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Abstract

A complex-valued neural network is a class of artificial neural net-
work for dealing with complex-valued and multivalued data. It con-
sists of complex-valued neurons, complex-valued weights, and complex
activation functions. Since complex number representation and arith-
metic are appropriate for processing complex-valued information like
wave phenomena as well as multivalued information like digital im-
ages, complex-valued neural networks are thought to have a potential
for wide applications. Yet, nonlinear dynamics of complex-valued neu-
ral networks has not been fully understood. In this report, we first
overview the complex-valued Hopfield network for multistate associa-
tive memories. Second, we reveal some properties of the complex-
sigmoid function and discuss the effect of its nonlinearity parameter
influencing the network capability.

1 Introduction
Artificial neural network is one of the major frameworks in computational
intelligence and machine leaming [1]. It is often difficult to strictly solve a
problem in the real world, even if the problem can be formulated mathemat-
ically. In such a case, an effort would be made to numerically search a better
solution. Computational intelligence aims to explore and develop effective
algorithms to find a good solution in a feasible computation time. Even when
there is a method to find the best solution, it does not make sense practically
if the method takes a lot of time and cost. To explore a reasonable algorithm,
neural networks have been extensively studied with various theoretical and
heuristic methods.

In conventional binary and real-valued neural networks, the signum (Heav-
iside step) function and the sigmoid function have been typically used as an
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activation function. The signum function returns one of the two states (cor-
responding to neuronal firing and non-firing states) depending on the input
and the threshold parameter. This two-state neuron is suited to address bi-
nary information. The Hopfield neural networks with recurrent connections
have been widely applied to pattern recognition and combinatorial optimiza-
tion formulated by using binary variables [2]. The sigmoid function, which is
a continuous version of the signum function, enables to derive the backprop-
agation learning algorithm [3]. Also in associative memories, the continuous
nonlinearity of the sigmoid function can be effective to prevent a neuronal
state from being trapped by a local spurious pattern as often seen in the
network with the signum function.

When two-state neural networks are applied to some problems related to
multivalued information, we need to preliminary transform the multivalued
information into binary information and vice versa after information process-
ing. However, it is often not straightforward but heuristic and thereby can be
a cause of unnecessary errors. Therefore, many attempts have been made to
develop neural network models suited for multivalued information processing.
Multivalued information can be directly represented by multistate neurons
which require fewer neurons and fewer interconnections than two-state neu-
rons. It is desirable in VLSI implementation and optical implementation of
the neural network.

A multistate neuron can be achieved by a multilevel activation function
operating in a real space. In fact, multivalued neural networks and gen-
eralized Hopfield networks have been constructed for multistate associative
memory models by using multilevel functions [4, 5, 6, 7, 8, 9]. They are
applicable to gray-level image processing, but limited to the case where the
number of gray levels is not so large.

Rom the viewpoint of topology, it is reasonable to code multiple equiva-
lent states by the equiangularly divided points on the unit circle. This notion
was first proposed in the $1970s[10]$ and developed in the studies on complex-
valued neural networks [11, 12, 13, 14, 15, 16, 17]. The complex activation
function transforms a complex-valued input on the complex domain into a
complex-valued output on the unit circle. A generalization of the Hopfield
network has been proposed as a complex-valued Hopfield network (CHN)
for a multistate associative memory by using the complex-signum (CSIGN)
activation function [18]. After that, the CHN has been modffied to enhance
its performance. The modifications include the introduction of the penalty
term in the energy function [13], the learning rule which guarantees the strict
local stability of the stored patterns [19], the connection scheme through the
bifurcation parameters [20], the generalized projection learning rule which
orthogonalizes the stored patterns [21], the complex-sigmoid (CSIGM) func-
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tion whioh is an alternative to the CSIGN function [22].
In the previous study [22], we have shown that the CSIGN function with

discrete nonlinearity can be generalized into the CSIGM function with con-
tinuous nonlinearity. This activation function highly improves the perfor-
mance of the CHN in multistate associative memory tasks, resulting in the
successful application to gray-level image restoration. However, the property
of the CSIGM function has not yet been fully known. Therefore, we clar-
ify some properties of the CSIGM function and the effect of its nonlinearity
parameter.

In Sec. 2 we overview the CHN. In Sec. 3 we show some mathematical
properties of the CSIGM function, including the effect of the nonlinearity
parameter. Finally the results are summarized in Sec. 4.

