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THE RAPIDLY DECREASING FUNCTIONS OF THE
MICROSCOPICALLY-DESCRIPTIVE HYDRODYNAMIC EQUATIONS.
RAVERFENZARKUE 1T 2B VER

MW (HWAFERR KEEFEFEN RS BEsR)

ABSTRACT. The “two-constant”™ theory introduced first by Laplace in 1805 still forms the basis of
current theory describing isotropic, linear elasticity, describing the capillarity. By using “two-constant”
theory, the Navier-Stokes equations are formulated. These equations with the two coefficients in the
ratio 1 : 3 originated from Poisson [16] in 1831. Moreover, these equations contained both a linear and
a nonlinear term developed earlier in Navier’s equations [20] in 1827.

We show the process of formulation of calculus of variations using the two functions characterized
from the attraction and repulsion, and his criticism to Laplace imaging the Gaussian function as the
rapidly decreasing function by Gauss in 1830. And we introduce a contribution to the hydromechanics,
partly because he was a comtenporary of the epock of formulation of the Navier-Stokes equations, which
are our main theme in our paper.

Particularly, from the viewpoint of mathematics, several important topics such as integral theory in
§4.3 which are his selling points. We show his unique rapidly decreasing function ( we call it 'RDF"
below ) and reduction of integral from sextuplex to quadruplex, in the sections §4.1. In and after §4.2,
we show his calculus of variations in the capillarity against the RDF and calculation of it by Laplace.

1. INTRODUCTION

! e At first, in section §2, we discuss the “two-constant” theory. In 1805, Laplace introduced the
“two-constant” theory, so-called because of the prominence of two constants in his theory, in regard
to capillary action with constants denoted by H and K. (cf. Table 1, 2). Thereafter, contributing
investigators in formulating NS equations, i.e. equations describing equilibrium or capillary situations,
have presented various pairs of constants. The original two-constant theory is commonly accepted as
describing isotropic, linear elasticity. [3, p.121]. However, the persistence of just two constants in later
developments is to be particularly noted.

@ Next. another topic discussed in section §3 is the RDF's which were kerneled in the “two-constant “ and
which provided the common, mathematical interpretation of flnid properties among the then progenitors,
in particular by Gauss, a contemporary of the progenitors of the NS equations, who contributed to the
formulation of fluid mechanics in the development of Laplace’s capillarity.

e Then, we uncover reasons for the practice in naming these fundamental equations of fluid motion
" NS equations”. In Table 2, we present a chronology outlining this practice. The last entry from 1934
by Prandtl {27] grouped the equations containing three terms: (1) the nonlinear term, (2) the Laplacian
term multiplied by v, (3) the gradient term of divergence multiplied by %, which takes its rise in the fluid
equation by Poisson, and used the nomenclature ”the Navier-Stokes equations” for this set of equations.
These equations with the two coefficients in the ratio 1 : 3 originated from Poisson {16] in 1831. Moreover,
these equations contained both a linear and a nonlinear term developed earlier in Navier’s equations [20]
in 1827. Still earlier, the nonlinear term was introduced by Euler {7] in 1752-5. cf. Table 2.

e Finally, In section §4, we discuss Gauss’ Latin paper? including the conceptions of microscopically-
descriptive ( we call it "M D’ below ) formulation and RDF', which was published following the paper of
the theory on curved surface [5].

2. A UNIVERSAL METHOD FOR THE “TWO-CONSTANT” THEORY

In this section, we propose a universal method to describe the kinetic equations that arise in isotropic,
linear elasticity. This method is outlined as follows:

Date: 2010/11/20.

1Throughout this paper, in citation of bibliographical sources, by surrounding our own paragraph or sentences of com-
mentaries between ({) and (1) ((ff) is used only when not following to next section, ) and by =* or =>*, we detail the
statement by Gauss, because we would like to discriminate and to avoid confusion from the descriptions by original authors.
The mark : = mean transformation of the statements in brevity by ours.

2(11) This free translation from Latin to English is of ours.
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e The partial differential equations describing waves in elastic solids or flows in elastic fluids are
expressed by using one constant or a pair of constants C; and Cs such that:

for elastic solids: %—j‘f — (C1T1 + CoT3) = £, for elastic fluids : % - (CiTh +CT)+--- =1,
where 17, T3, -- are the terms depending on tensor quantities constituting our equations.

¢ The two coefficients C; and C, associated with the tensor terms are the two constants of the
theory, definitions of which depend on the contributing author. For example, ¢ and E were
introduced by Navier, R and G by Cauchy, £ and K in elastic and (K + k)« and ﬁﬁ:}ﬂ‘z in fluid
by Poisson, £ and § by Saint-Venant, and x and % by Stokes. Since Poisson, the ratio of two
coefficient in fluid was fixed by 3. Moreover, C; and C; can be expressed in the following form:

C1 = Lr1g:151. 81 = [fg3s— Cs, N Ci = CsLrigr = 3% Lrig1.
C2 = [,T'zngz. 32 = ffg4 b C4, Cg = C4£T‘292 = %’Lﬁ'r‘ggg.

