Gradient Flow for the Helfrich Variational Problem

埼玉大学大学院理工学研究科 長澤 壯之 (Takeyuki Nagasawa) Department of Mathematics, Faculty of Science, Saitama University Saitama 338-8570, Japan

Abstract

The gradient flow associated to the Helfrich variational problem, called the *Helfrich flow*, is considered. A local existence result of *n*-dimensional Helfrich flow is given for any n. We also discuss known results, related topics, the development of our research group in this decade, and some open problems.

1 The Helfrich variational problem and its background

Let $\Sigma \subset \mathbb{R}^{n+1}$ be a closed and oriented hypersurface immersed in \mathbb{R}^{n+1} . We do not assume that the inclusion $\Sigma \subset \mathbb{R}^{n+1}$ is an embedding. The function H stands for the mean curvature. The integral

$$\int_{\Sigma} H^2 dS$$

is called the *Willmore functional*, in which many mathematicians have been interested.

Now consider a variational problem for a functional related with the Willmore functional under some constraints. Let $A(\Sigma)$ be the area of Σ . The vectors \mathbf{f} and $\boldsymbol{\nu}$ are the position vector of a point on Σ and the unit normal vector there respectively. Put

$$V(\Sigma) = -\frac{1}{n+1} \int_{\Sigma} \boldsymbol{f} \cdot \boldsymbol{\nu} \, dS.$$

This is the enclosed volume, when Σ is an embedded hypersurface and ν is the inner normal. For given constants c_0 , A_0 , and V_0 , consider critical points of

$$W(\Sigma) = \frac{n}{2} \int_{\Sigma} (H - c_0)^2 dS$$

under the constrains $A(\Sigma) = A_0$, $V(\Sigma) = V_0$.

This problem was firstly proposed by Helfrich [5] as a model of shape transformation theory of human red blood cells. For this case n is 2, and c_0 is the spontaneous curvature which is determined by the molecular structure of cell membrane. The surface Σ stands for the cell membrane.

For n = 1, the functional is

$$\frac{1}{2}\int_{\Sigma}\kappa^2 ds - c_0\int_{\Sigma}\kappa\,ds + \frac{1}{2}c_0^2\int_{\Sigma}ds,$$

where $\kappa (= H)$ is the curvature of the curve Σ , and s is the arch-length parameter. If we consider the variational problem under the constrain of length A among curves with fixed rotation number, then we can replace the functional with the first integral $\frac{1}{2} \int_{\Sigma} \kappa^2 ds$ only. Because the second and third integrals are respectively constant multiples of rotation number and the length, which are invariant in our problem. According to [3], a shape transformation of a closed loop of plastic tape between two parallel flat plates is governed by the one-dimensional Helfrich variational problem. This problem is also related with the spectral optimization problem for plain domains. Let Ω be a bounded plane domain, and Σ be its boundary. The function G(x, y, t) is the Green function for the heat equation on $\Omega \times (0, T)$. The asymptotic expansion

$$\int_{\Omega} G(x, x, t) \, dx = \frac{1}{4\pi t} \left(a_0 + a_1 t^{\frac{1}{2}} + a_2 t + a_3 t^{\frac{3}{2}} + \cdots \right) \quad (t \to +0)$$

are well-known as the trace formula. Here

$$a_0 = V(\Sigma), \quad a_1 = -\frac{\sqrt{\pi}}{2}A(\Sigma), \quad a_2 = \frac{1}{3}\int_{\Sigma}\kappa\,ds \quad a_3 = \frac{\sqrt{\pi}}{64}\int_{\Sigma}\kappa^2 ds.$$

 a_2 is determined by the topology of Ω . Hence the one-dimensional Helfrich problem is equivalent to the following problem: For given a_0 , a_1 and a_2 find the domain Ω which minimize a_3 . This problem was proposed and investigated by Watanabe [19, 20].

2 Known results

By the method of Lagrange multipliers, the Helfrich variational problem is described as

$$\delta W(\Sigma) + \lambda_1 \delta A(\Sigma) + \lambda_2 V(\Sigma) = 0.$$

Here δ stands for the first variation, and λ_j 's are Lagrange multipliers. According to [4], the above equation becomes

$$\Delta_g H + (H - c_0) \left\{ \frac{n^2}{2} H(H + c_0) + R \right\} - \lambda_1 n H - \lambda_2 = 0.$$

Here Δ_g is the Laplace-Beltrami operator, and R is the scalar curvature. Regarding Σ as the image $f(\Sigma_0)$ of a (n-1)-dimensional manifold Σ_0 , we obtain a quasilinear elliptic equation of forth order.

