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1 Introduction
A reversible logic element is a building primitive for reversible computing systems, where
its logical function is described by a one-to-one mapping. There are two types of reversible
logic elements: one without memory, which is usually called a reversible logic gate, and one
with memory. Reversible logic gates were first studied by Petri [10]. Then Toffoli [11, 12],
and Fredkin and Toffoli [2] studied them in connection with physical reversibility. They
showed a Toffoli gate [11] and a Fredkin gate [2] are both logically universal. Hence,
every reversible Turing machine can be built by them. On the other hand, Morita [4]
proposed a special type of a reversible logic element with l-bit memory called a rotary
element (RE), and showed that reversible Turing machines can be constructed from it.
This construction is much simpler than to use reversible logic gates, since there is no need
to synchronize signals as in the case of using gates. Morita [5] also showed that an RE
can be easily realized in the Billiard Ball Model (BBM), which is a reversible physical
model of computation proposed by Fredkin and Toffoli [2].

An RE is a specific 2-state 4-symbol (i.e., it has 4 input lines and 4 output lines)
reversible logic element, and thus there are also many other elements of such a type. All
the 2-state k-symbol reversible logic elements were classified for $k=2,3,4$ , and it was
shown that there exist 4 $(k=2),$ $14(k=3)$ , and 55 $(k=4)$ essentially different non-
degenerate ones [7]. Note that a degenerate 2-state k-symbol reversible logic element is a
one equivalent to a collection of simple connecting wires that have no meaningful logical
function, or a one equivalent to some 2-state $(k-1)$-symbol reversible logic element.
Hence, non-degenerate ones are the proper 2-state k-symbol reversible logic elements.

The problem whether there are universal reversible elements that are simpler than
an RE was studied by Ogiro et al. [9], and it was shown that all the 14 kinds of non-
degenerate 2-state 3-symbol elements are universal by showing that a Fredkin gate can
be simulated by a circuit composed of each of them. Later, Ogiro et al. [8] proved each
of the 14 kinds of 2-state 3-symbol elements can directly simulate an RE, hence we can
construct any reversible Turing machine from it relatively simply.

In this paper, we generalize the above result by showing that every non-degenerate
2-state k-symbol reversible logic element can simulate a rotary element if $k>2$ , and thus
they are all universal. One may think that if a 2-state reversible logic element has more
input/output symbols, then it will be more powerful, and hence the statement for $k>3$ is
trivial. But, the result we will show here (Theorem 4) is much stronger than it. It claims
that really “all“ of them are universal, i.e., there exists no non-universal non-degenerate
2-state k-symbol reversible logic element if $k>2$ . We prove it by showing the following
fact: for any non-degenerate 2-state k-symbol reversible logic element $(k=3,4, \ldots)$ , we

数理解析研究所講究録
第 1744巻 2011年 77-84 77



can find a non-degenerate 2-state $(k-1)$-symbol reversible logic element such that the
latter is realized by giving a feedback loop to the former. Since all the 142-state 3-symbol
reversible logic elements are universal, the result follows.

2 Preliminaries
Definition 1 A deterministic sequential machine $(SM)M$ is defined by $M=(Q, \Sigma, \Gamma, \delta)$ ,
where $Q$ is a finite non-empty set of states, $\Sigma$ and $\Gamma$ are finite non-empty sets of input
and output symbols, respectively. $\delta$ : $Q\cross\Sigmaarrow Q\cross\Gamma$ is a mapping called $a$ move function.
$M$ is called $a$ reversible sequential machine $(RSM)$ if $\delta$ is one-to-one $($hence $|\Sigma|\leq|\Gamma|)$ .

In an RSM, the previous state and the input are determined uniquely from the present
state and the output. A reversible logic elements with memory (RLEM) is nothing but an
RSM (generally with small numbers of states and symbols). In what follows, we consider
only 2-state RLEMs such that $|\Sigma|=|\Gamma|=k(k=2,3, \ldots)$ . We usually omit “2-state,”
and call them k-symbol RLEMs, which are denoted by k-RLEMs.