Here £ corresponds to either Y 0" as argued for by Poisson or f0°° as argued for by Navier.
A heated debate had developed between the two over this point. It is a matter of personnel
preference as to how the two constants should be expressed.

3. THE RDFs KERNELED IN THE “TWO-CONSTANT”

In Table 1, we show the form of g; and g2, which are kernel functions and with which the progenitors
of the fluid equation developed their formulae. Here we refer to these functions as rapidly decreasing
functions (RDFs). 3 While formulating the equilibrium equations, we obtain the competing theories of
“two-constant” in capillary action between Laplace and Gauss.

In 1830, after Laplace’s death, Gauss [6] started publishing his studies on capillarity following his
famous paper on curved surfaces [5]. In the paper, Gauss criticized Laplace’s calculations of 1805-7 in
which the “two-constant” in his calculation of capillary action were introduced. At about this time,
Gauss had studied what became to be called Gaussian function or Gaussian curve and using this as his
RDF Gauss criticised Laplace’s example function e™*/ as the equivalent function of ¢(f). Here, ¢(f)
is the RDF, which depends on distance f. In that paper, Gauss [6] pointed out various deficiencies:
1. Laplace had mentioned only attractive action without considering the repulsive action; e 2. Laplace
could not identify the correct example function as the equivalent function of the RDF'; and @ 3. Laplace
lacked any proof from say a geometrical point of view. The following are Gauss’ criticisms to Laplace in
the preface of [6].

e Judging from the second dissertation: < Supplément a la théorie de [’action capil-
laire >, Mr. Laplace investigated a little, not only the complete attraction, but also the
partial one by (f), and tacitly understood incompletely the general attraction; by the
way, if we would refer the latter by him about our sensible modification, it is easy to see
being conspicuous about it. *

e He considers exponential ¢ ~*f as an example of equivalent function with (f), de-
noting the large quantity by i, or 1 becomes infinitesimal.

But it is not at all necessary to limit the generality by such a large quantity, the
things are more clear than words, we would see easiest, only to investigate if these inte-
grations would be extended, not only infinite but also to an arbitrary sensible distance,
or if anything, occurring wider in the finitely measurable distance in experiment. [6,
p.33]

3We show the then family of RDF by using our notation f € RFD, and f is a function kernelized in the two-constant
belonging to the then rapidly decreasing function.
4(y) N.Bowditch, the editor of the complete works of Laplace, cites only the title of Gauss’ paper : (6] but siding with
Laplace with the following comments :
This theory of capillary attraction was first published by La Place in 1806, and in 1807 he gave a
supplement. In neither of these works is the repulsive force of the heat of fluid taken into consideration,
because he supposed it to be unnecessary. But in 1819, he observed that this action could be taken
into account, by supposing the force ¢(f) to represent the difference between the attractive force of the
particles of the fluid A(f), and the repulsive force of the heat R(f) so that the combined action would
be expressed by, ¢(f) = A(f) — R(f); --- |9, p.685]
Maybe this was stated under the covering fire from Gauss’ criticisms of Laplace. Gauss may not have read Laplace’
works after 1819 in which he had changing his thoughts. As yet we have not been able to investigate this fact.
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TABLE 1. The expression of the total momentum of molecular actions by Laplace, Gauss,
Navier, Cauchy, Poisson, Saint-Venant & Stokes. (Remark. 6-8 : capillarity, except for

euiliblium)
[no [name |problem C1|C2lC3 [Cs [€ [rilrelgr g2 [remark ]
Navier S R on o ;] 4 o
! l1827 (12) clastic solid ¢ | |33 Jo delp®| |fp p : radius
Navier
2 |finid motion of fluid | 2 Jo~ delp®| | f(p) p : radius
1827 [13]
E| % rdd [ |F()
Cauchy system
ud < _
3 |is28 2] of R| |%& JEard| ) | |fr) = £t (r) - )]
particles
G| & |5 ar| |r® f(r) |f(r) #f(r)
Poisson ) . o Ll laise
4 1829 [21] elastic solid |k s P L
K| 1§ Ea| |
S lremy  motonoffuidle 5| Sk 4 lo-dk-d
Kl g 251 frolca=42=1
Laplace . ] T“’ —
6 1806.7 [9] capillary actionfH | 127 o dzjz | [¥(2) z : distance
K 2m |y de ¥(z)
Rewrited by x 2 o |4
62| Poisson 1831 [23] "l \3r Jo~drirt| ler [23. pp.14-15]
K Zp? fooc dr| | er
Gauss attraction :

7 1830 [6] capillary action - fz.dz = dyz,
[ frdz = —pz.
repulsion :
~Fz.dr = d®zx,
[ Fr.de = -z

Poisson ] . . 2 ~ .
8 1831 [23] capillary action/H | (5p Jo_drlrtl Jer [23, p.14)
K| |Zo|f"dr| | ler |23 p.12]

Saint-Venant . .
% 1843 26) fluid e |5

Stokes

i u

1011849 27) fluid 4

Stokes . ) -
111,849 27] elastic solid |A |B A=5B

Here, we can consider these arguments on the RDF's as simple examples of today’s distributions
and hypergeometric functions of Schwarz in 1945, but which were popular in the 1830s, during the time
the NS equations were being discussed in their microscopically-descriptive formulation.

