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Abstract

The gradient flow associated to the Helfrich variational problem,
called the Helfrich flow, is considered. A local existence result of n-
dimensional Helfrich flow is given for any n.We also discuss known
results,related topics,the development of our research group in this
decade,and some open problems.

1 The Helfrich variational problem
and its background

Let ¥ C R™*! be a closed and oriented hypersurface immersed in R**!. We
do not assume that the inclusion ¥ C R™*! is an embedding. The function
H stands for the mean curvature. The integral

/ H*dS
s

is called the Willmore functional, in which many mathematicians have been
interested.

Now consider a variational problem for a functional related with the Will-
more functional under some constraints. Let A(X) be the area of ¥. The
vectors f and v are the position vector of a point on ¥ and the unit normal
vector there respectively. Put

1
V(Z)z—n_i_l/zf-udS.
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This is the enclosed volume, when ¥ is an embedded hypersurface and v is
the inner normal. For given constants cy, Ag, and Vp, consider critical points
of

n

W (%) 5 /Z;(H — co)2dS

under the constrains A(X) = Ay, V(Z) = V4.

This problem was firstly proposed by Helfrich [5] as a model of shape
transformation theory of human red blood cells. For this case n is 2, and ¢
is the spontaneous curvature which is determined by the molecular structure
of cell membrane. The surface ¥ stands for the cell membrane.

For n = 1, the functional is

1//~c2d3—c0//~zds+lc(2)/ds,
2 Js 5 27 s

where k(= H) is the curvature of the curve ¥, and s is the arch-length
parameter. If we consider the variational problem under the constrain of
length A among curves with fixed rotation number, then we can replace
the functional with the first integral 1 [ x%ds only. Because the second
and third integrals are respectively constant multiples of rotation number
and the length, which are invariant in our problem. According to [3], a
shape transformation of a closed loop of plastic tape between two parallel
flat plates is governed by the one-dimensional Helfrich variational problem.
This problem is also related with the spectral optimization problem for plain
domains. Let €2 be a bounded plane domain, and ¥ be its boundary. The
function G(z,y, t) is the Green function for the heat equation on 2 x (0, T).
The asymptotic expansion

1
/ G(z,z,t)dz = — (ao + ait? + agt + a3t% + - ) (t — +0)
are well-known as the trace formula. Here

1
a=V(X), a= —ﬁA(Z), ay = —/ kds az= ﬁ k2ds.
2 3 /s 64 Js

as is determined by the topology of 2. Hence the one-dimensional Helfrich
problem is equivalent to the following problem: For given ag, a; and as
find the domain  which minimize a;. This problem was proposed and
investigated by Watanabe [19, 20].



2 Known results

By the method of Lagrange multipliers, the Helfrich variational problem is
described as

IW(Z) + MOA(Z) + AV (X) =0.
Here 4 stands for the first variation, and A;’s are Lagrange multipliers. Ac-
cording to [4], the above equation becomes

2
A H + (H — ¢) {%H(H+c0)+R} — AnH = X, =0.

Here A, is the Laplace-Beltrami operator, and R is the scalar curvature.
Regarding ¥ as the image f(X,) of a (n — 1)-dimensional manifold Xg, we
obtain a quasilinear elliptic equation of forth order.

The two-dimensional Helfrich problem has a long history, and there are
several known facts. It is easy to see spheres are critical points. In 1977,
Jenkins [6] had found bifurcating solutions from spheres numerically. Subse-
quently Peterson [16] and Ou-Yang-Helfrich [15] formally investigated their
stability /instability. Their arguments were justified mathematically by Tak-
agi and the author in [11]. Au-Wan [2] considered critical points far from
spheres but with rotational symmetry. Critical points without rotational
symmetry were constructed by Takagi and the author [12].

In this article, we consider the associated gradient flow, called the Helfrich
flow

v(t) = =W (Z(t)) — MOA(Z(2)) — M0V (Z(2)). (2.1)
The function v = 0; f - v is the normal velocity of deformation of families of
hypersurfaces X(t). We shall overview known results about the Helfrich flow
in the next section.

