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Application of normal form theory to a chemotaxis system in one dimension
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1 Introduction

Reduction principles are helpful to study local bifurcation structures and solutions to a nonlinear equation
around the degenerate points. These methods bring us a simpler problem which dominates the local
dynamics of the original problem. Moreover, the normal form can be derived with symmetries which are
inherited from the original problem.

Let us consider the following problem in real Banach space B:

uy = Lu+ N(u), (¢,z) € (0,00) x I, (1.1)
uz(t,0) = uy(t,L) = 0,t € (0, 0). (1.2)

Here, u; = %, Uy = %, and I denotes an interval (0,L) C R, u(¢,z) € R® is an unknown function.
We assume that the linear operator £ is a generator of an analytic semigroup, the nonlinear map N is
smooth enough, and A(0) = N”’(0) = 0 holds. We also assume that £ has a finite number of eigenvalues
with zero real parts, and the other eigenvalues are bound away from the imaginary axis. Let us define
actions v and k on B:

You(z) = u(z + 6), ku(z) = u(—=z).
We suppose that F(u) := Lu + N (u) itself is invariant under the actions 5 and &:
YoF (u) = F(vpu),” 8 € R, 6F(u) = F(su).

In this case, a smooth solution u(t,z) of (1.1)-(1.2) can be extended to the solution of (1.1) with periodic
boundary conditions on (0,2L). Indeed, suppose u(t, z) is a solution of (1.1)-(1.2), and define a function
4(t, z) as follows:

. _ | u(t,x) z € [0, L],
it,z) = { u(t,2L —z) =z € (L,2L].

It is easy to see that function 4(¢,z) is a solution of (1.1) imposed periodic boundary conditions with
period 2L. On the contrary, if a 2L-periodic function u(t, ) satisfying u(t, =) = u(t, —z) solves (1.1),
then it solves (1.1)-(1.2). Thus, the problem (1.1)-(1.2) is equivalent to the problem (1.1) on (0,2L)
imposed periodic boundary conditions with the restriction u(z) = u(—z). Let us consider the Fourier
expansion of u:
u(t,z) =Y u;(t)em/L, (1.3)
j€z
Here 4 denotes /1. Since u(t,z) is real valued, the Fourier coefficients must satisfy: u; = 4;,5 € Z.
Here, ~ denotes the complex conjugate. Using Fourier expansion (1.3), partial differential equation
(1.1) can be transformed to a system of ordinary differential equations for the Fourier amplitudes in
infinite dimension. Then, applying the center manifold theory, it can be reduced to a system of ordinary
differential equations for finite number of critical modes (for instance, see [5, 8, 19, 21] ). Moreover, it is
invariant under the O(2) action. That is, if z;,, k = 1,..., N are critical modes of (1.1) in Fourier space,
and system
Zjy = [ (215 -5 Zjy) (1.4)



50

15.0 1

12.5]

10.4§

7.

s.af

2.5}

0.0

-2.4 T T T T
T g T T T
1120 1025 130 135 140 145 1.50 1.55 1.0 1 15 1.3%0 1318 1400 L4z

Figure 1: The bifurcation diagram of chemotaxis system(1.7). Coefficients area = 1/4,d = 16,f =1,g =
p = 1/16 and L = 28.56. The horizontal and vertical axes correspond to b and |{(u — 1,v — f/g)||L2,
respectively. Right figure is closeup around a Hopf-bifurcation point on a branch of 2-mode stationary
solution.