2 Complex-valued Hopfield network
We briefiy overview the complex-valued Hopfield networks (CHNs) for mul-
tistate associat,ive memory [18, 22], which has a recurrent network structure
with all-to-all interconnections. Let us consider a network composed of $N$

complex-valued neurons. The state of the nth neuron is denoted by a complex
variable $z_{n}$ with $|z_{n}|=$ I for $n=1,$ $\ldots,$

$N$ . The network state is represented
by a vector $z=(z_{1}, \ldots, z_{N})$ . The complex-valued weight coefficients are
represented by $w_{nj}$ for $1\leq n\leq N$ and $1\leq j\leq N$ . The K-valued patterns
tp be stored are given by a set of $P$ complex vectors $s^{(p)}=(s_{1}^{(p)}, \ldots, s_{N}^{(p)})$ for
$p=1,$ $\ldots,$

$P$ , where $s_{n}^{(p)}\in\{e^{ik\theta_{K}}|k=0, \ldots , K-1\}$ and $\theta_{K}=2\pi/K$ . There
are several choices for the learning rule and the update scheme as introduced
below.

(a) Learning rule For associative memory models and image restoration
tasks, the weight parameters are determined from a given pattern matrix
$S=(s^{(1)}, \ldots, s^{(P)})$ . The generalized Hebbian rule [11, 18], which is a gen-
eralization of the original Hebbian rule for binary networks [2], can be used
for multistate neural networks as follows:

$W=$ $\frac{1}{N}SS^{*}$ , (1)

where $W=(w_{nj})$ is the weight matrix and $S^{*}$ is the complex conjugate
transpose of $S$ . The weight matrix $W$ is Hermitian.

When the correlations among stored patterns are relatively large, it can
lead to a recall of an incorrect undesirable pattern. The correlations can
be reduced by orthogonalizing the stored patterns. This idea yields the
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generalized projection rule [14, 21, 22] as follows:

$W$ $=$ $\frac{1}{N}SS^{+}$ , (2)

where $S^{+}=(S^{*}S)^{-1}S^{*}$ is the Moore-Penrose pseudoinverse matrix of S.The
diagonal entries of $W$ are often removed to exclude the self-connection.

There is another learning rule which guarantees the strict local stability
of the stored patterns [19]. This method requires to solve linear inequalities
simultaneously by a linear programming procedure.

(b) Update scheme Each complex-valued neuron receives a sum of weighted
inputs and then transforms it into an output by its complex activation func-
tion $F$ . The nth neuron is updated as follows:

$z_{n}’$ $=$ $F(e^{i\theta_{K}/2} \sum_{j=1}^{N}w_{nj}z_{j})$ , (3)

where the term $e^{i\theta_{K}/2}$ is a factor to locate the resulting state in an angular
center of the sector to which the state belongs. This update procedure is
iterated asynchronously for a randomly chosen neuron until the network state
converges or the maximum number of iterations is reached. The resulting
states are transformed into multivalued information by the following rule: If
$k\theta\leq\arg(z_{n})<(k+1)\theta$ , then return $k$ .

The CSIGN function [11, 18] with discrete nonlinearity has been typically
used as an activation function, which is a generalization of the signum func-
tion. An alternative to the CSIGN function is the CSIGM function [22] with
continuous nonlinearity, which is a generalization of the sigmoid function.
The CSIGM function includes the CSIGN one as a special case. In the next
section, some mathematical properties of the CSIGM function are studied.

(c) Energy function The CHN has a well-defined energy function [18]:

$E(z)$ $=$ $- \frac{1}{2}z^{*}Wz$ , (4)

which is real-valued if the weight matrix $W$ is Hermitian.
We first consider the CHN with the CSIGN activation function. We

assume that the network state changes from $z$ to $z’$ only due to an update
of the nth neuronal state from $z_{n}$ to $z_{n}^{f}$ . Then, it is proved that the change
of the energy function is not positive, i.e. $\Delta E=E(z’)-E(z)\leq 0[18]$ .
This guarantees that the network state converges to a certain state at a local
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minimum of the energy landscape. During a memory association process, the
energy function value almost monotonically decreases until a convergence.
Therefore, it is not possible for a network state to escape from a spurious
pattern corresponding to a local minimum.

This property does not hold for the CHN with the CSIGM function.
Non-monotonic variations of the energy function value are observed during
a memory association process. When the weight matrix is determined by
Eq. (2), the energy function satisfies the following inequality [22]:

$E(s)$ $\geq$ $- \frac{1}{2}(1-\frac{P}{N})$ (5)

for any pattern $s$ . The equality holds when the pattem is one of the stored
patterns.