A rotary element (RE) is a specific 4-RLEM defined by $M_{RE}=(\{-, |\},$ $\{n, e, s, w\}$ ,
$\{n^{f}, e’, s’, w’\},$ $\delta_{RE})$ where $\delta_{RE}$ is given in Table 1. We have the following intuitive inter-
pretation for the RE. Inside the finite-state control there is a “rotatable bar.” The two
states –and { are called state $H$ and state V, respectively, depending on its direction.
For each input/output symbol there corresponds an input/output line on which a particle
(or token) is placed. When no particle exists, nothing happens on the RE. If a particle
arrives at an input line from a direction parallel to the bar, then it goes out from the
output line of the opposite side without affecting the direction of the bar (Fig. 1 $(a)$ ). If
a particle comes from a direction orthogonal to the bar, then it makes a right turn, and
rotates the bar by 90 degrees (Fig. 1 $(b)$ ). Since an RE is a 4-symbol RLEM, its operation
for the cases where two or more particles arrive is undefined. Of course, it is possible to
extend its definition so that it can deals with such cases. But, we do not do so, because
considering only one-particle case is sufficient for investigating universality of an RE.

Table 1: The move function of a rotary element (RE).

$t=0$ $t=1$ $t=0$ $t=1$

$nn’$ $nn’$

Figure 1: Operations of an RE: (a) the parallel case (state V with input $s$ ), and (b) the
orthogonal case (state $H$ with input $s$ ).
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Figure 2: A reversible Turing machine realized by rotary elements [4, 6]. An example of
a whole computing process of it is shown in 4,406 figures in [6].

It is known that any reversible Turing machine [1] can be simulated by a reversible
logic circuit composed only of REs [4, 6]. Fig. 2 is an example of such a circuit. In this
sense, an RE is a universal reversible logic element. On the other hand, it has been shown
in [5] that an RE has a simple realization in a billiard ball model, which is an idealized
reversible physical model of computing consisting of elastic balls and reflectors [2].

Let $M=(\{0,1\}, \{x_{1}, x_{2}, x_{3}, x_{4}\}, \{y_{1}, y_{2}, y_{3}, y_{4}\}, \delta)$ be a 4-RLEM. Since $\delta$ : $\{0,1\}\cross$

$\{x_{1}, x_{2}, x_{3}, x_{4}\}arrow\{0,1\}\cross\{y_{1}, y_{2}, y_{3}, y_{4}\}$ is one-to-one, it is specified by a permutation
from the set $\{0,1\}\cross\{y_{1}, y_{2}, y_{3}, y_{4}\}$ . Hence, there are $8!=40320$ 4-RLEMs. They are
numbered by $0,$

$\ldots$ , 40319 in the lexicographic order of permutations. Similarly, there are
$6!=720$ 3-RLEMS and $4!=24$ 2-RLEMs, which are also numbered in this way [7]. To
each number, the prefix k-“ is attached to indicate it is a k-RLEM.

Consider the move function of a 4-RLEM given by Table 2. It defines the 4-RLEM
No. 4-289. We use a graphical representation for a 2-state RLEM as shown in Fig. 3. Note
that again in Fig. 3, an input signal (or a particle-like object) should be given at most
one input line, because each input/output line corresponds to an input/output symbol of
an RSM. Therefore, we should not confuse RLEMs with conventional logic gates.

Table 2: The move function of the 2-state 4-RLEM 4-289.

In what follows, we use graphical representations for describing RLEMs. We can now
construct a circuit using RLEMs. Here, we pose the following constraint when composing
a circuit: each output line of an RLEM can be connected to at most one input line of
an RLEM in the circuit, i.e., fan-out of an output is inhibited. Otherwise, the number
of particles increases at each fan-out point. This means that we are assuming a kind of
conservation law besides reversibility.
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Figure 3: A graphical representation of the 4-RLEM 4-289. Solid and dotted lines describe
the input-output relation for each state. A solid line shows the state changes to another,
and a dotted line shows the state remains unchanged.