Figure 2: The bifurcation diagram of chemotaxis system (1.7). Coefficients are a = 1/4,d = 16.f =
1,9 = p = 1/16. L and b are parameterized as L = 7/(v/6/24 + cosf), b = 65/48 + 2v/25sin0/25. The
horizontal and vertical axes correspond to 6 and ||(v — 1,v — f/g)||.2, respectively.

is a reduced system of (1.1)-(1.2) on the center manifolds, then reduced system (1.4) can be transformed
into equivalent system which is O(2) invariant, or (1.4) itself is invariant with respect to O(2) action:

g _ 0 85 _ 03N -
Cloe”“ fjk(zjl’ Zjgseees sz) = f]'l- ((’.1 Jlel , €' ‘724.._7'2, ...€e JN.;jN ), (15)

f—;‘k(Zjl,ng,.. "'ch) = ij-(Z,’ilv‘ .o ,’-/ij). (16)

Moreover, to study the dynamics of problem (1.1)-(1.2) on the center manifold, it is sufficient to consider
the system (1.4) on the real subspace. Let us see the simple case when N = 1. In this case, the normal
form on the real subspace restriction of O(2) symmetry is given by the following: z = (u+C 22)z,z(t) € R.
Hence, if C # 0 then we can see that the pure mode stationary solutions bifurcate at u = 0 through
pitchfork bifurcation (see also [7]).

We can consider the normal form for the several critical modes. Armbruster, Guckenheimer and
Holmes [1] studied the normal form with 1 : 2 resonance. They proved the existence of limit cycles
and heteroclinic orbits in the normal form (see also [9]). They applied the results in [1] to study the
Kuramoto-Sivashinsky dynamics on the center-unstable manifold ([2]). In this paper, we apply the normal
form theory to the chemotaxis-diffusion-growth system:

Up = QUzz — b(UVZ)z + c(u), (t.z) € (0,00) x I,
vy = dvgg + fu—gv, (t,z) € (0,00) x I, (1.7)
uz(t,0) = ux(t, L) = vo(t,0) = v (t,L) = 0, t € (0,00).

The chemotaxis system (1.7) is introduced by Mimura and Tsujikawa [13] as a model for chemotactic
aggregation of biological individuals, e.g. bacteria (see also [3, 4]). Here, all coefficients in (1.7) are
positive, and we consider the chemotaxis system with logistic source: c(u) := pu(l ~u),p > 0.

Kurata, et al. [10] studied the nonlinear solutions and bifurcation structures of (1.7) numerically.
They obtained oscillatory solutions, and Hopf-bifurcation points on branches of pure mode stationary



solutions. Here, we recall the bifurcation diagrams of (1.7) by AUTO ([6]) (see fig. 1 and fig. 2). We
note that the black squares in these diagrams correspond to Hopf-bifurcation points. In fig. 2 (especially,
see the right), we can see a Hopf-bifurcation point on a branch of 2-mode stationary solution. If we
only consider the two modal interaction, we can not analyze this bifurcation phenomenon. Therefore, to
analyze the dynamics around the pure mode stationary solutions, we need to consider three or more modal
interaction. We can find the studies to several modal interaction in nonlinear partial differential equations.
Lorenz [12] and Saltzman [18] derived the second order truncated system of ordinary differential equations
corresponding to the dynamics of several Fourier modes from equations governing convection in a liquid.
Their studies clarified the existence of oscillatory dynamics and attractors. Smith, Moehlis and Holmes
[20] studied second order normal form with 0 : 1 : 2 resonance in C? x R. They proved the existence
of modulated traveling waves and heteroclinic cycles in the normal form. However, in (1.7), since the
pure mode stationary solutions bifurcate through pitchfork bifurcation, it is necessary to derive the third
order normal form to study the bifurcation structures (Hopf-bifurcation) around it. Therefore, in the
next section, we derive the third order normal form with 1 : 2 : 3 resonance. In section 3, we apply the
normal form theory to chemotaxis system (1.7).

