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Abstract

The gradient flow associated to the Helfrich variational problem,
called the Helfrich flow, is considered. A local existence result of n-
dimensional Helfrich flow is given for any n.We also discuss known
results,related topics,the development of our research group in this
decade,and some open problems.

1 The Helfrich variational problem
and its background

Let $\Sigma\subset \mathbb{R}^{n+1}$ be a closed and oriented hypersurface immersed in $\mathbb{R}^{n+1}$ . We
do not assume that the inclusion $\Sigma\subset \mathbb{R}^{n+1}$ is an embedding. The function
$H$ stands for the mean curvature. The integral

$\int_{\Sigma}H^{2}dS$

is called the Willmore functional, in which many mathematicians have been
interested.

Now consider a variational problem for a functional related with the Will-
more functional under some constraints. Let $A(\Sigma)$ be the area of $\Sigma$ . The
vectors $f$ and $\nu$ are the position vector of a point on $\Sigma$ and the unit normal
vector there respectively. Put

$V( \Sigma)=-\frac{1}{n+1}\int_{\Sigma}f\cdot\nu dS$ .
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This is the enclosed volume, when $\Sigma$ is an embedded hypersurface and $\nu$ is
the inner normal. For given constants $c_{0},$ $A_{0}$ , and $V_{0}$ , consider critical points
of

$W( \Sigma)=\frac{n}{2}\int_{\Sigma}(H-c_{0})^{2}dS$

under the constrains $A(\Sigma)=A_{0},$ $V(\Sigma)=V_{0}$ .
This problem was firstly proposed by Helfrich [5] as a model of shape

transformation theory of human red blood cells. For this case $n$ is 2, and $c_{0}$

is the spontaneous curvature which is determined by the molecular structure
of cell membrane. The surface $\Sigma$ stands for the cell membrane.

For $n=1$ , the functional is

$\frac{1}{2}\int_{\Sigma}\kappa^{2}ds-c_{0}\int_{\Sigma}\kappa ds+\frac{1}{2}c_{0}^{2}\int_{\Sigma}ds$,

where $\kappa(=H)$ is the curvature of the curve $\Sigma$ , and $s$ is the arch-length
parameter. If we consider the variational problem under the constrain of
length $A$ among curves with fixed rotation number, then we can replace
the functional with the first integral $\frac{1}{2}\int_{\Sigma}\kappa^{2}ds$ only. Because the second
and third integrals are respectively constant multiples of rotation number
and the length, which are invariant in our problem. According to [3], a
shape transformation of a closed loop of plastic tape between two parallel
flat plates is governed by the one-dimensional Helfrich variational problem.
This problem is also related with the spectral optimization problem for plain
domains. Let $\Omega$ be a bounded plane domain, and $\Sigma$ be its boundary. The
function $G(x, y, t)$ is the Green function for the heat equation on $\Omega\cross(0, T)$ .
The asymptotic expansion

$\int_{\Omega}G(x, x, t)dx=\frac{1}{4\pi t}(a_{0}+a_{1}t^{\frac{1}{2}}+a_{2}t+a_{3}t^{\frac{3}{2}}+\cdots)$ $(tarrow+O)$

are well-known as the trace formula. Here

$a_{0}=V(\Sigma)$ , $a_{1}=- \frac{\sqrt{\pi}}{2}A(\Sigma)$ , $a_{2}= \frac{1}{3}\int_{\Sigma}\kappa ds$ $a_{3}= \frac{\sqrt{\pi}}{64}\int_{\Sigma}\kappa^{2}ds$.

$a_{2}$ is determined by the topology of $\Omega$ . Hence the one-dimensional Helfrich
problem is equivalent to the following problem: For given $a_{0},$ $a_{1}$ and $a_{2}$

find the domain $\Omega$ which minimize $a_{3}$ . This problem was proposed and
investigated by Watanabe [19, 20].
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2 Known results
By the method of Lagrange multipliers, the Helfrich variational problem is
described as

$\delta W(\Sigma)+\lambda_{1}\delta A(\Sigma)+\lambda_{2}V(\Sigma)=0$ .
Here $\delta$ stands for the first variation, and $\lambda_{j}$ ’s are Lagrange multipliers. Ac-
cording to [4], the above equation becomes

$\Delta_{g}H+(H-c_{0})\{\frac{n^{2}}{2}H(H+c_{0})+R\}-\lambda_{1}nH-\lambda_{2}=0$ .