In his historical descriptions about the study of capillariy action, we would like to recognize that there
is no counterattack to Gauss, but the correct valuation. Gauss [7] stated his conclusion about Laplace’s
paper “his calulations in the pages, p.44 and the followings it,have _non effect in vain.”

4. The RDF of Gauss in the capillary action

4.1. Three basic forces and two RDFs : f derived from ¢ and F derived from o.
We consider the force reducing to three basic forces. o I. Gravity. e II. The attractive force, which itself
corresponds to the points m.m’,m”,--.. The intensity of attraction of function is propotional with the
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TABLE 2. The ki
ABLE 2. e kinetic equations
tions” was fixed. (Rem. qHaDl(-)n}i of the hydrodynamics until the “Navi
grad.div, E : —2_ of elastic F ‘ y(iro-dynamics, N under entr e Navler—Stokes equa-
B and the group of entry 6ylr:;os}'1 HOI;;hnear, grdv.:
y 6-13 show F = 3 in fluid.)
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gr.dv
gr.dv
[no[name/prob :
th ; -
- | e kinetic equations
X-1ldp _4d
1 |(1752-55) LR = duygydy gy gy
N |[4, p.127] y _ ldp _ dv s T Vay T W A
. ke RTE CE P grdviE[F|
fuid g lip _ dw Viy T du 4 dv | duw
hdz—ﬁ+ug’;_’+vzi+wﬂ = tata =0
R HdZ - Y dz '
Navier ;a—ﬁ— =€ dez d2 o3
L =5 + z d Z
2 [(1827)[12] (6-1) e Dty _ dga ‘;i-fﬁ+d_§§+2:b__d% +2:2dz)
. = . Ci !
elastic solid f—'[dé do +3Eb’g+%%+2dz_r Wy
where I1 is density of thm. m+3#+2£5; +2ﬂ)
Navi 1dp _ 2 e solid, g is accelerati dede < | %
3 er 12 = X +e(3iy + 4 7 ion of gravit,
(182 Ty ypdu du gd Y.
N 7)[13] P, 1dp zz dy 'EZ'+2 Y +2d2w Fl
flui pzT=Y+sdv d? dzdy dzd)——“—-d—" d
uid ldy E’+3ﬁ+-"—§+2d2u dzz dt dz-u—ai.v_d_u.w
‘;Eg =Z+E d%w d211_lu dz2 dzdy +2d1/;l”z) —dv_dv d'“y 2 ,
Cauchy dz’+7{y’[+3§-—g’-+2d2u ) dt dm.u_@"v—ﬁ.w.
sz | [E+O%E+ (R H)E of 2k ) W - e 3
. T =V - 5=
4 [system o2 4'}")3—3;3“+(C2+1)32 o? . dy V7 @ W
(R+G 3 3 + 2R 8%¢
of particles )#+(M+H)g_2¥+(P+I)g—2¥ 3232y§+2QazaI +X=g—2§
M . 2 t<
in elastic (Q+G)%g+(P+H)§—-§+ N 3622 +2P3 62+23{9‘1—,§“+Y=32 it
and fluid CoH=T Lot (N+DZ5 +2025 ot ord> R+
Poisson . L=M=N. P=Q=R L 2L +2P2n 1 2=0% c PR G
= £, = 3R atz> =
s [ (X - S +a?(L3+2 82 428 ‘0
elastic solid Y — 42 lr Sdyar T 34 w 1d%u , 14° 2
in general ) @5"+a2(3_yg+_§_dd2; +Zd§wz 13§7+§32;%) = %Z‘i%-
equati Z - Lw g2 2 3d2dy+§“g+id")_ndz
isson dyd: T3 a2z T 3 W)_n,ﬁ e |2 11
( dz 5% ) =257 3 2
D d . 3 (2
asanpzy | [P(BE -0+ R +alk = v/ e
6 |fuid in D dz +k)(—72‘.+d u d2u
{p(Bu—y)+ 2 L) tSE RS
general Dt )+ L + oK + k) 2o . 2 %z 3 +k)d—(ﬂ+d_u+d
equation p(Be -z ﬂyz E_‘L#"'d_g)‘*‘g(l{ dzdx 2 $)=0,
S S \ "\ Dt )+dz+a(K+k)(d2w e dz* 3 +k)d_ll_(d_u+ﬂ+d—
aint-Venant P s SR =ty ) =0 8 |2
7 |(1843)[26] |Hi vi 3(K+k)d‘—‘,(d—“+d_v+ dw) _ o 3 3
lS . 1 s =
fuid equations are not in hi g z) ’
in his paper [26], however we are available f
1lable i .
Stokes p QD‘% -X)+ 2 22 v or it by his tensor. e
8 [(1849)(27)  |(12)s Dv Z-n(gH+oE+ 12—%) _d(du 3 3
fluid p(ﬁ“y)-f-{:-z—u(dzu dgf’; dz 35(—;4—3_;_4_%:2) 0
Dw Y fppdyypdy)_ud(du £ '
(e _ 7z d 4 Y dz? d (du 4 dv d
M Dt )+ S2 — dw d2 2 3dy T+T+—w' =
axw e el w y  d 0
ell pdu 4 dp z 422 t g7 +4—%’-)_.&d du : ' wo |8
9 (1865-66) 3' dz - Cum 373‘ + %2% + a2y n lyd ddz 3?2_(,_1; + %;—;- + ‘;_w) = 3 3
[11] ply 4 dp _ a2 dz% Ed_(—E'Fd—U dw £
kD 2ol e i 4 14 (2 B -ex
plw 4 4 _ a2 2 §E(—+—3 4.12) -
a — Culf¥+L¥+Ly+ 1 d Ezdu d’f )| =pY.,  where, Cu = g2%- ICu |§
u 1d(du dv =
1ol (18707 W+ 5~ Ox Au+l.‘2_(§!:_au 2 Lyt E)|=e2 Sko®z | M |3 3
)?) <ud_u+22_c 33z \ oz a—y+$) =uX
HD :t dy KAU+%3@(@+8U+BW , Ldu o
dw , & y\ Oz ' 3y —) ldy | Su 4 v
Raviei udt+5§“CKAz+l£_8£ ay N Ky, u dt 6;"‘3;4—‘9—2’:0‘
11 yleigh 1 d 30z a,+J-+.6_w where, Cre = L P Cw |2
N |(1883)125] 1dp — _du 2 oy *5: )| =% TTEOS Bk k|3 3
ldm at vV 'u.—ud“___ du
HD ldp _ _dv 2 d Uiy
pdy dt"‘”vv—ujv pdy ) d-;‘.‘.d_vzo
Boltzmann p.a_E " B2 = dy dy
12 5t T3z — RIA 10 (0 v
;1895)[1] (221)p < p2 on u+3am(5§‘,+g—;+%w) — X
D 81+3y—RA'u+li(8u 8 = p
5 33 Ou | 9v 4 dw
pdw+ap y \ Oz ay-i—a):py
13 Prandtl Bt Bz - R|Aw + 10 (ou ;) N )
(19 §_1£+ Bu 3 8z —z—+6—u+a—w — R R
Wlassaza |50 T Ve +odt oyl x 12 y o )| =F2 3 3
HD FOR INC v 9z “524-5—6- du . v
OMPRESSIBLE, IT IS SIM pdz T 30s\5s T By QE)+,,(82u 8%y 2
PLIFIED DIV W = 0, bw 2 az‘f*’wq—%‘g)_
£ g_;GRADP'FI/Aw v % 3
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TABLE 3. Cross-indexed differences on the RDFs f € RFD ( Remark. 1,5,6 : on capillarity)