2 Normal form

In this section, we consider the general normal form to problem (1.1)-(1.2) with 1 : 2 : 3 resonance. That
is, we consider the case when N = 3, j; = 1,j, = 2 and j3 = 3 in (1.4). Using (1.5) and (1.6), we get the
third order truncated normal form on the real subspace restriction of O(2) symmetry:

& = (a121 + a223)22 + (1 + a32f + 423 + as2d + agz123)z1 + ar2 2,
2o = (b121 + bzzg)zl + (/.Lz -+ b3Z% + b42§ + b5z§ + b62123)22, (2.1)
23 = 12120 + (U + 222 + 323 + c423)23 + 523 + ce2123.
We study the stability of the equilibriums of normal form 2.1. Especially, we are interested in the case
when linearized eigenvalues of equilibriums include pure imaginary numbers.
Firstly, let us consider the second order truncated system:

z1 = paz1 + (@121 + a223) 22,

Zo = pozo + (byz1 + b223)Z1, (2.2)
Z3 = U323 + C12122.

By solving the stationary problem (2.2) with 23 = pz; for (21, 22, 23, 1t1), we have

= o= [__H2H3p
2] = :’:21 =% c1(b1+pb2)°

Z9 = z;‘ = —H3P (23)

¢’
23 = 23 1= *pz}

and the bifurcation point is
' psp(ar + paz)
p1 = py = g

Here, p is a real parameter. Then, we have linearized matrix M; around equilibriums (2.3) as follows:

i+ a3 t(ar2] +a223) agz;
M = i(2b1zf -+ bgzé“) U2 tbo2}
€12} +ec12f 7%}

We get the characteristic polynomial of the matrix Mi: A3 + s1)2 + s\ + s3, where s; = —tr My,
sz = det M; and

2= #—1@{01 +agp” -
C1 (

—bl -fbgp) (baci + 2a1by + azbap® + arbap + 2a2b1p)},
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Figure 3: Numerical results to the system (2.2) and (2.1). [Left]: Coeflicients are yp = —0.099,a,
-2,a3 = —6,b; = ~3,bp = ~2,¢; = 4 and p; = pi, pz = —0.068968 in (2.2). [Middle] : py = 0.01, g =
—0.01, 3 = —0.05,a1 = —2,a2 = —6,b; = —3.bs = —2,¢; = 4 in (2.2). [Right] : Periodic orbit around
(0, 22,,0) in (2.1). Coefficients are o = 0.04,a; = 2,62 = —4,a3 = —2,a4 = a5 = ag = —1l,a7 = 1,
b] = —~3,b2 = —2,b3 = —-1,b4 = —7,b5 = be = —1, C = 4,02 =-1l,c3 = 1,64 = -—3,05 = 1,06 = 1, and
pn1 = (—a,l — G429, )22_ + 0.01, u3 = c329, + 0.01.

By the simple calculation, if
s2 >0and s3 — 85152 =0 (2.4)

holds, then the eigenvalues of matrix M are +i,/53 and —s;. Thus, (2.4) and popspcy(by + pba) > 0 are
necessary conditions to Hopf-bifurcation in (2.2) (see {11] for Hopf-bifurcation theorem).

Secondly, let us study the linearized stability of the other equilibriums of (2.1): (21, 22, 23) = (0, &1/ —p2/b4,0).
The linearized matrix is

p1ta1ze, +asz?l 0 tazz, + a7zl
Mo = 0 —2u9 0
+e) 22, + Co222 0 ps + c3222

Here, 22, denotes y/—u2/bs. It can be observed that the necessary conditions to Hopf-bifurcation are
w1 = (Fap — aq22,)20. , 43 = —C3222, (€1 £ cez2.)(a2 £ azz2,) < 0 and pzbs < 0. In this case, the
eigenvalues of My are —2uy and iwz2,, where w? = —(c1 % ¢g22,) (a2 £ azzz,). Similarly, the linearized
eigenvalues around equilibriums (0,0, £z3,) := (0,0, £1/—p3/cs) are —2u3 and +23,v/a2b2 at (uy, p2) =
(—asz32, —bsz32). Thus, if azby < 0 , then pure imaginary eigenvalues appear.

We show the numerical results of (2.2) and (2.1) in fig. 3. We can see that the stable limit cycles
appear with suitable choice of coefficients. The left and middle figures correspond to the time periodic
orbit around (2], z2*, z3) and Lorenz attractor, respectively. The right figure correspond to the periodic
orbit around a pure mode solution (0, 22,.,0) in (2.1).