The two-dimensional Helfrich problem has a long history, and there are several known facts. It is easy to see spheres are critical points. In 1977, Jenkins [6] had found bifurcating solutions from spheres numerically. Subsequently Peterson [16] and Ou-Yang-Helfrich [15] formally investigated their stability/instability. Their arguments were justified mathematically by Takagi and the author in [11]. Au-Wan [2] considered critical points far from spheres but with rotational symmetry. Critical points without rotational symmetry were constructed by Takagi and the author [12].

In this article, we consider the associated gradient flow, called the Helfrich flow

$$v(t) = -\delta W(\Sigma(t)) - \lambda_1 \delta A(\Sigma(t)) - \lambda_2 \delta V(\Sigma(t)).$$
(2.1)

The function $v = \partial_t \mathbf{f} \cdot \boldsymbol{\nu}$ is the normal velocity of deformation of families of hypersurfaces $\Sigma(t)$. We shall overview known results about the Helfrich flow in the next section.

3 The Helfrich flow

In considering the flow problem, the multiplies are unknown functions of t. It is natural that they are determined so that $\frac{d}{dt}A(\Sigma(t)) = \frac{d}{dt}V(\Sigma(t)) = 0$. We have

$$\frac{d}{dt}A(\Sigma(t)) = \langle \delta A(\Sigma(t)), v(t) \rangle, \quad \frac{d}{dt}V(\Sigma(t)) = \langle \delta V(\Sigma(t)), v(t) \rangle,$$

where $\langle \cdot, \cdot \rangle$ is the $L^2(\Sigma(t))$ -inner product. It follows from these and (2.1) that

$$\begin{pmatrix} \langle \delta A(\Sigma(t)), \delta A(\Sigma(t)) \rangle & \langle \delta V(\Sigma(t)), \delta A(\Sigma(t)) \rangle \\ \langle \delta A(\Sigma(t)), \delta V(\Sigma(t)) \rangle & \langle \delta V(\Sigma(t)), \delta V(\Sigma(t)) \rangle \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \\ = - \begin{pmatrix} \langle \delta A(\Sigma(t)), \delta W(\Sigma(t)) \rangle \\ \langle \delta V(\Sigma(t)), \delta W(\Sigma(t)) \rangle \end{pmatrix}.$$
(3.1)

Denote the Gramian of the left-hand side by $G(\Sigma(t))$. If $G(\Sigma(t))$ does not vanish, then the multipliers are uniquely determined by the above relation. In this case we denote

$$\lambda_j = \lambda_j(\Sigma(t)).$$

When $G(\Sigma(t))$ vanishes, the multiplies are not uniquely determined, but we can show that $\lambda_1 \delta A(\Sigma(t)) + \lambda_2 \delta(\Sigma(t))$ is uniquely determined.

Theorem 3.1 Let $P(\Sigma)$ be the orthogonal projection from $L^2(\Sigma)$ to $(\operatorname{span}_{L^2(\Sigma)} \{ \delta A(\Sigma), \delta V(\Sigma) \})^{\perp}$. Then the equation of Helfrich flow can be written as

$$v(t) = -P(\Sigma(t))\delta W(\Sigma(t)) \quad (t > 0).$$
(3.2)

Solutions, if exist, satisfy

$$\frac{d}{dt}W(\Sigma(t)) \equiv -\|v(t)\|_{L^2(\Sigma(t))}^2, \quad \frac{d}{dt}A(\Sigma(t)) \equiv 0, \quad \frac{d}{dt}V(\Sigma(t)) \equiv 0.$$
(3.3)

We get the existence and uniqueness of the initial value problem. Let Σ_0 be the initial hypersurface, and h^{α} be the little Hölder space.

- **Theorem 3.2** (i) Assume that Σ_0 is in the class of $h^{3+\alpha}$ for some $\alpha \in (0,1)$, and that $G(\Sigma_0) \neq 0$. Then there exists T > 0 such that there uniquely exists the solution $\{\Sigma(t)\}_{0 \leq t < T}$ of (3.2) satisfying $\Sigma(0) = \Sigma_0$.
 - (ii) Assume that $G(\Sigma_0) = 0$. H_0 and R_0 are the mean curvature and the scalar curvature of Σ_0 respectively. Put

$$\bar{H}_0 = \frac{1}{A(\Sigma_0)} \int_{\Sigma_0} H_0 dS, \quad \tilde{R}_0 = R_0 - \frac{1}{A(\Sigma_0)} \int_{\Sigma_0} R_0 dS.$$

If $(\bar{H}_0 - c_0) \tilde{R}_0 \equiv 0$, then there exists a global solution $\{\Sigma(t)\}_{t \geq 0}$ of (3.2) satisfying $\Sigma(0) = \Sigma_0$.