1

Name/Problem/
no{ Bibl. (Year read)
- Year published/

Laplace

Poisson

Navie

F(r)
at
r=

f(r)

=00

Laplace
1 |capillary action : [9]
1806-07

L1 N K. H
Lo :force attractive only and
f~cif, fe RDF

Poisson

elastic : [18],(1828)-28;
[21],1829;]22],(1829)-31
fluid : [22],(1829)-31
disputing origin:
[18],1828

(with Navier :
[19],1828;[20],1828)

Refer to Laplace’s f € RFD

P, — N :
fab~ )"

P; — N3 : not by
integral but by
sum because
k=-K=0
at once.

P3 — N3 k=c¢
of Navier

Py —+ Ng:fERFD

Navier
elastic:[12],(1821)-27
fluid:{13],(1822)-27

3 |(with Poisson :
[14],1828; [15},1829:
[16],1829; [17],1829
with Arago[17],1829)

Refer to Laplace’s integral

Ni =P :f~e kP

N3 — P : not by sum but
by integral as Laplace does

N3 — Py [r f(r)] # 0,
ek

Ny — Py :rif(r) for r =0,
f € RFD
but only in r = oo,

f(ry/0asr—0

€ in elastic
e, E in fluid

#0

Cauchy elastic & fluid
2]

Gauss

capillary action : [6]
(to Laplace [6],1830
to Bessel[7],1830)

G1 — L :Laplace’s deduction is
conspicuous.