3 Bifurcation analysis to a chemotaxis system

In this section, we study the dynamics of chemotaxis system (1.7) using normal form. The equations of
(1.7) have constant stationary states (u,v) = (0,0) and (1, f/g). It is easy to see that the trivial solution
(0,0) is unstable against the spatially uniform perturbation with any choice of parameters. Changing the
variables (u.,v.) = (u — 1,v — f/g), we have

()t = a(Us)zz — D)2z — O{tu (Vi) }e — PUL(1 + ua), (t.7) € (O, oo) x I,
(ve)t = d(Va)zz + fux — gua, (t,2) € (0,00) x I, 3.1)
(U*)a.(t, 0)= (u*)m)(t» L) = (v4)2(2,0) = ('l’*):r(ts L) =0,t€e (0’ OO)

We consider the bifurcation problem of the equations (3.1) around the trivial solution (u.,v.) = (0,0).
To consider the system (3.1) in Fourier space, we introduce the similar settings used in [15, 16] as follows.
The functions u.(t,z) and v.(¢,z) can be expanded in the Fourier series:

U (2, Z) = ug + Z ug(t) cos(fax). v.(t.z) = vo + Z vg(t) cos(£aer) (3.2)
£eN £eN



in a function space
X:{uemﬂm2mdm=%@pwmw§=}:u+ﬂﬁmﬁ<m}
£eNg

Here, u, o and Ny denote (u.,v.), 7/L and NU {0} respectively. In addition, u, denotes (ug, v¢). In this
situation, the linearized operator of (3.1) is a generator of an analytic semigroup (for instance, see [§]).
We consider the space of Fourier coefficients:

= {a= furdien, 603 = 31+ 22l < oo},
2eNg

which is equivalent to X by the map R : X — Y, where

R(u) = {% /Lu cos(fazx) d:r}
0

For a given m € Ny, we define the projection Py, : Y — Y as follows:

2eNg

Pr({uc}een,) = 67 ue,

where :
¢ 0 (£ #m).

Using (3.2), we obtain the equivalent dynamics on Y to the system (1.7) as an infinite dimensional system

of ordinary differential equations:

tl.lm =M, tum — ( A(/)m ) ,m € Np. (33)
Here,
-4, bm2a?
Mo= (T4 T,
Am =am?a® +p,B, =dm?a®+g
and

2
Nm = _Z?E_ ( Z (ml - mz)mZUmlvM2 - Z (ml + m2)m2u'm'1 'Um2>

2
|my—mo|=m my+mo=m
m),mga €Ny mj,mzENg
p
+§ Uy Umy + Um; Um, |-
{my ~ma|=m my+mo=m
m1,m2€Ng m1,m2€ENg

It is obvious that the matrix M, has a 0 eigenvalue if and only if det M, = 0, i.e., b = ApBm/(fo2m?2).
For a given positive constant o, let S C Ny be a set of natural numbers which satisfies det M,, = O(eo).
It is convenient to introduce new variables @iy, := (fim, ¥m),m € S as follows:

(3.4)
®,, = ( B —Am ) (3.5)
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Then, the infinite dimensional system (3.3) is represented as follows:

tz2 _ [ Hm 0 t=  _ &—1 N
“’"“( 0 —Am—-Bm+0(so)) Urm ‘I’m( 0 ),meS,

Nom
0

(3.6)

tﬁszmtum—( ),mGNo\S.

Here,

s 1= %{ — Ay, = By +/(Am — B)? + 4fbam?)}.

Let j and k be natural numbers. We can see that if

1
. 1 (cg\* ; A;B;

= ik = —_— ] — = -k = ke et
a=a"": % (ad) ,b=0b"%: FoZj?

a=alk

then p; = pi = 0 holds.