(d) Network performance The capability of a neural network in an asso-
ciative memory test can be estimated by the maximum of the load parameter
$\alpha=P/N$ for correct recalls. The evaluation of the load parameter reveals
that the storage capacity of the CHN with the CSIGN function decreases as
$K$ increases [18]. Due to this degradation, it is not appropriate for a multi-
state associative memory when both the numbers of $K$ and $P$ are large. On
the contrary, the CHN with the CSIGM function exhibits less deterioration
with an increase of $K$ , although the network capability depends on the degree
of its nonlinearity. The properties of the CSIGM function will be discussed
in the next section.

3 Complex-sigmoid function
The CSIGM function has been proposed to incorporate continuous nonlin-
earity into the CSIGM function with discrete nonlinearity [22]. Just by
replacing the CSIGN function with the CSIGM one, an improvement of a
network performance is expected. Therefore, the CSIGM function can be
a standard activation function for complex-valued neural networks, as the
sigmoid function is for real-valued neuraI networks.

The idea of modification to the activation function was motivated by the
interpretation of the essence of the CSIGN function. The CSIGN function
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with K-valued states is defined as follows [11, 18]:

CSIGN$(z)$ $=$ $\{$

1 $0\leq\arg(z)<\theta_{K}$ ,
. . .

$e^{ik\theta_{K}}$ $k\theta_{K}\leq\arg(z)<(k+1)\theta_{K}$ ,
. . .

$e^{i(K-1)\theta_{K}}$ $(K-1)\theta_{K}\leq\arg(z)<2\pi$ ,

(6)

where $z=e^{i\theta}$ is a complex-valued input and $\theta_{K}=2\pi/K$ is a scaling factor.
This is rewritten as follows:

CSIGN $(z)$ $=$ $\exp(ih_{K}(\arg(z)))$ , (7)

where $h_{K}$ is the multilevel step function:

$h_{K}(\theta)$ $=$ $\lfloor\theta/\theta_{K}\rfloor$ . (8)

The floor function is indicated by $\lfloor\cdot\rfloor$ . This is the essence of the CSIGN
function except for the scaling between the interval $[0, K)$ and the circle
$[0,2\pi)$ . Figure 1(a) shows an example of the multilevel signum function.

Now, we can modify the multilevel step function into the multilevel sig-
moid function with smooth continuous nonlinearity leading to a relaxation
in the convergence [4, 5, 6, 7, 8, 9]. Unlike the previous studies on multilevel
activation functions, we combine the multilevel sigmoid function with circu-
lar topology of the complex activation function. The CSIGM function with
K-valued states is described as follows:

CSIGM$(z)$ $=$ $\exp(if_{K}(\arg(z)))$ . (9)

The multilevel sigmoid function $f_{K}$ is given by the sum of shifted sigmoid
functions as follows:

$f_{K}(\theta)$ $=$ $\theta_{K}\sum_{k=0}^{K-1}g(\frac{\theta}{\theta_{K}}-(k+\frac{1}{2}))$ , (10)

where $g(x)=1/(1+\exp(-x/\epsilon))$ with the nonlinearity parameter $\epsilon$ control-
ling the slope of the function. In the limit of $\epsilonarrow 0,$ $g(x)$ approaches the
signum function and thereby $f_{K}(x)arrow h_{K}(x)$ and CSIGM $(z)arrow$ CSIGN$(z)$ .
Figure 1 (b) shows an example of the multilevel sigmoid function with $K=8$.
When $\epsilon$ is sufficiently small, the function has $K$ stable fixed points near $\theta=$

$k\theta_{K}$ and $K$ unstable fixed points near $\theta=(k+1/2)\theta_{K}$ for $k=0,$ $\ldots,$ $K-1$ .
In the rest of this section, we show some mathematical properties of the

CSIGM function.
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(a) (b)

Figure 1: Multilevel functions which are the essences of the complex-valued
activation functions: (a) Multilevel signum function with $K=8$ . $(b)$ Multi-
level sigmoid function with $K=8$ and $\epsilon=0.1$ .