Here $\Delta_{g}$ is the Laplace-Beltrami operator, and $R$ is the scalar curvature.
Regarding $\Sigma$ as the image $f(\Sigma_{0})$ of a $(n-1)$-dimensional manifold $\Sigma_{0}$ , we
obtain a quasilinear elliptic equation of forth order.

The two-dimensional Helfrich problem has a long history, and there are
several known facts. It is easy to see spheres are critical points. In 1977,
Jenkins [6] had found bifurcating solutions from spheres numerically. Subse-
quently Peterson [16] and Ou-Yang-Helfrich [15] formally investigated their
stability/instability. Their arguments were justified mathematically by Tak-
agi and the author in [11]. Au-Wan [2] considered critical points far from
spheres but with rotational symmetry. Critical points without rotational
symmetry were constructed by Takagi and the author [12].

In this article, we consider the associated gradient flow, called the Helfrich
flow

$v(t)=-\delta W(\Sigma(t))-\lambda_{1}\delta A(\Sigma(t))-\lambda_{2}\delta V(\Sigma(t))$ . (2.1)
The function $v=\partial_{t}f\cdot\nu$ is the normal velocity of deformation of families of
hypersurfaces $\Sigma(t)$ . We shall overview known results about the Helfrich fiow
in the next section.

3 The Helfrich flow
In considering the flow problem, the multiplies are unknown functions of $t$ .
It is natural that they are determined so that $\frac{d}{dt}A(\Sigma(t))=\frac{d}{dt}V(\Sigma(t))=0$ .
We have

$\frac{d}{dt}A(\Sigma(t))=\langle\delta A(\Sigma(t)),$ $v(t)\rangle$ , $\frac{d}{dt}V(\Sigma(t))=\langle\delta V(\Sigma(t)),$ $v(t)\rangle$ ,

where $\langle\cdot,$ $\cdot\rangle$ is the $L^{2}(\Sigma(t)$ -inner product. It follows from these and (2.1) that

$(\{_{\delta A((t)),\delta V((t))}^{\delta A(\sum_{\Sigma}(t)),\delta A(\sum_{\Sigma}(t))}\}$ $\{_{\delta V((t)),\delta V((t))}^{\delta V(\sum_{\Sigma}(t)),\delta A(\sum_{\Sigma}(t))}\})(\begin{array}{l}\lambda_{1}\lambda_{2}\end{array})$

$=-(\{_{\delta V((t)),\delta W((t))}^{\delta A(\sum_{\Sigma}(t)),\delta W(\sum_{\Sigma}(t))}\})$ .
(3.1)
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Denote the Gramian of the left-hand side by $G(\Sigma(t))$ . If $G(\Sigma(t))$ does not
vanish, then the multipliers are uniquely determined by the above relation.
In this case we denote

$\lambda_{j}=\lambda_{j}(\Sigma(t))$ .

When $G(\Sigma(t))$ vanishes, the multiplies are not uniquely determined, but we
can show that $\lambda_{1}\delta A(\Sigma(t))+\lambda_{2}\delta(\Sigma(t))$ is uniquely determined.

Theorem 3.1 Let $P(\Sigma)$ be the orthogonal projection from $L^{2}(\Sigma)$ to
$($span $L^{2}(\Sigma)\{\delta A(\Sigma), \delta V(\Sigma)\})^{\perp}$ Then the equation of Helfrich flow can be
written as

$v(t)=-P(\Sigma(t))\delta W(\Sigma(t))$ $(t>0)$ . (3.2)

Solutions, if exist, satisfy

$\frac{d}{dt}W(\Sigma(t))\equiv-\Vert v(t)\Vert_{L^{2}(\Sigma(t))}^{2}$ , $\frac{d}{dt}A(\Sigma(t))\equiv 0$ , $\frac{d}{dt}V(\Sigma(t))\equiv 0$. (3.3)

We get the existence and uniqueness of the initial value problem. Let $\Sigma_{0}$

be the initial hypersurface, and $h^{\alpha}$ be the little H\"older space.