Remark 3.1 The uniqueness is uncertain in the case (ii). We, however, can show the uniqueness when n = 1. See Theorem 5.1.

Sketches of proofs shall be given in the next two sections. For details, see [13].

The low-dimensional Helfrich flow has been considered in [7] (for n = 2) and in [9] (for n = 1).

In [7], the multiplier λ_j 's are not determined as above, but are given as "known" constants. That is, for given $\{\lambda_1, \lambda_2, \Sigma_0\}$ as the data, solutions of (2.1) were constructed. Of course, solutions do not satisfy $\frac{d}{dt}A(\Sigma(t)) \equiv 0$,

 $\frac{d}{dt}V(\Sigma(t)) \equiv 0$, and we cannot expect the global existence. Indeed, there exist solutions blowing up in finite/infinite time. The problem is shifted to find triples $\{\lambda_1, \lambda_2, \Sigma_0\}$ so that the solution can extend globally in time. In [7], the existence of such triples near spheres. Furthermore, such triples form a finite dimensional center manifold. The class of initial surfaces is $h^{2+\alpha}$ for some $\alpha \in (0, 1)$, which is wider than ours. In our formulation $\nabla_g H$ appears in the concrete expression of $\lambda_j(\Sigma(t))$, and therefore we need extra regularity of Σ_0 than [7]. See Remark 5.1 below.

In [9], the gradient flow $\{\Sigma_{\varepsilon}(t)\}$ associated with the functional

$$W(\Sigma_{\varepsilon}) + \frac{1}{2\varepsilon} (A(\Sigma_{\varepsilon}) - A_0)^2 + \frac{1}{2\varepsilon} (V(\Sigma_{\varepsilon}) - V_0)^2$$

was constructed. The solution of (2.1) was obtained as the limit of $\{\Sigma_{\varepsilon}(t)\}\$ as $\varepsilon \to +0$. This is a global solution, and satisfies (3.3). The class of initial curves is C^{∞} , but the uniqueness was uncertain.

4 Proof of Theorem 3.1

Theorem 3.1 is a special case of general theory of projected gradient flow [18].

We denote $\Sigma(t)$ simply by Σ . $\|\cdot\|$ stands for the $L^2(\Sigma)$ -norm. Put

$$\tilde{H} = H - \frac{1}{A(\Sigma)} \int_{\Sigma} H \, dS, \quad H_* = \begin{cases} \frac{\tilde{H}}{\|\tilde{H}\|} & \text{if } \tilde{H} \neq 0, \\ 0 & \text{if } \tilde{H} \equiv 0, \end{cases} \quad 1_* = \frac{1}{\|1\|}$$

Note that $\langle H_*, 1_* \rangle = 0$. Since $\delta A(\Sigma) = -nH$ and $\delta V(\Sigma) = -1$, we have

 $\operatorname{span}_{L^2(\Sigma)} \{ \delta A(\Sigma), \delta V(\Sigma) \} = \operatorname{span}_{L^2(\Sigma)} \{ H, 1 \} = \operatorname{span}_{L^2(\Sigma)} \{ H_*, 1_* \}.$

Hence (2.1) becomes

$$v = -\delta W(\Sigma) - \lambda_1 \delta A(\Sigma) - \lambda_2 \delta V(\Sigma) = -\delta W(\Sigma) - \mu_1 1_* - \mu_2 H_*$$
(4.1)

for some μ_j . It follows from $\frac{d}{dt}A(\Sigma) = \frac{d}{dt}V(\Sigma) = 0$ that

$$\langle 1_*, v \rangle = \langle H_*, v \rangle = 0.$$

Taking the $L^2(\Sigma)$ -inner product (4.1) and 1_* , H_* , we get

$$0 = \langle 1_*, v \rangle = \langle 1_*, \delta W(\Sigma) \rangle - \mu_1, \quad 0 = \langle H_*, v \rangle = \langle H_*, \delta W(\Sigma) \rangle - \mu_2 \|H_*\|^2.$$

In spite of $H_* \equiv 0$ or not, it holds that

$$-\mu_1 1_* - \mu_2 H_* = \langle 1_*, \delta W(\Sigma) \rangle 1_* + \langle H_*, \delta W(\Sigma) \rangle H_*.$$

Consequently we obtain (3.2).