G2 — L2:no necessary to limit ¢ of

c~*f to be very large.

Poisson
capillary action :
[23],1831,

(to Gauss[23])

Same K and H with Laplace

distance if this function, the < characteristic > denoted by f in mass and supposed that the attraction
is uniformly concentrated in the point. e III. The forces, m,m',m", .-
fixed points. For these forces, with the similar way, we will designate the < characteristic F > such that
the inverse-directional distance is used, and with M, M’, M",--
one case, or a mass in the other case, which are supposed in these concentrate. For brevity, we express :

(1)

Q= —yc/zds + —;-(:2 // ds.ds’.p(ds,ds’) + cC'// ds.dS.®(ds, dS)

where, s, s’ are specially denoted spaces ( satisfied with the mobile material ), however we must integrate
twice with the element to resolve it, because ¢ and ® are defined as the functions such that : —fz.dz =
[ Fz.dx = —®x. Then the integral (1) contains sextuplex

dyx,

c.dr = —or,
[r @

and — Fz.dr = ddu,

integral. () Here the integral (1) contains sextuplex integral.(1})

We would like to show that the spacial elements, depending on the three variables, which imply that
the seztuplex integral are to be reduced to the quadruplez integral. ® Our integral (I) neglecting the
— [76'p.dr + [ n0'p.dr’. Clearly this is not important, either the parts 7 and 7’
or to the surface T to ¢ is rather important. The value of the sextuplex integral in the left hand-side of

insensible factors : =

the following expression becomes

/ ds.dS.p(ds. dS) = 4noy0 — 7760 + nT'60 — w/dT.G'p + W/dr'.@'p

5(1}) Poisson recognizes this Gauss’ achievement in [23].

are attractive to the infinitesimal

-, which are treated as a fixed point in

(2)
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4.2. Variation problem to be solved by geometric method.

In the application of previous survey to the evolution the second term of the expression £ in the art.
3,in the art. 6 denote by S in the art.16 o, 7.7’ will be use as s,t,0, if ¢ is the total surface of the space
s, in which the fluid is filled. Therefore whenever this space extensional sensible part however insensible
concentration is kept, this sort of gap ( crevice ), the part of the second part of the expression Q of
(1) becomes = %m'z(sd)O — t00). In static equilibrium it is due to the maximum value, this turns into
~gc [ zds + $c2syy — ime?t0y + meCTOy. In an arbitrary fluid, of which the figure is yield oneself to the
space s meaning invariant, of which the expression becomes as follows : [ zds + %ﬂ.t - @Q.T, and in
an equilibrium state which is due to minimum. Here, we denote %‘l = o?, ﬂ%?ﬂ =82 t=T+U,
and by W, then

W= /zds + (a? = 26HT + U (3)

Here, we consider : the surface, denoted by s, a part U, on which all the points is determined by the
coordinate x,y, z, thesc three values are the distances to an arbitrary horizontal plane. It is capable to
recognize z is, for example, as the indeterminated function by z. y, for these secondary partial differential
with our conventional method, by omitting a bracket, we show it by :i—ii.dx, g—;—.a’y. The structure we
are considering is as follows :
(1) We define the points consisted of an arbitrary and every points on the surface, denoting s with
respect to the rectanglar surface, normal to the exterior direction of s, and in addition, we sect
an angle by cosine between this normal direction to the axis of rectanglar coordinate z,y and 2
with parallel. which we denote by £,7 and {. Thereby it will be :
2 9 .9 dz 13 dz n . dz\2 dz\2 1
Errf+l=1 T=-2. T=-1 = 1+(dx) Jr(dy)_c2 (4)
(2) The boundary of surface I/ become linear in itself, as the same as denoted by P, and while the
motion is supposed necessarily, this element dP ( as the same way of dU as the surface ) is treated
as positive only.
(3) The angle by cosine, that directions of the element dP are expressed with the axis of coordinate of
z, y, z,denoted by X. Y, Z : since we would avoid giving ambiguous sense about the direction,
we define these angles as follows :
o at first, we assume that the normal direction in the element dP to the surface U, and draw
a tangent e next, looking this line innerward, we draw the second side. e finally, in the normal
direction with respect to the surface, we put the third side in the space s to the exterior, and
constituting similarly the next system of three rectangles and the coordinate axis z. y, z.
Thus, we see easily the following expressions (cf. Disquisitiones generales circa superficies
curvas ), using the angle by cosine with the direction to the axis of the coordinates x, y, z are
respectively

n°Z - %Y. (X -2 v - °Xx. (5)

Here, we suppose that £°. %, (¢ are the values of £. 5, ¢ for the points of the element dP. (cf.
(20))
Now, we assume a triangle consisted of three points : P;, P, P3.5 We put the element of U by a triangle
dU consisted of these points, of which the coordinates are : P, : (z, y, z), Py:(x+dz, y+dy, z+
3—;.d.7:+ g—;.dy). Py:(z+dz, y+dy, z+ g—;—.d’x—k g—;.d'y).
If we assume dz.d'y — dy.d’z > 0. then the twice area of this triangle is gained by our principle as

follows :
(da.d'y - dy.d’:v)\/[l ¥ (%)2 + (%)Z] (6)

{(6) becomes ﬁd—z—'i’%iﬂ@ from (4). (1)
o location value by perturbation of Py : (x + éx, y + dy. z + dz).