Theorem 3.2 (i) Assume that $\Sigma_{0}$ is in the class of $h^{3+\alpha}$ for some $\alpha\in$

$(0,1)$ , and that $G(\Sigma_{0})\neq 0$ . Then there exists $T>0$ such that there
uniquely exists the solution $\{\Sigma(t)\}_{0\leqq t<T}$ of (3.2) satisfying $\Sigma(0)=\Sigma_{0}$ .

(ii) Assume that $G(\Sigma_{0})=0$ . $H_{0}$ and $R_{0}$ are the mean curvature and the
scalar cumature of $\Sigma_{0}$ respectively. Put

$\overline{H}_{0}=\frac{1}{A(\Sigma_{0})}\int_{\Sigma_{0}}H_{0}dS$, $\tilde{R}_{0}=R_{0}-\frac{1}{A(\Sigma_{0})}\int_{\Sigma_{0}}R_{00}dS$.

If $(H_{0}^{-}-c_{0})\tilde{R}_{0}\equiv 0$ , then there exists a global solution $\{\Sigma(t)\}_{t\geqq 0}$ of
(3.2) satisfying $\Sigma(0)=\Sigma_{0}$ .

Remark 3.1 The uniqueness is uncertain in the case (ii). We, however, can
show the uniqueness when $n=1$ . See Theorem 5.1.

Sketches of proofs shall be given in the next two sections. For details, see
[13].

The low-dimensional Helfrich flow has been considered in [7] $($ for $n=2)$

and in [9] $($ for $n=1)$ .
In [7], the multiplier $\lambda_{j}$ ’s are not determined as above, but are given as

“known” constants. That is, for given $\{\lambda_{1}, \lambda_{2}, \Sigma_{0}\}$ as the data, solutions of
(2.1) were constructed. Of course, solutions do not satisfy $\frac{d}{dt}A(\Sigma(t))\equiv 0$ ,
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$\frac{d}{dt}V(\Sigma(t))\equiv 0$ , and we cannot expect the global existence. Indeed, there
exist solutions blowing up in $finite/infinite$ time. The problem is shifted to
find triples $\{\lambda_{1}, \lambda_{2}, \Sigma_{0}\}$ so that the solution can extend globally in time. In
[7], the existence of such triples near spheres. Furthermore, such triples form
a finite dimensional center manifold. The class of initial surfaces is $h^{2+\alpha}$ for
some $\alpha\in(0,1)$ , which is wider than ours. In our formulation $\nabla_{g}H$ appears
in the concrete expression of $\lambda_{j}(\Sigma(t))$ , and therefore we need extra regularity
of $\Sigma_{0}$ than [7]. See Remark 5.1 below.

In [9], the gradient flow $\{\Sigma_{\epsilon}(t)\}$ associated with the functional

$W( \Sigma_{\epsilon})+\frac{1}{2\epsilon}(A(\Sigma_{\epsilon})-A_{0})^{2}+\frac{1}{2\epsilon}(V(\Sigma_{\epsilon})-V_{0})^{2}$

was constructed. The solution of (2.1) was obtained as the limit of $\{\Sigma_{\epsilon}(t)\}$

as $\epsilonarrow+0$ . This is a global solution, and satisfies (3.3). The class of initial
curves is $C^{\infty}$ , but the uniqueness was uncertain.

4 Proof of Theorem 3.1
Theorem 3.1 is a special case of general theory of projected gmdient flow [18].

We denote $\Sigma(t)$ simply by $\Sigma$ . $\Vert\cdot\Vert$ stands for the $L^{2}(\Sigma)$-norm. Put

$\tilde{H}=H-\frac{1}{A(\Sigma)}\int_{\Sigma}HdS$ , $H_{*}=\{$
$\frac{\tilde{H}}{o^{\tilde{H}\Vert}\Vert}$

if $\tilde{H}\not\equiv 0$ ,
$1_{*}= \frac{1}{\Vert 1\Vert}$ .

if $\tilde{H}\equiv 0$ ,

Note that $\langle H_{*},$ $1_{*}\rangle=0$ . Since $\delta A(\Sigma)=-nH$ and $\delta V(\Sigma)=-1$ , we have

span $L^{2}(\Sigma)\{\delta A(\Sigma), \delta V(\Sigma)\}=$ span $L^{2}(\Sigma)\{H, 1\}=$ span $L^{2}(\Sigma)\{H_{*}, 1_{*}\}$ .