It holds for solutions to (3.2) that

$$\frac{d}{dt}W(\Sigma) = \langle \delta W(\Sigma), v \rangle = \langle \delta W(\Sigma), -P(\Sigma)\delta W(\Sigma) \rangle$$
$$= -\|P(\Sigma)\delta W(\Sigma)\|^2 = -\|v\|^2.$$

Since $v \in (\text{span} \{ \delta A(\Sigma), \delta V(\Sigma) \})^{\perp}$, we have

$$\frac{d}{dt}A(\Sigma) = \langle \delta A(\Sigma), v \rangle = 0, \quad \frac{d}{dt}V(\Sigma) = \langle \delta V(\Sigma), v \rangle = 0.$$

5 Sketch of Proof of Theorem 3.2

The local existence for the case $G(\Sigma_0) \neq 0$ is in a similar manner to [7]. If the Helfrich flow with $\Sigma(0) = \Sigma_0$ exists, and if Σ is close to Σ_0 in C^2 -sense for small t > 0, then $G(\Sigma) \neq 0$. It follows from (3.1) that

$$\begin{pmatrix} \lambda_1(\Sigma) \\ \lambda_2(\Sigma) \end{pmatrix} = -\frac{1}{G(\Sigma)} \begin{pmatrix} \langle \delta V(\Sigma), \delta V(\Sigma) & -\langle \delta V(\Sigma), \delta A(\Sigma) \\ -\langle \delta A(\Sigma), \delta V(\Sigma) & \langle \delta A(\Sigma), \delta A(\Sigma) \end{pmatrix} \begin{pmatrix} \langle \delta A(\Sigma), \delta W(\Sigma) \\ \langle \delta V(\Sigma), \delta W(\Sigma) \end{pmatrix}.$$
(5.1)

Taking into the first variation formulas of A, V, and W (see [4]), we have

$$\begin{split} \langle \delta A(\Sigma), \delta A(\Sigma) \rangle &= n^2 \int_{\Sigma} H^2 dS, \quad \langle \delta A(\Sigma), \delta V(\Sigma) \rangle = n \int_{\Sigma} H \, dS, \\ \langle \delta V(\Sigma), \delta V(\Sigma) \rangle &= \int_{\Sigma} dS, \\ \langle \delta A(\Sigma), \delta W(\Sigma) \rangle &= n \int_{\Sigma} \left(|\nabla_g H|^2 - \frac{1}{2} n^2 H^4 + H^2 R - c_0 H R + \frac{1}{2} n c_0^2 H^2 \right) dS, \\ \langle \delta V(\Sigma), \delta W(\Sigma) \rangle &= \int_{\Sigma} \left(-\frac{1}{2} n^2 H^3 + H R - c_0 R + \frac{1}{2} n c_0^2 H \right) dS, \\ G(\Sigma) &= \int_{\Sigma} n^2 H^2 dS \int_{\Sigma} dS - \left(\int_{\Sigma} n H \, dS \right)^2 = n^2 \int_{\Sigma} dS \int_{\Sigma} \tilde{H}^2 dS. \end{split}$$
(5.2)

Inserting these into (5.1), we have the concrete expression of $\lambda_j(\Sigma)$'s. Thus we get

Proposition 5.1 When $G(\Sigma) \neq 0$, the Lagrange multiplies $\lambda_j(\Sigma)$ are written by

$$\int_{\Sigma} |\nabla_g H|^2 dS, \quad \int_{\Sigma} H^p dS \quad (p = 0, 1, 2, 3, 4), \quad \int_{\Sigma} H^q R \, dS \quad (q = 0, 1, 2),$$

on which the multipliers analytically depend.

In order to prove Theorem 3.2 (i), we regard Σ as the perturbation of Σ_0 in the normal direction with signed distance ρ . It is possible for a short time interval. Let $\bigcup U_{\ell}$ be an open covering of Σ_0 . We denote the inner unit normal vector fields of Σ_0 by $\boldsymbol{\nu}_0$. The mapping $X_{\ell} : U_{\ell} \times (-a, a) \ni (\boldsymbol{s}, r) \rightarrow$ $s + r \nu_0(s) \in \mathbb{R}^{n+1}$ is a C^{∞} -diffeomorphism from $U_{\ell} \times (-a, a)$ to $\mathcal{R}_{\ell} = \operatorname{Im}(X_{\ell})$ provided a > 0 is sufficiently small. Let denote the inverse mapping X_{ℓ}^{-1} by $(S_{\ell}, \Lambda_{\ell})$, where $S_{\ell}(X_{\ell}(\boldsymbol{s}, r)) = \boldsymbol{s} \in U_{\ell}$, and $\Lambda_{\ell}(X_{\ell}(\boldsymbol{s}, r)) = r \in (-a, a)$.