3 The Helfrich flow

In considering the flow problem, the multiplies are unknown functions of ¢.
It is natural that they are determined so that 4A(Z(t)) = 2V(Z(t)) = 0.
We have

d

%A(Z(t)) = (0A(Z(1)),v(t),  ZV(EQ®)) = (OV(E(1), v (1),
where (-, -) is the L?(X(¢)-inner product. It follows from these and (2.1) that
( (0A(X(2)),0A(S(2))) OV (2(2)), 6A(X(2))) ) ( A1 )
(0A(Z(2)), 6V (E(2))) (V(E(2)),0V(2(2))) Az

_ _( (BA(Z(Y)), SW (Z(2))) ) (3.1)
(BV(Z(1)), sW(Z(®)) )
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Denote the Gramian of the left-hand side by G(X(¢)). If G(X(t)) does not
vanish, then the multipliers are uniquely determined by the above relation.
In this case we denote

Aj = Xi(5(2)).

When G(X(t)) vanishes, the multiplies are not uniquely determined, but we
can show that A;6A(X(t)) + A26(X(¢)) is uniquely determined.

Theorem 3.1 Let P(X) be the orthogonal projection from L*(X) to

(span L2(x) {5A(Z),5V(E)})L. Then the equation of Helfrich flow can be
written as
v(t) = —P(Z(t))6W(XZ(¢)) (t>0). (3.2)
Solutions, if exist, satisfy
d d d
EEW(Z(t)) = —[Jo()||Z2(z ) Zi_tA(Z(t)) =0, EV(Z(t)) =0. (3.3)

We get the existence and uniqueness of the initial value problem. Let X
be the initial hypersurface, and h® be the little Holder space.

Theorem 3.2 (i) Assume that I¢ is in the class of h3® for some o €
(0,1), and that G(Xy) # 0. Then there exists T > 0 such that there
uniquely exists the solution {X(t)}o<,or of (3.2) satisfying £(0) = Zo.

(ii) Assume that G(39) = 0. Hp and Ry are the mean curvature and the
scalar curvature of ¥ respectively. Put
_ 1

~ 1
Hy= —— | HodS, Ro=Ry——w
0= A(To) Jy, 08 Fo=Fo- oy )

If (Ho—co) Ro = 0, then there exists a global solution {£(t)};20 of
(3.2) satisfying £(0) = X,.

RydS.

Remark 3.1 The uniqueness is uncertain in the case (ii). We, however, can
show the uniqueness when n = 1. See Theorem 5.1.

Sketches of proofs shall be given in the next two sections. For details, see
[13].

The low-dimensional Helfrich flow has been considered in [7] (for n = 2)
and in [9] (for n = 1).

In [7], the multiplier A;’s are not determined as above, but are given as
“known” constants. That is, for given {A;, A2, 5o} as the data, solutions of
(2.1) were constructed. Of course, solutions do not satisfy %A(X(t)) = 0,
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24V (S(t)) = 0, and we cannot expect the global existence. Indeed, there
exist solutions blowing up in finite/infinite time. The problem is shifted to
find triples {1, A2, Zo} so that the solution can extend globally in time. In
[7], the existence of such triples near spheres. Furthermore, such triples form
a finite dimensional center manifold. The class of initial surfaces is A%+ for
some « € (0,1), which is wider than ours. In our formulation V,H appears
in the concrete expression of \;(X(¢)), and therefore we need extra regularity
of ¥y than [7]. See Remark 5.1 below.
In [9], the gradient flow {Z.(¢)} associated with the functional

W(Se) + 5-(A(S2) ~ Ao) + 5 (V(Ze) — o)’

was constructed. The solution of (2.1) was obtained as the limit of {.(¢)}
as € — +0. This is a global solution, and satisfies (3.3). The class of initial
curves is C*, but the uniqueness was uncertain.