6(JL) The symbols : P;j, P», P3 are of ours insted of “the first point”, etc.
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® Location value by perturbation of P; :

.’E+d.’l: 6:):_'_(103: dr + doz dU (J‘+(),1‘) (1+ dOz)dr+ déa: dl/
y+dy . (51/+Md.r+d—°yydu , (1/+5q)+ﬁ2df+(1+£u)dy
Z+dzd1'+dzdy 02+d62d.1:+d2d’y (z_’_(sz+(dz+d62)d$+(dy+¢fiéyz)dy

e Location value by perturbation of P3, by the same way : ( omitted. )
(1) We can also show the matrix with only variation as follows :

1+ d‘s‘”)d;r+ d” .dy %—u dr+ (1+ m) dy E.dr+ D.dy where, {'J B ‘é: gfz’ (7)
(1+d‘5$)d’x+"ff’d’y d’x+( +@)d’y Edc+ Ddy D=3 +%

By the way, these principle comes from Lagrange [8, pp.189-236], 7 in which Lagrange states his méthode
des variations ® in hydrostatics. (ff) The duplex triangles 9 including these points, by the same method,
for brevity, by denoting the sum by N, (6) is expressed as follows : (dz.d'y — dy.d’ z)VN.

(4) These values : dzd'y — dyd'z. dzd'x — dzd'z and dyd'z — dzd'y are calculated in permutation by
Jacobian |J| of the three determinants extracted from (7) :

(r.9): ;;dlj‘_‘"@ mo [WEE ] v [ DY E ] W
We denote temporarily the following sum by N, then
Voo [l o ) (1t (e
+ [(1 + %)(gxﬁ + %) d‘sy(dy + d‘sz)] =+ [D? +D';’]D2 + [Ef +E§]E’2 - 2[D1E2 + ElDz],
where, c;(1+%)(1+%)-%‘% 1+‘§‘: ‘fy D = dy+9§,55%+% 8)

and D;.Ds, E,, E; are the two terms consisting of 1) and E respectively, and these coefficients are
correspond to the variables of the equation on the theory of curved surface by Gauss [5]. Extending (8)
with neglecting the second order of 4, for example, %.% or (%)2. etc., and for brevity, denoting the
sum by L, then

W= (14 &)+ (&) [+ ) = (b1 (&) ()

z G e &z

where, L is gained by extracting only one order terms in the expanded terms from (8) :
(1) Here, we see the coefficient 2 included in L in (9) come from two triangles, mentioned in the footnote

(9) 10

N =" C’+(e)D’+(s)E’ +(s)DE
Ao ()-SR D) R @GR 2D

+ [1+(j—;) +(g§)]= 2L+[l+<;—;-) +(Z—;)] (9)

7(4) Section 7. De lequilibre des fluids incompressibles, §2. Ou l'on déduit les dois générales de Véquibre des fluides
incompressibles de la nature des particules qui les composent. (8, pp.204-236}

8() Lagrange[8, p.201]. Today’s mathematical nomenclature is calculus of variations or calcul des variations by The
mathematical dictionary ( 4th edition in 2007 ) edited by MSJ, 1954, p.432, (Japanese).

9(l}) The duplex triangles mean a rectangle made of two adjoining triangles.

10(44) We show the four terms in N (9) as follows :

o= (1 Y () (e ) () () () e %

L) ey () B ()

(e e ()
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(1) From (9)
C = [ () ) - S (B (B £
R HORE)) oo

! Here we may recall (4), then the followings hold : the ratio of the first triangle to the second and plus

3 L _* 1st triangle __« 2 12 R §
1 becomes, 1+ TEHEY 1+ mﬁg—e =% 1+(*L. " Moreover, this is independent of the figure

of a triangle dU, then, it turns out,
LdU

1+ (82 +($)
Expanding L in (11) using (4) and (10), then

oaU = au [ G (1 +.¢2) = (G2 + P)en+ L2 (e .?) - Bogg - D2 (12)

4.3. Integral expression by decomposing dU into dQ and dU.
From (12), all variation of the surface U is obtained by the following two integrals :