Hence (2. 1) becomes

$v=-\delta W(\Sigma)-\lambda_{1}\delta A(\Sigma)-\lambda_{2}\delta V(\Sigma)=-\delta W(\Sigma)-\mu_{1}1_{*}-\mu_{2}H_{*}$ (4.1)

for some $\mu_{j}$ . It follows from $\frac{d}{dt}A(\Sigma)=\frac{d}{dt}V(\Sigma)=0$ that

$\langle 1_{*},$ $v\rangle=\langle H_{*},$ $v\rangle=0$ .

Taking the $L^{2}(\Sigma)$-inner product (4.1) and 1 $*$ , $H_{*}$ , we get

$0=\langle 1_{*},$ $v\rangle=\langle 1_{*},$ $\delta W(\Sigma)\rangle-\mu_{1}$ , $0=\langle H_{*},$ $v\rangle=\langle H_{*},$ $\delta W(\Sigma)\rangle-\mu_{2}\Vert H_{*}\Vert^{2}$ .

In spite of $H_{*}\equiv 0$ or not, it holds that

$-\mu_{1}1_{*}-\mu_{2}H_{*}=\langle 1_{*},$ $\delta W(\Sigma)\rangle 1_{*}+\langle H_{*},$ $\delta W(\Sigma)\rangle H_{*}$ .
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Consequently we obtain (3.2).
It holds for solutions to (3.2) that

$\frac{d}{dt}W(\Sigma)=\langle\delta W(\Sigma),$ $v\rangle=\langle\delta W(\Sigma),$ $-P(\Sigma)\delta W(\Sigma)\rangle$

$=-\Vert P(\Sigma)\delta W(\Sigma)\Vert^{2}=-\Vert v\Vert^{2}$ .

Since $v\in$ $($ span $\{\delta A(\Sigma),$ $\delta V(\Sigma)\})^{\perp}$ , we have

$\frac{d}{dt}A(\Sigma)=\langle\delta A(\Sigma),$ $v\rangle=0$ , $\frac{d}{dt}V(\Sigma)=\langle\delta V(\Sigma),$ $v\rangle=0$ .

$\square$

5 Sketch of Proof of Theorem 3.2
The local existence for the case $G(\Sigma_{0})\neq 0$ is in a similar manner to [7]. If
the Helfrich flow with $\Sigma(0)=\Sigma_{0}$ exists, and if $\Sigma$ is close to $\Sigma_{0}$ in $C^{2}$-sense
for small $t>0$ , then $G(\Sigma)\neq 0$ . It follows from (3.1) that

$((\Sigma)\lambda_{2}(\Sigma^{\lambda_{1}}))$

$=- \frac{1}{G(\Sigma)}$ $(_{-}\{_{\delta A(\Sigma),\delta V()}^{\delta V(\Sigma),\delta V(\sum_{\Sigma})}$ $- \langle\delta V(\Sigma),\delta A(\sum_{\Sigma})\langle\delta A(\Sigma),\delta A())(\{_{\delta V(\Sigma),\delta W(\Sigma)}^{\delta A(\Sigma),\delta W(\Sigma)})$ .

(5.1)
Taking into the first variation formulas of $A,$ $V$ , and $W$ (see [4]), we have

$\langle\delta A(\Sigma),$ $\delta A(\Sigma)\rangle=n^{2}\int_{\Sigma}H^{2}dS$ , $\langle\delta A(\Sigma),$ $\delta V(\Sigma)\rangle=n\int_{\Sigma}HdS$,

$\langle\delta V(\Sigma),$ $\delta V(\Sigma)\rangle=\int_{\Sigma}dS$,

$\langle\delta A(\Sigma),$ $\delta W(\Sigma)\rangle=n\int_{\Sigma}(|\nabla_{g}H|^{2}-\frac{1}{2}n^{2}H^{4}+H^{2}R-c_{0}HR+\frac{1}{2}nc_{0}^{2}H^{2})dS$ ,