When $\Sigma(t)$ is sufficiently close to Σ_0 for small t > 0, we can represent it as a graph of a function on Σ_0 as

$$\Sigma_{\rho(t)} = \Sigma(t) = \bigcup_{\ell=1}^{m} \operatorname{Im} \left(X_{\ell} : U_{\ell} \to \mathbb{R}^{n+1}, \left[\boldsymbol{s} \mapsto X_{\ell}(\boldsymbol{s}, \rho(\boldsymbol{s}, t)) \right] \right).$$

Conversely for a given function ρ : $\Sigma_0 \times [0,T) \rightarrow (-a,a)$ we define the mapping $\Phi_{\ell,\rho}$ from $\mathcal{R}_{\ell} \times [0,T)$ to \mathbb{R} by

$$\Phi_{\ell,\rho}(x,t) = \Lambda_{\ell}(x) - \rho(S_{\ell}(x),t).$$

Then $(\Phi_{\ell,\rho}(\cdot,t))^{-1}(0)$ gives the surface $\Sigma_{\rho(t)}$. The velocity in the direction of inner normal vector field of $\Sigma = \{\Sigma_{\rho(t)} \mid t \in \Sigma_{\rho(t)} \mid t \in U_{\rho(t)}\}$ [0,T) at $(x,t) = (X_{\ell}(\boldsymbol{s},\rho(\boldsymbol{s},t)),t)$ is given by

$$v(\boldsymbol{s},t) = -\left.\frac{\partial_t \Phi_{\ell,\rho}(\boldsymbol{x},t)}{\|\nabla_x \Phi_{\ell,\rho}(\boldsymbol{x},t)\|}\right|_{\boldsymbol{x}=X_{\ell}(\boldsymbol{s},\rho(\boldsymbol{s},t))} = \left.\frac{\partial_t \rho(\boldsymbol{s},t)}{\|\nabla_x \Phi_{\ell,\rho}(\boldsymbol{x},t)\|}\right|_{\boldsymbol{x}=X_{\ell}(\boldsymbol{s},\rho(\boldsymbol{s},t))}$$

We can write down the Laplace-Beltrami operator, the mean curvature, the scalar curvature, and the Lagrange multipliers in terms of the function ρ and its derivatives, denoted Δ_{ρ} , $H(\rho)$, $R(\rho)$, and $\lambda_j(\rho)$ respectively. Then the equation (3.2) is represented as

$$\partial_t \rho = L_{\rho} \left(-\Delta_{\rho} H(\rho) - \frac{1}{2} n^2 H^3(\rho) + H(\rho) R(\rho) - c_0 R(\rho) + \frac{1}{2} n c_0^2 H(\rho) + \lambda_1(\rho) n H(\rho) + \lambda_2(\rho) \right),$$
(5.3)

where

$$L_{\rho} = \left\| \nabla_x \Phi_{\ell,\rho}(x,t) \right\|_{x=X_{\ell}(s,\rho(s,t))}.$$

We can find the expression of not only Δ_{ρ} , $H(\rho)$ but also the Gaussian curvature $K(\rho)$ in [7] for the case n = 2. In our case the expression of Δ_{ρ} and $H(\rho)$ is the same as in [7], and we can get that of $R(\rho)$ in a similar way. In particular $\lambda_j(\rho)$ can be written in terms of ρ and its derivatives up to third order. Combining Proposition 5.1, we can see that the right-hand side of (5.3) is linear with respect to the fourth-order derivative of ρ , but not linear with respect to lower derivatives. The principal term $-L_{\rho}\Delta_{\rho}H(\rho)$ is the same as the equation dealt with [7, (2.1)]. Let $h^{\gamma}(\Sigma_0)$ be the little Hölder space on Σ_0 of order γ . We fix $0 < \alpha < \beta < 1$. Then, for $\beta_0 \in (\alpha, \beta)$ and a > 0, put

$$\mathcal{U} = \{ \rho \in h^{3+eta_0}(\Sigma_0) \, | \, \| \rho \|_{C^2(\Sigma_0)} < a \}.$$

For two Banach spaces E_0 and E_1 satisfying $E_1 \hookrightarrow E_0$, the set $\mathcal{H}(E_1, E_0)$ is the class of $A \in \mathcal{L}(E_1, E_0)$ such that -A, considered as an unbounded operator in E_0 , generates a strongly continuous analytic semigroup on E_0 .