Before we study the three modal interaction, let us see the 1 : 2 modal interaction in the system (1.7).
We note again that the normal form with 1 : 2 resonance is studied in {1, 9]. Using the explicit form
of coefficients of the reduced system, we can check the conditions for Hopf-bifurcation and existence of
heteroclinic orbits (see [1]) to the chemotaxis system (1.7). Set (a,b) = (a?,b"?), and let Wf,. be a
center manifold in a neighborhood of R? x Y. Then the following holds.

Theorem 1 The dynamics of (3.6) on WY, is topologically equivalent to the dynamics of the following

system:
{ 2 = eyg2122 + (IJI + 6112% + 6122%)31, (3 7)
2y = €902} + (p2 + €2127 + €2223) 22,

where 2;(t) = 4;(t), j = 1,2. Moreover, the coefficients ejx, j = 1,2, k = 0,1,2 are given in Appendiz B.

We note that Theorem 1 can be proved by the same arguments shown in [2, 15, 16]. For reader’s
convenience, we give the proof in Appendix A.

Let us focus attention on Hopf-bifurcation phenomena around mixed mode equilibrium: (z1,22) =
(21.,22.), 2. # 0 of (3.7). Let M be a linearized matrix around (2f,23). Then, matrix M has pure
imaginary eigenvalues if and only if det M > 0 and tr M = 0. By solving the stationary problem of (3.7)
with z; = pz; and tr M = 0 for (21, 22, 1, 42), We have 23 = 23, := 5@%2}3’21 = 21, := P23, and the

bifurcation point is
__02620{2610(/32611+ezz)+p2€20(/>zeu+612)}

H1 = P, = . 4(p2e115{-e22)2 )
_ — _ P e39(20%e11+3e324p €21)
Kz = H2y 4(p%e11+e22)? :

Thus, the condition: det M > 0 at (i1,, 2., Z1x, 22.) is & necessary condition for Hopf-bifurcation around
(214, z24)- Let us choose the coefficients in (1.7) as follows:

a=1/16,d=1,f=1,g=32,p=2.

Then, using explicit form of e;jx shown in Appendix B, we have

cro= ~UT2 ey = ~IE, ¢y = 04T,
R R
Choosing p = 1, the Hopf-bifurcation point is
4628915091 271863864
= D2 5 —0.0725, g, = & 0.03409.
H1e = ~§3708558760 K2 = 7974810845 09

The left of fig. 4 shows the limit cycle corresponding to the standing wave solution to (1.7).
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Let us consider the three modal interaction. For given natural numbers j ,k, and £, (£ # 5,k), we can
compute

2416l (a,by=(0d # bik) = —(K2+/gp + g + p) + 1/ (K21/gp + g + p)? — Kigp ,
where ) 2( )
¢ 1 2a+d
Ki={*-0)(1-5)=, Kg= ——2,

Therefore, if we take the parameters (a,b) = (al3, bl’a) and g,p v €1 > 0, it follows that
p1=p3=0,0<pz=0(e) and pum <0,m € Ny \ {1,2,3}.

Thus, by taking g and p small, we can apply the center-unstable manifold theorem to analyze the three
modal interaction in the chemotaxis system (1.7) (for instance, see [5, 8]). Let Wf% be a center-unstable
manifold of (3.6) in a neighborhood of R® x Y. Set (a,b) = (a!3,b%3), and taking g and p small, we
have the following theorem.

Theorem 2 For given positive constants a,d and f, there exist constants a;j,j=1,...,7,b;,5=1,...,7
and c;,j = 1,...,6 such that the dynamics of (3.6) on WF™ is topologically equivalent to the dynamics

loc

of the system (2.1) by replacing z;(t) with @;(t), j = 1,2,3.