$\langle\delta V(\Sigma),$ $\delta W(\Sigma)\rangle=\int_{\Sigma}(-\frac{1}{2}n^{2}H^{3}+HR-c_{0}R+\frac{1}{2}nc_{0}^{2}H)dS$ ,

$G( \Sigma)=\int_{\Sigma}n^{2}H^{2}dS\int_{\Sigma}dS-(\int_{\Sigma}nHdS)^{2}=n^{2}\int_{\Sigma}dS\int_{\Sigma}\tilde{H}^{2}dS$. (5.2)

Inserting these into (5.1), we have the concrete expression of $\lambda_{j}(\Sigma)’ s$ . Thus
we get
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Proposition 5.1 When $G(\Sigma)\neq 0$ , the Lagrange multiplies $\lambda_{j}(\Sigma)$ are writ-
ten by

$\int_{\Sigma}|\nabla_{g}H|^{2}dS$ , $\int_{\Sigma}H^{p}dS$ $(p=0,1,2,3,4)$ , $\int_{\Sigma}H^{q}RdS$ $(q=0,1,2)$ ,

on which the multipliers analytically depend.

In order to prove Theorem 3.2 (i), we regard $\Sigma$ as the perturbation of $\Sigma_{0}$

in the normal direction with signed distance $\rho$ . It is possible for a short time

interval. Let $\bigcup_{\ell=1}^{m}U_{\ell}$ be an open covering of $\Sigma_{0}$ . We denote the inner unit

normal vector fields of $\Sigma_{0}$ by $\nu_{0}$ . The mapping $X_{\ell}$ : $U_{\ell}\cross(-a, a)\ni(s, r)arrow$

$s+r\nu_{0}(s)\in \mathbb{R}^{n+1}$ is a $C^{\infty}$-diffeomorphism from $U_{\ell}\cross(-a, a)$ to $\mathcal{R}_{\ell}={\rm Im}(X_{\ell})$

provided $a>0$ is sufficiently small. Let denote the inverse mapping $X_{\ell}^{-1}$ by
$(S_{\ell}, \Lambda_{\ell})$ , where $S_{\ell}(X_{\ell}(s, r))=s\in U_{l}$ , and $\Lambda_{\ell}(X_{\ell}(s, r))=r\in(-a, a)$ .

When $\Sigma(t)$ is sufficiently close to $\Sigma_{0}$ for small $t>0$ , we can represent it
as a graph of a function on $\Sigma_{0}$ as

$\Sigma_{\rho(t)}=\Sigma(t)=\bigcup_{\ell=1}^{m}{\rm Im}(X_{\ell}:U_{\ell}arrow \mathbb{R}^{n+1}, [s\mapsto X_{\ell}(s, \rho(s, t))])$ .

Conversely for a given function $\rho$ : $\Sigma_{0}\cross[0, T)arrow(-a, a)$ we define the
mapping $\Phi_{\ell,\rho}$ from $\mathcal{R}_{\ell}\cross[0, T)$ to $\mathbb{R}$ by

$\Phi_{\ell,\rho}(x, t)=\Lambda_{\ell}(x)-\rho(S_{\ell}(x), t)$ .

Then $(\Phi_{\ell,\rho}(\cdot, t))^{-1}(0)$ gives the surface $\Sigma_{\rho(t)}$ .
The velocity in the direction of inner normal vector field of $\Sigma=\{\Sigma_{\rho(t)}|t\in$

$[0, T)\}$ at $(x, t)=(X_{\ell}(s, \rho(s, t)), t)$ is given by

$v(s, t)=- \frac{\partial_{t}\Phi_{l,\rho}(x,t)}{\Vert\nabla_{x}\Phi_{\ell_{)}\rho}(x,t)\Vert}|_{x=X_{\ell}(s,\rho(s,t))}=\frac{\partial_{t}\rho(s,t)}{\Vert\nabla_{x}\Phi_{\ell,\rho}(x,t)\Vert}|_{x=X_{\ell}(s,\rho(s,t))}$