Proposition 5.2 There exist

$$Q \in C^{\infty}(\mathcal{U}, \mathcal{H}(h^{4+\alpha}(\Sigma_0), h^{\alpha}(\Sigma_0))), \quad F \in C^{\infty}(\mathcal{U}, h^{\beta_0}(\Sigma_0))$$

such that the equation (5.3) is in the form

$$\rho_t + Q(\rho)\rho + F(\rho) = 0.$$

Applying [1, Theorem 12.1] with $X_{\beta} = \mathcal{U}$, $E_1 = h^{4+\alpha}(\Sigma_0)$, $E_0 = h^{\alpha}(\Sigma_0)$, and $E_{\gamma} = h^{\beta_0}(\Sigma_0)$, we get the assertion (i) in Theorem 3.2.

Remark 5.1 The equation dealt with in [7] is a similar fourth-order equation, but linear with respect to the third order derivative of ρ . Therefore it was solvable for initial data in the class $h^{2+\alpha}$.

Now consider the assertion (ii) in Theorem 3.2. Before going to prove, we see an example of Σ_0 satisfying $G(\Sigma_0) = 0$ and $(\bar{H}_0 - c_0) \tilde{R}_0 \equiv 0$. A typical example is a sphere. Indeed, spheres have constant mean curvature, and there for $G(\Sigma_0) = 0$ (see (5.2)). Since the scalar curvature is also constant, we have $\tilde{R}_0 = 0$. Furthermore spheres are stationary solutions to (3.2).

To show the assertion (ii), it is enough to see that Σ_0 is a stationary solution.

Assume that $G(\Sigma) = 0$. It follows from (5.2) that Σ has a constant mean curvature $H = \overline{H}$. Hence

$$\operatorname{span}_{L^{2}(\Sigma)} \left\{ \delta A(\Sigma), \delta V(\Sigma) \right\} = \operatorname{span}_{L^{2}(\Sigma)} \{ 1 \},$$

$$P(\Sigma)\phi = \phi - \frac{1}{A(\Sigma)} \int_{\Sigma} \phi \, dS$$

for $\phi \in L^2(\Sigma)$. Therefore at the time when $G(\Sigma(t)) = 0$, the equation (3.2) becomes

$$\begin{split} v(t) &= -\delta W(\Sigma) + \frac{1}{A(\Sigma)} \int_{\Sigma} \delta W(\Sigma) \, dS \\ &= -\Delta_g \bar{H} - \frac{1}{2} n^2 \bar{H}^3 + \bar{H}R - c_0 R + \frac{1}{2} n c_0^2 \bar{H} \\ &+ \frac{1}{A(\Sigma)} \int_{\Sigma} \left(\frac{1}{2} n^2 \bar{H}^3 - \bar{H}R + c_0 R - \frac{1}{2} n c_0^2 \bar{H} \right) dS \\ &= - \left(\bar{H} - c_0 \right) \tilde{R}, \end{split}$$

where

$$\tilde{R} = R - \frac{1}{A(\Sigma)} \int_{\Sigma} R \, dS.$$

Consequently if the hypersurface Σ_0 satisfies $G(\Sigma_0) = 0$ and $(\bar{H}_0 - c_0) \tilde{R}_0 \equiv 0$, then it is a stationary solution of (3.2).

We do not know the uniqueness in case of Theorem 3.2 (ii), expect for n = 1.

Theorem 5.1 Consider the one-dimensional Helfrich flow. If Σ_0 satisfies $G(\Sigma_0) = 0$, then $\{\Sigma(t) \equiv \Sigma_0\}$ is the unique global solution with $\Sigma(0) = \Sigma_0$.

Remark 5.2 When n = 1, the scalar curvature is zero by its definition, and therefore the condition $(\bar{H}_0 - c_0) \tilde{R}_0 \equiv 0$ is automatically satisfied.

