theta$ are the values defined in (3). From (24)

$\delta W=-\int dP.\delta e.\cos(5,8).(\alpha^{2}\cos i-\alpha^{2}+2\mathcal{B}^{2})=\alpha^{2}\int dP.\delta e.\cos(5,8).(1-2(\frac{\theta}{\alpha})^{2}-\cos i)$

Here, we assume $A$ such that $\cos A=1-2\sin^{2}(\frac{A}{2})=1-2_{\overline{\alpha}^{\eta}}^{\beta^{2}}$ . If $\sin\frac{A}{2}=\llcorner\underline{\alpha}$ , then, $\delta W=$

$\alpha^{2}\int dP.\delta e.\cos(5.8).(\cos A-\cos i)$ , where, the integral is to be extended along the total line $P$ .

5. Conclusions

The “two-constant“ were defined in terms of kernel functions of RDFs, describing the characteristics
of dissipation or diffusion within isotropic and homogeneous fiuids that were necessary for the interpre-
tation of the nature of fluid or the formulation of the equations of the fluid mechanics including kinetics,
equilibrium and capillarity. With their origin perhaps arising in the work of Laplace in 1805, these sorts of
functions are simple examples of today’s distributions and hypergeometric function of Schwarz proposed
in 1945. Gauss [6] also contributed to develop fundamental conception of $RDF$ or MDNS equations for
fluid mechanics including capillary action, because he formulated the equations with two-function instead
of two-constant and these were the the superior method from other contemporaries with the progenitors
of $NS$ equations.

$19(\Downarrow)$ cf. Laplace [9, 10] had deduced his same expression with Gauss’ (23). cf. Poisson $[22|$ , p.105.
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