We can write down the Laplace-Beltrami operator, the mean curvature,
the scalar curvature, and the Lagrange multipliers in terms of the function
$\rho$ and its derivatives, denoted $\Delta_{\rho},$ $H(\rho),$ $R(\rho)$ , and $\lambda_{j}(\rho)$ respectively. Then
the equation (3.2) is represented as

$\partial_{t}\rho=L_{\rho}(-\Delta_{\rho}H(\rho)-\frac{1}{2}n^{2}H^{3}(\rho)+H(\rho)R(\rho)-c_{0}R(\rho)+\frac{1}{2}nc_{0}^{2}H(\rho)$

$+\lambda_{1}(\rho)nH(\rho)+\lambda_{2}(\rho))$ ,

(5.3)
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where
$L_{\rho}=\Vert\nabla_{x}\Phi_{\ell,\rho}(x, t)\Vert|_{x=Xp(\epsilon,\rho(\epsilon,t))}$ .

We can find the expression of not only $\Delta_{\rho},$ $H(\rho)$ but also the Gaussian
curvature $K(\rho)$ in [7] for the case $n=2$ . In our case the expression of $\Delta_{\rho}$

and $H(\rho)$ is the same as in [7], and we can get that of $R(\rho)$ in a similar
way. In particular $\lambda_{j}(\rho)$ can be written in terms of $\rho$ and its derivatives up
to third order. Combining Proposition 5.1, we can see that the right-hand
side of (5.3) is linear with respect to the fourth-order derivative of $\rho$ , but not
linear with respect to lower derivatives. The principal term $-L_{\rho}\Delta_{\rho}H(\rho)$ is
the same as the equation dealt with [7, (2.1)]. Let $h^{\gamma}(\Sigma_{0})$ be the little H\"older

space on $\Sigma_{0}$ of order $\gamma$ . We fix $0<\alpha<\beta<1$ . Then, for $\beta_{0}\in(\alpha, \beta)$ and
$a>0$ , put

$\mathcal{U}=\{\rho\in h^{3+\beta_{0}}(\Sigma_{0})|\Vert\rho\Vert_{C^{2}(\Sigma_{0})}<a\}$ .

For two Banach spaces $E_{0}$ and $E_{1}$ satisfying $E_{1}arrow E_{0}$ , the set $\mathcal{H}(E_{1}, E_{0})$

is the class of $A\in \mathcal{L}(E_{1}, E_{0})$ such that $-A$ , considered as an unbounded
operator in $E_{0}$ , generates a strongly continuous analytic semigroup on $E_{0}$ .

Proposition 5.2 There exist

$Q\in C^{\infty}(\mathcal{U}, \mathcal{H}(h^{4+\alpha}(\Sigma_{0}), h^{\alpha}(\Sigma_{0})))$ , $F\in C^{\infty}(\mathcal{U}, h^{\beta 0}(\Sigma_{0}))$

such that the equation (5.3) is in the form
$\rho_{t}+Q(\rho)\rho+F(\rho)=0$ .

Applying [1, Theorem 12.1] with $X_{\beta}=\mathcal{U},$ $E_{1}=h^{4+\alpha}(\Sigma_{0}),$ $E_{0}=h^{\alpha}(\Sigma_{0})$ ,
and $E_{\gamma}=h^{\beta 0}(\Sigma_{0})$ , we get the assertion (i) in Theorem 3.2.

Remark 5.1 The equation dealt with in [7] is a similar fourth-order equa-
tion, but linear with respect to the third order derivative of $\rho$ . Therefore it
was solvable for initial data in the class $h^{2+\alpha}$ .

Now consider the assertion (ii) in Theorem 3.2. Before going to prove, we
see an example of $\Sigma_{0}$ satisfying $G(\Sigma_{0})=0$ and $(H_{0}--c_{0})\tilde{R}_{0}\equiv 0$ . A typical
example is a sphere. Indeed, spheres have constant mean curvature, and
there for $G(\Sigma_{0})=0$ (see (5.2)). Since the scalar curvature is also constant,
we have $\tilde{R}_{0}=0$ . Furthermore spheres are stationary solutions to (3.2).