Proof. When n = 1, the integral $\int_{\Sigma} H dS$ is a constant multiple of the rotation number. Therefore it does not depend on t. Consequently we have

$$\frac{d}{dt}G(\Sigma) = A_0 \frac{d}{dt} \int_{\Sigma} H^2 dS = 2A_0 \frac{d}{dt} W(\Sigma) = -2A_0 \|v\|^2 \leq 0.$$

Combining this with $G(\Sigma) \geq 0$ (see (5.2)), it holds that $G(\Sigma) \equiv 0$ provided $G(\Sigma_0) = 0$. Using the above relation again, we have $v \equiv 0$, that is, Σ is stationary.

6 Gramian estimates

Assume that $G(\Sigma_0) \neq 0$, then we may do $G(\Sigma) \neq 0$ for small t > 0. Since $(G(\Sigma))^{-1}$ appears in the equation, it is desirable for proving global existence of solutions to have some a propri estimates of $G(\Sigma)$. It follows from (5.2) that $G(\Sigma) \geq 0$, which is algebraically trivial since it is a Gramian. Now we consider lower bounds of G.

Proposition 6.1 We have

$$G(\Sigma) \ge \frac{n^2 \left\{ A(\Sigma)^2 - (n+1)V(\Sigma) \int_{\Sigma} H \, dS \right\}^2}{A(\Sigma) \int_{\Sigma} \left(\tilde{\boldsymbol{f}} \cdot \boldsymbol{\nu} \right)^2 dS},$$

where

$$\tilde{\boldsymbol{f}} = \boldsymbol{f} - \frac{1}{A(\Sigma)} \int_{\Sigma} \boldsymbol{f} \, dS.$$

Proof. It follows from $\delta A = -nH$, $\delta V = -1$ and scaling argument that

 $\langle \delta A, \tilde{f} \cdot \boldsymbol{\nu} \rangle = nA, \quad \langle \delta A, \tilde{f} \cdot \boldsymbol{\nu} \rangle = (n+1)V.$

Therefore we obtain

$$n \left| A - (n+1)\bar{H}V \right| = \left| \langle \delta A - n\bar{H}\delta V, \tilde{f} \cdot \boldsymbol{\nu} \rangle \right|$$
$$= \left| \langle n\tilde{H}, \tilde{f} \cdot \boldsymbol{\nu} \rangle \right| \leq n \|\tilde{H}\| \|\tilde{f} \cdot \boldsymbol{\nu}\|$$

Combining (5.2), we get the assertion.

This is an a priori lower bound of $G(\Sigma)$ when n = 1. To see this, putting $\tilde{f} = (\tilde{f}_1, \tilde{f}_2)$, we have

$$|\tilde{f}_i|^2 \leq A(\Sigma) \int_{\Sigma} |\partial_s f_i|^2 ds = A(\Sigma) \int_{\Sigma} \tau_i^2 ds.$$

Summing up with respect to i, we get

$$\|\tilde{\boldsymbol{f}}\|_{\infty} \leq A(\Sigma)$$

Therefore Proposition 6.1 implies

$$G(\Sigma) \ge \left(1 - \frac{2V(\Sigma)}{A(\Sigma)^2} \int_{\Sigma} \kappa \, ds\right)^2.$$

 \Box

Since $A(\Sigma)$, $V(\Sigma)$, and $\int_{\Sigma} \kappa \, ds$ are invariant, the estimate is a priori.

Let $n \geq 2$, and let $L_1(\Sigma)$ be the first eigenvalue of $-\Delta_g$. Putting $\tilde{f} = (\tilde{f}_1, \dots, \tilde{f}_n)$, we have

$$\begin{split} \int_{\Sigma} \left(\tilde{\boldsymbol{f}} \cdot \boldsymbol{\nu} \right)^2 dS &\leq \sum_i \int_{\Sigma} |\tilde{f}_i|^2 dS \\ &\leq L_1^{-1}(\Sigma) \sum_i \int_{\Sigma} |\nabla f_i|^2 dS = L_1^{-1}(\Sigma) \sum_i \int_{\Sigma} g^{jk} \partial_j f_i \partial_k f_i dS \\ &= L_1^{-1}(\Sigma) \int_{\Sigma} g^{jk} \partial_j \boldsymbol{f} \cdot \partial_k \boldsymbol{f} \, dS = L_1^{-1}(\Sigma) \int_{\Sigma} g^{jk} g_{jk} dS \\ &= nA(\Sigma) L_1^{-1}(\Sigma). \end{split}$$

Combining Proposition 6.1, we have a lower estimate of $G(\Sigma)$, but it is not a priori. Because $\int_{\Sigma} H dS$ and $L_1(\Sigma)$ may depend on t.