There are many 2-state k-RLEMs even if we limit $k=2,3,4$ , but we can regard
two RLEMs are equivalent if one can be obtained by “renaming” the states and the
input/output symbols of the other. We can see the RE is equivalent to the RLEM
4-289. Because they become exactly the same, if we rename the states, input/output
symbols of the RE as follows: $\mapsto 0,$ $|\mapsto 1,$ $n\mapsto x_{3},$ $e\mapsto x_{1},$ $s\mapsto x_{4},$ $w\mapsto x_{2},$

$n’\mapsto$

$y_{3},$ $e’\mapsto y_{2},$ $s’\mapsto y_{4},$ $w^{f}\mapsto y_{1}$ . Here we omit the precise definition of the above notion of
equivalence (see e.g., [5]). The numbers of equivalence classes of 2-, 3- and 4-RLEMs are
8, 24 and 82, respectively [7]. Fig. 4 shows representatives of the equivalence classes of 2-
and 3-RLEMs, where they are chosen as the ones with the least index.

Among them there are some “degenerate” RLEMs that are further equivalent to con-
necting wires, or equivalent to a simpler element with fewer symbols. Actually, there are
three kinds of degenerate ones:
(i) An RLEM such that there is no input that makes a state change, i.e., two states are

disconnected (e.g., RLEM 3-3). Thus, it is nothing but a collection of connecting wires.
(ii) An RLEM such that its relation between inputs and outputs, and the state change

are exactly the same in the states $0$ and 1 (e.g., RLEM 3-450). Thus, it is equivalent to
a l-state RLEM. Again, it can be regarded as a collection of simple connecting wires.

(iii) An RLEM such that there are some input $x_{i}$ and some output $y_{j}$ , and the input $x_{i}$

gives the output $y_{j}$ both in states $0$ and 1 without changing the state (e.g., $x_{2}$ and $y_{2}$

in RLEM 3-6). Thus, we can see $x_{i}$ and $y_{j}$ play only a role of a simple wire. Hence, by
removing $x_{i}$ and $y_{j}$ from $M$ , it becomes equivalent to some $(k-1)$-RLEM.

An RLEM is called non-degenemte, if it is not degenerate. In Fig. 4, degenerate ones are
indicated at the upper-right corner of each box.

Table 3 shows a further classification result based on the definition of degeneracy.
It should be noted that the conditions $(i)-(iii)$ above are not disjoint. Therefore, when
counting the number of degenerate ones of type (ii), those of type (i) are excluded. Like-
wise, when counting ones of type (iii), those of type (i) or (ii) are excluded. The total
numbers of equivalence classes of non-degenerate 2-, 3-, and 4-RLEMs are 4, 14, and 55,
respectively, and they are the important ones.

Table 3: Numbers of representatives of degenerate and non-degenerate 2-, 3-, and 4-
RLEMs [7].
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Figure 4: Representatives of equivalence classes of (a) 2-RLEMs, and (b) 3-RLEMs [7].
Two states $0$ and 1 of an RLEM are given in each box.

3 Simulating an RE by non-degenerate 3-RLEMs
Lemma 2 [8] An $RE$ can be constructed by any one of non-degenerate 3-RLEMs.

This lemma has been shown in [8], but we give another method of showing it. In
[8] circuits that simulate an RE are so constructed that the delay between inputs and
outputs is kept constant. However, if we employ the method of constructing reversible
Turing machines by REs as in Fig. 2, there is no need to adjust input/output delays
because only one particle exists in the circuit. Thus, here, we construct an RE whose
delay is not constant. This method simplifies the proof, and also gives reducibility among
2-, 3-RLEMs and an RE, while in [8] only partial reducibility among them was given.