To show the assertion (ii), it is enough to see that $\Sigma_{0}$ is a stationary
solution.

Assume that $G(\Sigma)=0$ . It follows from (5.2) that $\Sigma$ has a constant mean
curvature $H=\overline{H}$ . Hence

span $L^{2}(\Sigma)\{\delta A(\Sigma), \delta V(\Sigma)\}=$ span $L^{2}(\Sigma)\{1\}$ ,
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and

$P( \Sigma)\emptyset=\phi-\frac{1}{A(\Sigma)}\int_{\Sigma}\phi dS$

for $\phi\in L^{2}(\Sigma)$ . Therefore at the time when $G(\Sigma(t))=0$ , the equation (3.2)
becomes

$v(t)=- \delta W(\Sigma)+\frac{1}{A(\Sigma)}\int_{\Sigma}\delta W(\Sigma)dS$

$=- \Delta_{g}\overline{H}-\frac{1}{2}n^{2}H^{-3}+\overline{H}R-c_{0}R+\frac{1}{2}nc_{0}^{2}H^{-}$

$+ \frac{1}{A(\Sigma)}\int_{\Sigma}(\frac{1}{2}n^{2}H^{3}-\overline{H}R-+c_{0}R-\frac{1}{2}nc_{0}^{2}H^{-})dS$

$=-(H^{-}-c_{0})\tilde{R}$ ,

where

$\tilde{R}=R-\frac{1}{A(\Sigma)}\int_{\Sigma}RdS$.

Consequently if the hypersurface $\Sigma_{0}$ satisfies $G(\Sigma_{0})=0$ and $(H_{0}^{-}-c_{0})\tilde{R}_{0}\equiv$

$0$ , then it is a stationary solution of (3.2). $\square$

We do not know the uniqueness in case of Theorem 3.2 (ii), expect for
$n=1$ .

Theorem 5.1 Consider the one-dimensional Helfrich flow. If $\Sigma_{0}$ satisfies
$G(\Sigma_{0})=0$ , then $\{\Sigma(t)\equiv\Sigma_{0}\}$ is the unique global solution with $\Sigma(0)=\Sigma_{0}$ .

Remark 5.2 When $n=1$ , the scalar curvature is zero by its definition, and
therefore the condition $(H_{0}^{-}-c_{0})\tilde{R}_{0}\equiv 0$ is automatically satisfied.

Proof. When $n=1$ , the integral $\int_{\Sigma}HdS$ is a constant multiple of the
rotation number. Therefore it does not depend on $t$ . Consequently we have

$\frac{d}{dt}G(\Sigma)=A_{0^{\frac{d}{dt}}}\int_{\Sigma}H^{2}dS=2A_{0}\frac{d}{dt}W(\Sigma)=-2A_{0}\Vert v\Vert^{2}\leqq 0$ .

Combining this with $G(\Sigma)\geqq 0$ (see (5.2)), it holds that $G(\Sigma)\equiv 0$ provided
$G(\Sigma_{0})=0$ . Using the above relation again, we have $v\equiv 0$ , that is, $\Sigma$ is
stationary. $\square$
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6 Gramian estimates
Assume that $G(\Sigma_{0})\neq 0$ , then we may do $G(\Sigma)\neq 0$ for small $t>0$ . Since
$(G(\Sigma))^{-1}$ appears in the equation, it is desirable for proving global existence
of solutions to have some a propri estimates of $G(\Sigma)$ . It follows from (5.2)
that $G(\Sigma)\geqq 0$ , which is algebraically trivial since it is a Gramian. Now we
consider lower bounds of $G$ .

Proposition 6.1 We have

$G( \Sigma)\geqq\frac{n^{2}\{A(\Sigma)^{2}-(n+1)V(\Sigma)\int_{\Sigma}HdS\}^{2}}{A(\Sigma)\int_{\Sigma}(\tilde{f}\cdot\nu)^{2}dS}$ ,

where
$\tilde{f}=f-\frac{1}{A(\Sigma)}\int_{\Sigma}fdS$ .