7 Related and open problems

Okabe [14] considered the gradient flow associated with

$$\int_{\Sigma} \kappa^2 ds$$

under constraints

$$A(\Sigma) = A_0, \quad \gamma(\Sigma) = 1.$$

Here γ is the local length defined as below. Let $f(\theta)$ be a family of curves, where θ is a fixed coordinate. The local length is given by

$$\gamma = \|\partial_{\theta} f\|_{\mathbb{R}^2}.$$

It is a function on the curve, hence the corresponding multiplier is pointwise. Since γ depends on the choice of coordinate, it is not a geometrical quantity. Consequently there is a tangential component in the equation. For the gradient flow with one constraint

$$\gamma(\Sigma) = 1,$$

see [8]. For the comparison Okabe's result with the one-dimensional Helfrich flow, see [10].

In [9], the global existence of one-dimensional Helfrich flow, however, the global solvability of multi-dimensional Helfrich flow is still open. The asymptotic behavior has not been investigated yet.

In connection with the global existence, it is interesting to show a priori estimate of $G(\Sigma)$ for the case $n \geq 2$, for example, an estimate in terms of $A(\Sigma)$, $V(\Sigma)$, and $\int_{\Sigma} K dS$, which are invariant. Here K is the Gauß curvature.

References

- Amann, H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992)", Ed.: H.-J. Schmeisser & H. Triebel, Teubner-Text Math. 133, B. G. Trubner, Stuttgart, Leipzig, 1993, pp.9–126.
- [2] Au, T. K.-K., & T. Y.-H. Wan, Analysis on an ODE arisen from studying the shape of a red blood cell, J. Math. Anal. Appl 282 (1) (2003), 279-295.
- [3] Brailsfold, J. D., Mehcnoelastic properties of biological membranes, in "Membrane Fluidity in Biology, Vol.1 Concepts of Membrane Structure", Academic Press, San Diego, 1983, pp.291–319.
- [4] Chen, B.-y., On a variational problem on hypersurfaces, J. London Math. Soc. (2) 6 (1973), 3321–325.
- [5] Helfrich, W., Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch **28c** (1973), 693-703.
- [6] Jenkins, J. T., Static equilibrium configurations of a model red blood cell, J. Math. Biol. 4 (1977), 149–169.
- [7] Kohsaka, Y., & T. Nagasawa, On the existence for the Helfrich flow and its center manifold near spheres, Differential Integral Equations 19 (2) (2006), 121-142.
- [8] Koiso, N., On the motion of a curve towards elastica, in "Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992)", Ed.: A. L. Besse, Sémin. Congr. 1, Soc. Math. France, Paris, 1996, pp. 403–436.
- [9] Kurihara T. & T. Nagasawa, On the gradient flow for a shape optimization problem of plane curves as a singular limit, Saitama Math. J. 24 (2006/2007), 43-75.
- [10] Miyamoto, Y., T. Nagasawa & F. Suto, How to unify the total/locallength-constraints of the gradient flow for the bending energy of plane curves, Kybernetika 45 (4) (2009), 615-624.
- [11] Nagasawa, T., & I. Takagi, Bifurcating critical points of bending energy with constraints related to the shape of red blood cells, Cal. Var. Partial Differential Equations 16 (1) (2003), 63–111.

- [12] Nagasawa, T., & I. Takagi, in preparation.
- [13] Nagasawa, T., & T. Yi, The n-dimensional Helfrich flow, preprint.
- [14] Okabe, S., The motion of elastic planar closed curve under the areapreserving condition, Indiana Univ. Math. J. 56 (4) (2007), 1871–1912.
- [15] Ou-Yang Zhong-can, & W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A (3) 39 (10) (1989), 5280-5288.
- [16] Peterson, M. A., An instability of the red blood cell shape, J. Appl. Phys. 57 (5) (1985), 1739–1742.
- [17] Satake, K. & H. Honda, Evolution towards the solution of a shape optimization problem, Forma 17 (3) (2002), 253–274.
- [18] Shikhman, V. & O. Stein, Constrained optimization: projected gradient flows, J. Optim. Theory Appl. 140 (1) (2009), 117–130.
- [19] Watanabe, K., Plane domains which are spectrally determined, Ann. Global Anal. Geom. 18 (5) (2000), 447–475.
- [20] Watanabe, K., Plane domains which are spectrally determined. II, J. Inequal. Appl. 7 (1) (2002), 25–47.