J ()5 - en(8) - 2] = . [ v [ - en 2 o (e SECEL I E

8dl = — =" C2Ldl/ (11)

dzx dz

and these are separately treated. We consider as follows : e at first, we take the plane, rectangle to
the coordinate axis y, and such as, the value determinated by itself, suitable it, it is between peripheral,
the last value, which y has in the surface U. e next, for this plane, on the peripheral £, we cut in two
part, or four, or six, etc., the points, of which the first coordinate will be followed by 20,2/, z",--- ; e
then, as if the other quantities, we put suitablly the indicies for these points ; by the same way, we cut
the surface with other plane, this infinite neighbourhood and parallel, which encounters with the second
coordinate at the point of y + dy ; e finally, between these planes, we could get the elements of peripheral
dP° dP'.dP",- .., then we could see easily the left-hand side being expressed as follows :

dy = —Y%P% = +Y'dP' = —-Y"dP" = +Y"dP" etc. (14)

If, in addition to, we consider the infinitely many planes, rectangles to the coordinate axis z. of which
the element dz between z° and z’, or between x” and z”, or etc., it corresponds to the element, : 3

dU = fi-x—gjﬂ, (15)
Jow= [lav(s )52 - Dhen-Loec] + [av](e+.c7) By Brg, bz,

(1)

Therefore, from here, it is clear for a part of integration by parts : A, that corresponds to the part
of the surface depending on between the interval : y. y + dy, to have by the following integral, i.e.,
2 2
substituting the right hand-side of (15) into A of (13), then A = dyfdx(ﬂ-—Z'—q—“ff—; - %n.%‘-sf — fd{Sz), by
extending from z = z° to z = z/, next, from z = 2’ to x = ' etc. In fact, considering the limit of this
integration by parts, we express A and B by (14) and (15), as follows :

2, 2 22+¢® dén
_ e én. _ N SRS
4 = / (———C b — >dy £62)YdP / CU (br—— — by—& — 62> ) (16)
E 2+ 2
_ [(&n. £+ Ny 2de g
B-/(?éz —C——éy—n&))sdPﬁt/CdU(&c@ oy o +52dy) (17)

ll(U) According to Gauss’ notation, L denotes a first triangle, of which N is consisted.

12(J}) The two triangles of first and second are contiguous and construct a quadrilateral by two dU.

13(0,) In fact, comparerig the two expressions : (13) with (16) and (13) with (17) respectively, then this correspondence
is deduced.
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Here we determine for all the circumference P, we get (Q from the first terms of both (16) and (17),
[an + Y(n2 + Cz)] o — [X(§2 +¢?) + an]ﬁy +(Xn¢ - YEC)éz = (Q. Moreover, for every point of
the surface U, we get V from the second terms of both (16) and (17).

dg g PLLR i d
B T Ve (PO @ ..
(dy dz )cda+ (5 dy )by + (dx+dy)<5z'v (18)
That is, we can put
§U = /QdP+/VdU (19)

The first integral is to be extended along all the circumference P, and the second is on all surface U. '
Formulae for @ and V notably contradict X¢ + Yo + Z( = 0,'® @ has always the symmetric form as
follows :

éx dy Oz
XY Z

€ n ¢

When we see the form of V, we can reduce from the formulae (4), and moreover, from €2+ 7%+ (2 =1,
we can deduce & % + n% +¢ % =0, then by dividing this expression with ¢ from the both side of
hand, then

-

Q=(Y( - Zn)dz+ (26 - XQ)0y +(Xn-YE)éz =" Q= (20)

2 2
gt __(ndn , dey e G /1 B W 1 S
Cdx Cdr dz dz dz C'dr dx iz ¢'dz

We may replace the coefficient of {6z in V of (18), using (4) and (21),

i L S S SR CL Y S S AL )

dy dz dy dz Cdr  \(dy ¢dr = ¢\dz " dy
£ £2+¢2
Similarly for 8y, 4% ~ 25— = (% + $2). Then V of (18) is reduced as follows : V = (¢6z +

ndy + ¢ 6z)(%§ + ‘;—3). Before going forward, we must illustrate conveniently the important geometrical

expression. Here we restrict the various direction, we would like to present the following its intuitionally
facile method, which we introduced in Disquisitiones generales circa superficies curvas. We consider the
following geometric structure. e At first, we put the sphere, of which the radius = 1 at the center of an
arbitrary surface, we denote the axis of the coordinates z,y and z by the points (1).(2) and (3), @ next,
taking exterior domain denoted by s, we number a point denoting by the point (4) toward the normal
direction on surface ; ® then, at an arbitrary point on surface, drawing various rectangle direction toward
point of itself, which we denote by the point (5), e finally, for the variation of itself, we suppose that

the quantity /82 + 0y? + 022 is always positive, and we denote the quantity by de for brevity, then 16
6z = be.cos(1,5). &y = be.cos(2.5), 6z = de.cos(3,5).