Pmof. It follows from $\delta A=-nH,$ $\delta V=-1$ and scaling argument that

$\langle\delta A,\tilde{f}\cdot\nu\rangle=nA$, $\langle\delta A,\tilde{f}\cdot\nu\rangle=(n+1)V$

Therefore we obtain

$n|A-(n+1)\overline{H}V|=|\langle\delta A-n\overline{H}\delta V,\tilde{f}\cdot\nu\rangle|$

$=|\langle n\tilde{H},\tilde{f}\cdot\nu\rangle|\leqq n\Vert\tilde{H}\Vert\Vert\tilde{f}\cdot\nu\Vert$

Combining (5.2), we get the assertion. $\square$

This is an a priori lower bound of $G(\Sigma)$ when $n=1$ . To see this, putting
$\tilde{f}=(\tilde{f}_{1},\tilde{f}_{2})$ , we have

$| \tilde{f_{i}}|^{2}\leqq A(\Sigma)\int_{\Sigma}|\partial_{s}f_{i}|^{2}ds=A(\Sigma)\int_{\Sigma}\tau_{i}^{2}ds$ .

Summing up with respect to $i$ , we get

$\Vert\tilde{f}\Vert_{\infty}\leqq A(\Sigma)$

Therefore Proposition 6.1 implies

$G( \Sigma)\geqq(1-\frac{2V(\Sigma)}{A(\Sigma)^{2}}\int_{\Sigma}\kappa ds)^{2}$
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Since $A(\Sigma),$ $V(\Sigma)$ , and $\int_{\Sigma}\kappa ds$ are invariant, the estimate is a priori.
Let $n\geqq 2$ , and let $L_{1}(\Sigma)$ be the first eigenvalue $of-\Delta_{g}$ . Putting $\tilde{f}=$

$(\tilde{f}_{1}, \cdots,\tilde{f}_{n})$ , we have

$\int_{\Sigma}(\tilde{f}\cdot\nu)^{2}dS\leqq\sum_{i}\int_{\Sigma}|\tilde{f_{i}}|^{2}dS$

$\leqq L_{1}^{-1}(\Sigma)\sum\int_{\Sigma}|\nabla f_{i}|^{2}dS=L_{1}^{-1}(\Sigma)\sum_{i}\int_{\Sigma}g^{jk}\partial_{j}f_{i}\partial_{k}f_{i}dS$

$=nA( \Sigma)L_{1}^{-}=L_{1}^{-1}(\Sigma)\int_{a_{(\Sigma)}^{g^{jk}\partial_{j}f\cdot\partial_{k}fdS=L_{1}^{-1}(\Sigma)\int_{\Sigma}g^{jk}g_{jk}dS}}^{i}$

.

Combining Proposition 6.1, we have a lower estimate of $G(\Sigma))$ but it is not
a priori. Because $\int_{\Sigma}HdS$ and $L_{1}(\Sigma)$ may depend on $t$ .

7 Related and open problems

Okabe [14] considered the gradient flow associated with

$\int_{\Sigma}\kappa^{2}ds$

under constraints
$A(\Sigma)=A_{0}$ , $\gamma(\Sigma)=1$ .

Here $\gamma$ is the local length defined as below. Let $f(\theta)$ be a family of curves,
where $\theta$ is a fixed coordinate. The local length is given by

$\gamma=\Vert\partial_{\theta}f\Vert_{\mathbb{R}^{2}}$ .
It is a function on the curve, hence the corresponding multiplier is point-
wise. Since $\gamma$ depends on the choice of coordinate, it is not a geometrical
quantity. Consequently there is a tangential component in the equation. For
the gradient fiow with one constraint

$\gamma(\Sigma)=1$ ,

see [8]. For the comparison Okabe’s result with the one-dimensional Helfrich
flow, see [10].

In [9], the global existence of one-dimensional Helfrich flow, however,
the global solvability of multi-dimensional Helfrich flow is still open. The
asymptotic behavior has not been investigated yet.

In connection with the global existence, it is interesting to show a priori
estimate of $G(\Sigma)$ for the case $n\geqq 2$ , for example, an estimate in terms
of $A(\Sigma),$ $V(\Sigma)$ , and $\int_{\Sigma}KdS$ , which are invariant. Here $K$ is the Gau$\theta$

curvature.
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