4 Proof of Theorem 3.1

Theorem 3.1 is a special case of general theory of projected gradient flow [18].
We denote X(¢) simply by X. || - || stands for the L?(X)-norm. Put

. 1 £
H=H-—— [ HdS, H,={ )4l - L=
A(Z) /2 { 0 if =0, 1]l

Note that (H,,1.) = 0. Since §A(X) = —nH and §V(X) = —1, we have

span 2y {0A(X), 0V ()} = span 12y { H, 1} = span r2(s){H, L.}
Hence (2.1) becomes

v=—0W(Z) = MOA(Z) — X0V (Z) = =W (Z) — w1 le — poH,  (4.1)
for some p;. It follows from £A(X) = 2V(X) = 0 that

(1,,v) = (H,,v) = 0.
Taking the L?(X)-inner product (4.1) and 1,, H,, we get
0= (L,v) = (1.,6W(2)) —p1, 0= (H,,v)=(H,,dW(Z)) — pal H.|".
In spite of H, = 0 or not, it holds that
—ply — poH, = (1., 0W (X)) 1. + (H,,0W (X)) H.,.
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Consequently we obtain (3.2).
It holds for solutions to (3.2) that

LW(s) = GW(T),v) = (BW(E), —P(E)W (L))

dt
= —||P(Z)éW (D)I? = —|lv]|*.
Since v € (span {6A(Z), 8V (Z)})*, we have

d d
SA(R) = (AD), 1) =0, ZV(D)= (8V(Z),v) =0.

5 Sketch of Proof of Theorem 3.2

The local existence for the case G(Zy) # 0 is in a similar manner to [7]. If
the Helfrich flow with £(0) = £, exists, and if ¥ is close to g in C*-sense
for small ¢t > 0, then G(X) # 0. It follows from (3.1) that

A(X)
A2 (%)
<= 1 ( (6V(X),8V(Z) —(6V(E),0A(Z) ) ( (0A(X), W (%) >
G(Z) \ —(0A(Z),0V(Z)  (6A(X),0A(X) (6V (%), (5W(E)(5 15
Taking into the first variation formulas of A, V', and W (see [4]), we haV(;

(BAS), SA(T)) = n? / H?dS, (SA(T),6V(S)) =n /2 Hds,

>
6V (D), 6v(s) = [ s,
>
0A(X),0W (X)) =n |V H|? — —1—n2H4 + H?R — coHR + lnc2H2 ds,
5 g 2 2 0

(6V(Z),6W(D)) = /E (_%TRH?' +HR—coR + %nch> ds,

G(Z) = L n?H?dS /E ds — ( /E ans)2 = n? /2 ds L H*S. (5.2)

Inserting these into (5.1), we have the concrete expression of A;(X)’s. Thus
we get



Proposition 5.1 When G(X) # 0, the Lagrange multiplies \;(X) are writ-
ten by

/|ng|2dS, /des (p=0,1,2,3,4), /HquS (g=0,1,2),
)} = b))

on which the multipliers analytically depend.

In order to prove Theorem 3.2 (i), we regard X as the perturbation of X,

in the normal direction with signed distance p. It is possible for a short time
m

interval. Let U U, be an open covering of ¥,. We denote the inner unit

=1
normal vector fields of ¥y by vy. The mapping X, : Uy x (—a,a) 3 (s,7) —

s+rvg(s) € R**! is a C®-diffeomorphism from U, X (—a, a) to Ry = Im(X,)
provided a > 0 is sufficiently small. Let denote the inverse mapping X, ! by
(Se, Ag), where Sp(Xy(s,r)) = 8 € Uy, and Ay(Xe(s,7)) =7 € (—a,a).

When X(¢) is sufficiently close to ¥, for small ¢ > 0, we can represent it
as a graph of a function on X as

Yoy = L(t) = U Im (X, : Up = R™, [s = Xy(s, p(s,1))]) .