Here, we consider the every point on the surface. In this boundary, if we call the periphery P, we
can consider the two directions. ({}) (Remark. About the expression of cos, when (e) is a unique point
naming, (e, ) means the angle between two points taking an intermidiate of the origin. ) (1) o At
first, we denote the corresponding point to dP by the point (6), ® next, we draw the rectangle direction
to the surface, which is the inner normally-directed tangential to the surface, then we denote the point
by (7), e then, by the hypothesis, these points (6),(7) and (4) look toward the same direction , 17 o
finally, using above-mentionhed (1),(2) and (3) then (4.6),(4.7) and (6,7) make a cube, '® when we
consider the angles as the rectangles. Thus, the above-mentioned equations (5) are transformed into

14(1,L) This is what is called the Gaussian integral formula in two dimensions.

15(4) This means X¢& + Y7 + Z¢ # 0.

1G(iL)By the way, for understanding Gauss’ method of description of angle, we can see the same method by Lagrange in
1788.

17() This image is considered that there are three directions emitting from a common point and making a certain angle
with two directions ( i.e. points.)

18(4) (4,6), (4.7) and (6,7) make a plane consisting of a cube respectively.
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TABLE 4. Comparison of @ and V in 6/ = [ QdP + [ VdU between two methods

{nojvaluelanalytic method |geometric method ]
11Q |I@= (%L&r - §2—2'§36y - néz)X + (ﬁ%iém - §-<ﬂ6y ~£62)Y Q = —de.cos(5,7)
V = e.cos(4, 5).(% + j—'l)

2 |V v=(’—1;;_;l*dﬂ%)@ﬁ(%‘d%g—cz)céy+(%+5‘3>®z =5e.cos(4,5).(%+ﬁy)

nZ ~ (Y =cos(1.7), (X —€Z =co0s(2,7), €Y —nX = cos(3.7). In the previous article, these forms
are as follows :

Q = —de.cos(5,7), V = de.cos(4, 5).(% + Z—Z) (22)

cos(4,5) clearly indicates, the translation of Finally, we get the value of the right-hand side in V. 19

d§  di 5[ d? d?z dz dz  d? dz
Kol ek e ol () S ()]
where, (3 = [1+(%)2+(3—;)2]~%, (23)

where, R and R’ are the radii of curvature respectively. From (19), (22) and (23), we get the five
expressions. (I) 60U = [QdP + [VdU = — [ fe.cos(5.7).dP + [ §e.cos(4.5).(1 + % )dU/.  Evolving
further the variation, for the expression W is cxplained by the variation of figure of the space s, we
would like to start to argue at first, from the variation of the space s. Recalling that we consider that
the prism with the equal sides and oriented to the solid body, then, on this point, we can see that this
prism has the following relations : (II) ds = [dU.de.cos(4,5). (III) & [zds = [ zdU.de.cos(4,5).
(IV) OT = [dP.de.cos(5,8), If we introduce here the angle (7.8) = i as the boundary angle, we can
formulate (V) as follows : (V) cos(5,7) = cos(5, 8). cosi, where de = /622 + 6y2 + 0z2.

By the combination of above formulae [, - - -, IV, we get the variational expression of W, where, W is
the value of (3).

5W:/dU.ée.cos(4,5).[z+a2(l+ !

7 ?27)] - /dP.(Se. cos(5, 8).(a? cos i — o + 23?), (24)

where, z + 02(-1% + %) = Const. If we set Const = 0, then z = —az(% + 1—;7), and, z is the height of

capillary action, o and 3 are the values defined in (3). From (24)
oW = — /dP.ée. cos(5,8).(a’ cosi — a? + 26%) = o? /dP.ée. cos(5,8).(l - 2(§)2 — cos z)
A

Here, we assume A such that cos4 = 1 — 281112(%) =1- 2%;. If sing = 5 then , W =
o? [ dP.de.cos(5.8).(cos A — cos i), where, the integral is to be extended along the total line P.

5. Conclusions

The “two-constant” were defined in terms of kernel functions of RDF's, describing the characteristics
of dissipation or diffusion within isotropic and homogeneous fluids that were necessary for the interpre-
tation of the nature of fluid or the formulation of the equations of the fluid mechanics including kinetics,
equilibrium and capillarity. With their origin perhaps arising in the work of Laplace in 1805, these sorts of
functions are simple examples of today’s distributions and hypergeometric function of Schwarz proposed
in 1945. Gauss [6] also contributed to develop fundamental conception of RDF or M DN S equations for
fluid mechanics including capillary action, because he formulated the equations with two-function instead
of two-constant and these were the the superior method from other contemporaries with the progenitors
of NS equations.

19(4) f. Laplace (9, 10] had deduced his same expression with Gauss’ (23). cf. Poisson [22], p.105.
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