(a) Shift transformation The CSIGM function with $K$ levels is nearly
invariant under the transformation: $zarrow z\exp(i\theta_{K})$ . We consider a shift of
the K-level sigmoid function by $\theta_{K}$ as follows:

$f_{K}(\theta+\theta_{K})$ $=$ $\theta_{K}\sum_{k=0}^{K-1}g(\frac{\theta+\theta_{K}}{\theta_{K}}-(k+\frac{1}{2}))$

$=$ $\theta_{K}\sum_{k=0}^{K-1}g(\frac{\theta}{\theta_{K}}-(k-\frac{1}{2}))$

$=$ $\theta_{K}\{\sum_{k=I}^{K}g(\frac{\theta}{\theta_{K}}-(k-\frac{1}{2}))\}$

$+ \theta_{K}g(\frac{\theta}{\theta_{K}}+\frac{1}{2})-\theta_{K}g(\frac{\theta}{\theta_{K}}-K+\frac{1}{2})$

$=$ $f_{K}( \theta)+\theta_{K}\{g(\frac{\theta}{\theta_{K}}+\frac{1}{2})-g(\frac{\theta}{\theta_{K}}-K+\frac{1}{2})\}$ . (11)

Since $0\leq g(x)\leq e^{-1/\epsilon}$ for $x\leq 0$ and $1-e^{-1/\epsilon}\leq g(x)\leq 1$ for $x\geq 1$ , the two
terms in the brackets satisfy the following inequalities, respectively:

$1-e^{-1/\epsilon} \leq g(\frac{\theta}{\theta_{K}}+\frac{1}{2})\leq 1$ , (12)

$0 \leq g(\frac{\theta}{\theta_{K}}-K+\frac{1}{2})\leq e^{-1/\epsilon}$ , (13)
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for $0\leq\theta\leq 2\pi-\theta_{K}$ . Therefore, we obtain

$f_{K}(\theta)+(1-2^{-1/\epsilon})\theta_{K}\leq f_{K}(\theta+\theta_{K})\leq f_{K}(\theta)+\theta_{K}$ . (14)

We have the equality in the multilevel signum function case, i.e. in the limit
of $\epsilonarrow 0$ . When $\epsilon$ is sufficiently small, the functional form of the multilevel
sigmoid function (and the CSIGM function) for each interval $[k\theta_{K}, (k+1)\theta_{K})$

is almost the same for $k=0,$ $\ldots,$ $K-1$ .

(b) Symmetric property Next, we show a symmetric property of the
multilevel sigmoid function and the CSIGM function. Let us consider

$f_{K}(2\pi-\theta)$ $= \theta_{K}\{\sum_{k=0}^{K-1}g(\frac{2\pi-\theta}{\theta_{K}}-(k+\frac{1}{2}))\}$ . (15)

Since $g(-x)=1-g(x)$ for any $x$ , it follows

$f_{K}(2\pi-\theta)$ $= \theta_{K}\{\sum_{k=0}^{K-1}1-g(\frac{\theta}{\theta_{K}}+(k+\frac{1}{2})-K)\}$

$= \theta_{K}\{K-\sum_{k=0}^{K-1}g(\frac{\theta}{\theta_{K}}+(k+\frac{1}{2})-K)\}$

$=2 \pi-\theta_{K}\{\sum_{k=0}^{K-1}g(\frac{\theta}{\theta_{K}}-(K-k-\frac{1}{2}))\}$

$=2 \pi-\theta_{K}\{\sum_{k=0}^{K-1}g(\frac{\theta}{\theta_{K}}-(k+\frac{1}{2}))\}$

$=$ $2\pi-f_{K}(\theta)$ . (16)

By substituting $\theta=\pi$ into Eq. (16), we get $f_{K}(\pi)=\pi$ . Hence, the multilevel
sigmoid function has a point symmetry with respect to the center $(\pi, \pi)$ .
Using Eq. (16), we obtain the following property of the CSIGM function:

CSIGM$(\overline{z})=1/CSIGM(z)$ . (17)

(c) Monotonicity Using the derivative of the sigmoid function $g’(x)=$

$g(x)(1-g(x))/\epsilon$ , that of the multilevel sigmoid function is described as fol-
lows:

$f_{K}’(\theta)$ $=$ $\frac{1}{\epsilon}\sum_{k=0}^{K-1}g_{k}(\theta)(1-g_{k}(\theta))$ , (18)
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$0$ $\Theta$ $2\pi$

(a) (b)

Figure 2: Multilevel functions which are the essential of complex-valued ac-
tivation functions: (a) Multilevel step function with $K=8$ . (b) Multilevel
sigmoid function with $K=8$ .

where $g_{k}(\theta)\equiv g(\theta/\theta_{K}-(k+1/2))$ for $k=0,$ $\ldots,$ $K-1$ . The examples of this
function are shown in Fig. 2(a). If $\epsilon\neq 0$ , we obtain $f_{K}’(\theta)>0$ , implying that
the multilevel sigmoid function is monotonically increasing. When $\epsilon=0$ , the
function is obtained by the sum of the shifted delta functions.