Proof is given in Appendix A, and explicit forms of the coefficients of normal form are shown in Appendix
B. Let us study the stability of nontrivial stationary solutions to (1.7) using the normal form. We take
the coefficients as follows:

a:1/4,d=16,f=1,g=p=1/16. (3.8)
Then, we have (a3,b1:3) = (275/192, v/6/24), and the coefficients of second order system (2.2) are
— % . —TT+/6169 — _ 22055 _ _ 15375
2 = pg = =gz~ ~ 0.008, a1 = ~ 535704, 92 = —§7ss6>
b1 = g1iesr b2 = —1omy a1 = sra3e8 -
Choosing p = —1, we obtain 2} ~ 0.1656, 25 ~ —0.1584 and 2z = —2z}. Moreover, solving s3 — s155 = 0

for ug, we get
8047537176063 — 1045134698191/6169

Hs = 104029331289901
In this setting, it follows that

~ —0.0016.

., . 62870415469646796 — 800301205350108v/6169
2= 311359788550673693

Consequently, the necessary condition to Hopf-bifurcation holds around the triple mixed mode solutions
(£23,25, +23).
In the same case, the coefficients of third order terms are given by the following:

~0.3974 x 10~% > 0.

Qg = 217653460 . _ _ _22711319143975 _ _ 163625
3 = 30005047296 ° ¥4 = T 7104343523733504° 45 173568 *
Qg = 1322803 . 91622502625

6 = 347280647 47 = T 159572865024
by = 181109972065 5 _ _ 65803256 p _ _ 6956901071875
3 = 240092076691456° Y4 = ~ 51093504 Y5 14139065892864 *
be = ~— 2156412025

6 = T 16130208768

0y = 330935 . 172801631284375 8715625

2 = T 5806016 €3 T T 1220458460479488° ©4 = T 41484288°

s = 17943211 — 12108977485
5 = T 4863465600° C6 = T 146945236992



56

°
(XA

03 oy

2 02 2}

Figure 4: [Left]: Time periodic orbit in (3.7). The horizontal and vertical axes correspond to z; and 22,
respectively. [MIddle]: The unstable time periodic orbit in the reduced system (2nd order truncated).
Parameters are shown in (3.8). Figure shows the orbit (z3(t), z2(t), z3(t)), t € [—3000,-1000]. [Right}:
The time periodic orbit around a pure mode solution in third order reduced system. t € [5000, 6000].

Since azby > 0 holds, Hopf-bifurcation around the pure mode equilibrium (0,0, +z3,) does not occur.
On the other hand, we can see that the necessary condition to the Hopf-bifurcation around pure mode

solution (z1, 22, 23) = (0, /—p3/b4,0) = (0,0.2498,0) holds:
(c1 + co224)(as + ar22,) =~ —0.1235 x 1072 < 0,
and bifurcation point is
p1 = (a1 — G422,)22. = 0.011, u3 = —c3222 ~ 0.0088

(see Figure 4). We note that the equilibrium (0, —y/—~u3 /b4, 0) =~ (0, —0.2498,0) also has pure imaginary
eigenvalues at a point

w1 = (—a1 — aaz9,)22. = —0.010, u3 = —c3z22 = 0.0088.

However, in this case, u4 is positive. That is, in this parameter value, it is away from the region that
the reduced system is dominant. In fact, Hopf-bifurcation point lies on only one of a branch of 2-mode
stationary solution (see Figure 1).
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Appendix A: Proof of Theorems

We give a proof of Theorem 1 and Theorem 2. We recall the dynamics of (1.7) on Fourier space Y (3.6):
ts [ Hm 0 te —1( Nm
tm ( 0 —Am-—Bm+O(so)> O+ & ( 0 ),meS,

Wy = My, tuy, — ( A(/)’" ) ,m€ Ng\S.

To prove theorem 1, we define S := {1,2}. It should be noted that if we define S := {1,2.3}, then
theorem 2 can be proved similarly by considering the dynamics on the center unstable manifold W,.