Conversely for a given function p : ¥y x [0,7) — (—a,a) we define the
mapping &, , from R, x [0,T) to R by

By,(z,) = Aelx) — p(Se(x), 1)

Then (®,,(-,t))”" (0) gives the surface Xo(t)-
The velomty in the direction of inner normal vector field of £ = {X,4) | ¢ €

[0,T)} at (z,t) = (Xi(s, p(s, 1)), 1) is given by

at@g p(x t)

_ 6tp(8,t)
YY) =~ .30, (2,0

z=Xy(8,p(s,t)) ”v‘”q)e’p(x’ Il z=Xy(s,p(s,t)) .

We can write down the Laplace-Beltrami operator, the mean curvature,
the scalar curvature, and the Lagrange multipliers in terms of the function
p and its derivatives, denoted A,, H(p), R(p), and A;(p) respectively. Then
the equation (3.2) is represented as

0 = L, (= A,5H(p) = 37 H*(p) + HAR(p) - cR(p) + nciH(p)

+ M(p)nH(p) + /\2(17)) |
(5.3)
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where
Lp = llv.’l,'@e,p(x? t)“lz:X[(s,p(s,t)) :

We can find the expression of not only A,, H(p) but also the Gaussian
curvature K(p) in [7] for the case n = 2. In our case the expression of 4,
and H(p) is the same as in [7], and we can get that of R(p) in a similar
way. In particular \;(p) can be written in terms of p and its derivatives up
to third order. Combining Proposition 5.1, we can see that the right-hand
side of (5.3) is linear with respect to the fourth-order derivative of p, but not
linear with respect to lower derivatives. The principal term —L,A,H(p) is
the same as the equation dealt with [7, (2.1)]. Let A7(%,) be the little Holder
space on X, of order 7. We fix 0 < a < 8 < 1. Then, for § € (o, ) and
a > 0, put
U = {p € B***?(Z,) | llpllcz(zo) < a}-

For two Banach spaces E, and E; satisfying E; — E,, the set H(E, Ep)

is the class of A € L(E, Ep) such that —A, considered as an unbounded
operator in Ey, generates a strongly continuous analytic semigroup on Eq.

Proposition 5.2 There exist
Q € C°U, H(h*** (o), h%(%0))), F € COU,h* (o))
such that the equation (5.3) is in the form

pi + Q(p)p + F(p) = 0.

Applying [1, Theorem 12.1] with X5 = U, E; = h*t*(%,), Eo = h*(Zo),
and E, = h®(%,), we get the assertion (i) in Theorem 3.2.

Remark 5.1 The equation dealt with in [7] is a similar fourth-order equa-
tion, but linear with respect to the third order derivative of p. Therefore it
was solvable for initial data in the class h2+.

Now consider the assertion (ii) in Theorem 3.2. Before going to prove, we
see an example of ¥¢ satisfying G(Xp) = 0 and (ﬂo — co) Ry = 0. A typical
example is a sphere. Indeed, spheres have constant mean curvature, and
there for G(Xy) = 0 (see (5.2)). Since the scalar curvature is also constant,
we have R, = 0. Furthermore spheres are stationary solutions to (3.2).

To show the assertion (ii), it is enough to see that ¥, is a stationary
solution.

Assume that G(X) = 0. It follows from (5.2) that 3 has a constant mean
curvature H = H. Hence

span rz2(sy {0A(X), 6V (X)} = span 2y {1},



and

P(E)¢=¢—ﬁ[&¢ds

for ¢ € L?(X). Therefore at the time when G(X(t)) = 0, the equation (3.2)
becomes

1
v(t) = —W(Z +—/5W2 ds
(0= ~SWE) + 5 [ WS
= —-A,H — —2—n21:13 + HR — coR + incgfl
L[ (Lege g _Len
) +~A(2)/2(2n1-1 HR+cyR 2ncOH) s
= —(A-c)R,

where

- 1
R=R———/Rds.
AZ) Js

Consequently if the hypersurface ¥, satisfies G(o) = 0 and (Ho — ¢o) Ry
0, then it is a stationary solution of (3.2).