$\lim_{\epsilonarrow 0}f_{K}’(\theta)$
$= \sum_{k=0}^{K-1}\delta(\frac{\theta}{\theta_{K}}-(k+\frac{1}{2}))$ . (19)

(d) Inflection points The second derivative of the multilevel sigmoid
function is written as:

$f_{K}’’(\theta)$ $=$ $\frac{1}{\epsilon^{2}\theta_{K}}\sum_{k=0}^{K-1}g_{k}(\theta)(1-g_{k}(\theta))(1-2g_{k}(\theta))$ , (20)

which is shown in Fig. 2(b). The function has $K$ inflection points near
$\theta=\theta_{K}(k+1/2)$ for $k=0,$ $\ldots,$ $K-1$ , where the second derivative changes
its sign. The derivative is related to the relaxation time to the stable fixed
points.

(e) Bifurcations To investigate the existence and stability of the fixed
points, we consider a dynamical system $\theta_{n+1}=f_{K}(\theta_{n})$ . The stable (attract-
ing) fixed point points can be found by plotting the converged points after
transient periods. Figure 3 shows the bifurcation diagrams for $K=8$ and
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$\epsilon$

$0$ 0.2 0.4 0.6 0.811.2
$\epsilon$

(a) (b)

Figure 3: Bifurcation of the CSIGM function for the variation of the nonlin-
earity parameter $\epsilon$ . $(a)K=8$. $(b)K=16$.

$K=16$. We can see that the number of stable fixed points gradually de-
creases as the nonlinearity parameter $\epsilon$ increases. When $\epsilon$ is sufficiently large,
only the center $\theta=\pi$ remains as the stable fixed point. To guarantee the
existence of $K$ stable fixed points, the parameter should be set at a value
less than the critical value $\epsilon^{*}$ at which two stable fixed points simultaneously
vanish due to the symmetric property. The two stable fixed points are de-
noted by $\theta=\theta^{*}\in[0, \theta_{K})$ and $\theta=2\pi-\theta^{*}\in[2\pi-\theta_{K}, 2\pi)$ . The condition for
the critical point can be given as follows:

$F_{1}(\theta^{*}, \epsilon^{*})$ $\equiv$ $f_{K}(\theta^{*})-\theta^{*}=0$ , (21)
$F_{2}(\theta^{*}, \epsilon^{*})$ $\equiv$ $f_{K}’(\theta^{*})-1=0$ . (22)

This is the condition of a tangent bifurcation for the two fixed points. By
numerically solving the above two equations with respect to $(\theta^{*}, \epsilon^{*})$ , we get
the critical value as $\epsilon^{*}\sim 0.23093$ . This critical value is independent of $K$ .
At the bifurcation point, $\theta^{*}/\theta_{K}\sim 0.34609$ which is also independent of $K$ .

4 Summary
We have first given an overview of the studies on complex-valued Hopfield
network. Several kinds of choices for learning rules and update schemes have
been introduced. When the number $P$ of the stored patterns and the number
$K$ of states are large, the performance of the network can be improved by
replacing the complex-signum function with the complex-sigmoid one includ-
ing a nonlinearity parameter $\epsilon[22]$ . However, the complex-sigmoid function
has not yet been fully understood.
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In this report, we have investigated some mathematical properties of the
complex-sigmoid function and the multilevel sigmoid function. Both func-
tions are nearly invariant under a shift transformation and have symmetric
properties. The multilevel sigmoid function is a monotonic function and
possess $K$ stable fixed points and $K$ inflection points for a sufficiently small
$\epsilon$ . As $\epsilon$ is increased, the number of stable fixed points gradually decreases.
This degeneration occurs due to a sequential disappearance of fixed points
via tangent bifurcations. By formulating this condition, we have numerically
obtained the critical bifurcation parameter value and the location of the fixed
point at the critical point. If the parameter is below the critical value, the
existence of $K$ stable fixed points are guaranteed. We have also shown that
this critical value is independent of $K$ .

The effect of the nonlinearity parameter on the network capability is still
an issue to be explored. The mathematical properties revealed in this report
can be useful in analyzing the correlation between the nonlinearity parameter
and the network performance.
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