Let us define the projection P to critical modes by

P= Z €ex - {)'y_nlpms
meS



and define the projection Q := I — P. Here, ex denotes (1,0), and ®,, is defined in Section 2. We
consider the extended system (3.6) with the trivial equations fi,, = 0,m € S. It follows that the center
space of this extended flow is spanned by (u, %), where p := (u1,42) and @ := (i, ). Therefore, the
center manifold theory tells us that there exists a neighborhood U of R? x Y = R x QY with radius s:

U= {(u @) 2 |l + 1a] + [1a]ly < s} (3.9)

such that there exists a smooth invariant manifold W{,, of (3.1) contained in /. Here, @ denotes Q(i1)
for i € Y. Moreover, there exists a smooth map H : R* — QY satisfying

OH
BJ(O) =0, for J = lp, m, mMES
by which WY, is represented as Wf,, = {(y, @, @) : & = H(p, @) }. Furthermore, we define
(Ao (ks @), hey (1, B)) = Pro(H(u, @), for m € No\ S, (3.10)
2, (1, @) = ey - B P(it), for m € S. (3.11)

It is necessary to calculate the quadratic approximation of center manifolds to obtain the cubic normal
form. We present the following lemma.

Lemma 1 Let m; € S and m. € Ng \ S. The quadratic approzimation of the map hy.., hy,, and Fz:’nc
(which are characterized in (3.10) and (8.11)) are given by the graph of the functions:

U, = b (T1,T2), Um, = hY, (i1, 42), Um, = hY,_ (i1, Tz),

and each which are approzimated as follows:
hay,. (i1, ti2) 1 Nm
. = M ], 3.12
( hvm' (ﬂl,ﬂz) M 0 ( )

Nm.

(Am, + Bm, )2 (313)

hy (G, 5) =
Proof. The center manifold theory states that for given pair of integers m, & S, um, and u,,, are
characterized by the map
(2)-(258)
V., R, (i1, U2)

Differentiating with respect to £, we have

ohy

ches ou : ~mc u
o = M, ( Z:;“ ) + ( Ng‘* ) (3.14)
. v

BhY,, -
ches Olim,, Um,

By the center manifold theory, for sufficiently small § > 0, if lumc| < O(6), then it holds that |h% | <
O(62) and |h%, | < O(6%). Furthermore, we already know that tim, = fim,im, + O(62), and we can
take fn,, small. Therefore, the left hand side of (3.14) is O(8%) by taking p,, =~ 62. Finally, since the
matrix My,, is regular, we obtain the quadratic approximations of h}, and h%, as shown in (3.12). The

approximation (3.13) can be obtained similarly.
a

Proof of Theorems. Let us consider the equations for @,,, m € S with the equation f,, = 0. Using
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the approximations (3.12) and (3.13), we can compute the nonlinear terms up to 0(83) as follows.

- _ i - ba?
Um = HmUm _‘2('A' m+_B- m)

X ( Z (m1 — m2)MoUm, Vm, —~ Z (my + mg)mgumlvm)

|my—mapl=m m)+may=m
m),ma€S my,m2€S
P Z Upm, U + E Um, U
“arA 1 D\ my Ymg mq Ymg
2(Am + Bm) \ .. S1=m i
m),mo€S my,mo€S
ba?
2(Apn + Bn)
v
X ( _5_ (my — ma)maum, hy,, — Z (my + mz)mgumlh”mz)
{my~mgal=m |my—mg|l=m
my3€S,ma€Ng\S my €S, ma€N\S
p u u
B\ it 2wt
™ m jmy —ma|=m Imy—ma|=m
mjE€S,maENg\S mi€S,ma€ENg\S
ba?
2(Am + Bm)
u u
X ( E (my — m2)mahy, Vm, — E (my + mg)mzhmlvm,)
{my—mal=m lmy—ma|=m
m1ENQ\S,maES my ENg\S,m2€S

p u
(D et T )

jmy~—mg|=m |my-mpl=m
m1ENg\S,ma€S m1ENg\S,mz€S

This yields the cubic normal form (3.7).