]

We do not know the uniqueness in case of Theorem 3.2 (ii), expect for
n=1.

Theorem 5.1 Consider the one-dimensional Helfrich flow. If ¥y satisfies
G(Zo) =0, then {X(t) = Lo} is the unique global solution with £(0) = X,.

Remark 5.2 When n = 1, the scalar curvature is zero by its definition, and
therefore the condition (Ho — C()) Ry = 0 is automatically satisfied.

Proof. When n = 1, the integral sz dS is a constant multiple of the
rotation number. Therefore it does not depend on ¢. Consequently we have

d oo d [ d ) o
ZG(%) = Aot /Z HdS = 240 S W (S) = ~240]Jo]]? S 0.

Combining this with G(X) 2 0 (see (5.2)), it holds that G(X) = 0 provided
G(Xp) = 0. Using the above relation again, we have v = 0, that is, ¥ is
stationary. |
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6 Gramian estimates

Assume that G(Xg) # 0, then we may do G(X) # 0 for small £ > 0. Since
(G(Z))! appears in the equation, it is desirable for proving global existence
of solutions to have some a propri estimates of G(X). It follows from (5.2)
that G(X) = 0, which is algebraically trivial since it is a Gramian. Now we
consider lower bounds of G.

Proposition 6.1 We have

s n? {A(z:)?— (n+1)V(2)LHdS}2
= A(z:)/z(f-u)zds

~ 1
f=f‘m/,:fd5'

Proof. It follows from A = —nH, 6V = —1 and scaling argument that

)

where

(A, f -vy=nA, (6A,f -v) =+ 1)V.
Therefore we obtain

n|A~ (n+)AV| = (54— nHV, f -v)
= |(nf1, § )| S mllANNF - vl

Combining (5.2), we get the assertion. O

_ This is an a priori lower bound of G(X) when n = 1. To see this, putting
.f = (f17f2)’ we have

AP < A®) [ |o.sids = A®) [ ofds.
b b
Summing up with respect to ¢, we get

1F llo S A(E)

Therefore Proposition 6.1 implies

G(X) 2 (1 — i‘zg;z /Ends>2.
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Since A(X), V(X), and [ kds are invariant, the estimate is a priori.
_Let n 2 2, and let L;(X) be the first eigenvalue of —A,. Putting f =
(f17 e 7fn)7 we have

L(f.y>2d5§;/2|ﬁ-|2d8
<L®Y /E VAPds = L7'(5) Y /z 0, 00 fidS

= L7'(D) [ ¢*0f 0ufdS = Li() [ ogeds
& 2
= nA(D) LI (D).

Combining Proposition 6.1, we have a lower estimate of G(X), but it is not
a priori. Because [ HdS and L;(X) may depend on ¢.

7 Related and open problems

Okabe [14] considered the gradient flow associated with

/ k2ds
¥

A(S) =4, (D) =1
Here y is the local length defined as below. Let f(6) be a family of curves,
where 0 is a fixed coordinate. The local length is given by

v = [|0p f||r2-

It is a function on the curve, hence the corresponding multiplier is point-
wise. Since 7 depends on the choice of coordinate, it is not a geometrical
quantity. Consequently there is a tangential component in the equation. For
the gradient flow with one constraint

(E) =1,
see [8]. For the comparison Okabe’s result with the one-dimensional Helfrich
flow, see [10].

In [9], the global existence of one-dimensional Helfrich flow, however,
the global solvability of multi-dimensional Helfrich flow is still open. The
asymptotic behavior has not been investigated yet.

In connection with the global existence, it is interesting to show a priori
estimate of G(X) for the case n 2 2, for example, an estimate in terms
of A(X), V(¥), and [ K dS, which are invariant. Here K is the GauB

curvature.

under constraints
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