Appendix B: Coeflicients of reduced systems

We show the explicit form of coefficients of reduced system. The coefficients of the system (3.7) are given
by the following:

e = ﬁ—l—B—l{%bfa2(—2Bl + Bs) +szBl},
o = g (w15,
en = CramT{tet2B+ A +pzBy} - Al A
e = ﬁ{%bm?(ul + By) —pAlBl}
—XI%B—I{%bfaz(—3Bz +2B3) + szBa} - %?;——2?1-32,
e = > +B;)?21 T B {bf02(31 - Aj) +PA131}
-A;_;:Bz {bfa?(By ~ 3B1) + pB1Bs } - %EB%,
e = E‘—f%ﬂ{%foﬁ(& ~2B,) +pB2Ba ) - ibj‘i’;———'g”? 3,



where

1
G = ——— B B
! A3B; — 9bfa? 2bfa (B2 +2B1) - pBs 2}
B,

G - e
2 A4B, — 16bfo?

_Pp2
(4b fa? 232).
Here, We omitted the -2 for the sake of simplicity (i.e., (@, b) = (al2,512)).
We also show the coefficients of the reduced system in Theorem 2. We will also omit -1'3 for o and b.
The coefficients are given as follows:

ay = €30
-1 1
a; = m{ — §bfa2(3Bz - 2-33) +pBlBS},
bazf—pBl
= RiH,- =1 P7p2
as 1H> A, 1 B, By,
H 1 ba’f — pB
ag = RlH11’2 - m%{ - §bfa2(332 + 2A43) —PA3B2} - ﬁBg’
_ 13 _ ba®f —pB1 _,
as = RoHy ) Bj,
—Hy
ag = A1+B1{ bfa (3A2+233) pAzBa},
ar = R1H123+R2 §,2,
by = ezo,
by = m{bf“‘ 3B: + B3) + pB1Bs
_ , Hj 2 4bo’f — pB,
by = RHM + a1 g fe" 3B+ As) +pBids} — — =B,
_ 2,2 4ba2f-—sz 2
by = R5H4 As + By BQ’
23 H5 2 4ba2f-—sz 2
= ’ __—B ’
bs R4H; 4,15, { bfa®(— 533+3Bs)+PBaBs} A,+ B, 3
bs = RsHP®+RH}?+RsH®,
1
o = 4 +B{ Sbfa?(6By +3Bs) ~ pBiBs },
_ 3 9ba f—sz 2
c2 = R7H4 A T B Bi,
H 9ba’f — pB3
_ 23 _ _ Hs 2 Nt A il
c3 = RGHl A +B { bfoz ( 1532+6B5)+pB2BS} A3+33 2>
B He ) 9%a?f — pB3 2
ca = A3+B{ bfas(— 1833+936)+szBe} “ch’n
H
o = o +2B{ bfa(6B: +3B;) ~ pB1B2 .

¢ = ReHy”+ R7H.?
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where
j!k — ___.];.__. 1 2 - ] j ]
H” = (A1+Bl)2{2bfa( kB, + iBe) + BBy,
_ Bl _ 2 2
vyl QUARS LY
Hy = __:1____'{1bfa2(631+332)—p3132}
(A3 + B3)? 1 2 ’
HM = ._._.__1 {bfa2(631+233)—PBlB3}
4 det My ’
2,2 _ B2 2_2
H? = g’ =gk}
Hy = ! {lbfa2(1sBz+1OBs)—szBs}
det M; 1 2 ’
_ B3 2 P
He = det Mg (Qbfa 233) ’
R, = —1 {lbfa2(2A1+Bz)—pAle}
A1+ B; L2 ’
-1 (1,,,
Re = g {3bfo’(~4Bs+3B,) + PBaBs},
1 2
Ry = A2+Bz{bfa (Br = 41) +pAr B},
1 5
= —— A -
R )
I B P T
Ry = A2+Bg{bfa( 4Bz+2B4)+pB2B4}7
Rs = 1 {lbfaz(—6A +3B3) + pA 32}
Az + B3 2 ! ' ,
_ -1 1 2
Ry = m{ébfa (12B; — 3By) + pB1 By}
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