We first note that Lee et al. [3] showed an RE can be made of 3-RLEM 3-10, and
that 3-10 is composed of 2 kinds of 2-RLEMs $2arrow 3$ and 2-4. By this, universality of the
set {2-3, 2-4} as well as universality of 3-10 are concluded (in [3], RLEMs 3-10, 2-3, and
2-4 are called “coding-decoding module“, “reading toggle“, and “inverse reading toggle”,
respectively). Fig. 5 (a) shows a method of realizing 3-10 by 2-3 and 2-4 [3]. Fig. 5 (b)
gives a new method of realizing an RE by 3-10. The circuit shown in Fig. 5 (b) reduces
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Figure 5: (a) Realizing a 3-RLEM 3-10 by 2-RLEMs 2-4 and 2-3 [3]. (b) Realizing an RE
by a circuit made of RLEMs 3-10. This figure corresponds to the state $H$ of an RE.

Figure 6: Realizing 2-RLEMs 2-3 and 2-4 by each of14 kinds of non-degenerate 3-RLEMs.
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the total number of needed $3RLEMs3-10$ from 12 (the method in [3]) to 8. Finally, we
show that the 2-RLEMs 2-3 and 2-4 can be simulated by each of the 14 non-degenerate
3-RLEMs. It is given in Fig. 6. In most cases, 2-3 and 2-4 are obtained by adding a
feed-back loop (i.e., connecting some output to some input) to a 3-RLEM. But, for 6
cases, two or three 3-RLEMs are needed to realize 2-3 or 2-4. Note that, though there is
no need to simulate 2-3 and 2-4 by 3-10 (since 3-10 can directly simulate an RE), it is also
included in Fig. 6 for completeness. By combining the above three steps, we can obtain
a circuit composed only of one kind of non-degenerate 3-RLEMs that simulates an RE.

4 Making a non-degenerate $(k-1)$-RLEM from each
of non-degenerate k-RLEMs

Lemma 3 Let $M_{k}$ be an arbitmry non-degenerate k-RLEM such that $k>2$ . Then, there
exists a non-degenemte $(k-1)$ -RLEM $M_{k-1}$ that can be simulated by $M_{k}$ .

Since the precise proof of this lemma is complex, only an outline is explained. Choose
one output line and one input line of $M_{k}$ , and connect them to make a feedback. Appar-
ently, a $(k-1)$-RLEM $M_{k-1}$ is obtained. However, if the feedback loop is inappropriate,
$M_{k-1}$ will be a degenerate one. Fig. 7 shows examples of giving feedbacks to 4-RLEMs
4-26 and 4-23617. The first two cases are appropriate ones, which produce nondegenerate
3-RLEMs 3-23 and 3-451. But, if an inappropriate feedback loop is given as in the last
case, the resulting 3-RLEM becomes degenerate. However, we can prove that it is always
possible to find an appropriate feedback loop for any given nondegenerate k-RLEM.

From Lemmas 2 and 3, the following theorem is derived.

Theorem 4 Every non-degenerate 2-state k-symbol RLEM can realize an $RE$, and thus
it is universal, if $k>2$ .

4-RLEM $|A_{(}]_{(}1i_{ll}g$ a feed $1$ ) $ack$ to 4-RLEM $|$ $I\{(^{\backslash }slllti_{ll}g$ 3-RLEM $|$

Figure 7: Giving feedback loops to some 4-RLEMs. Edges with $*$ are newly created.
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5 Concluding remarks
We proved all non-degenerate k-RLEMs can simulate a rotary element, a universal RLEM,
if $k>2$ . Since any RSM can be constructed by rotary elements [4], we can see all these
RLEMs are mutually reducible. However, it is an open problem whether each of 4 kinds
of non-degenerate 2-RLEMs is universal or not, though it is known that an RE is realized
by using both RLEMs 2-3 and 2-4 [3].

Though all non-degenerate 2-state k-RLEMs $(k>2)$ have been proved to be universal,
the situation is different for the case of 3 or more states. (Non-degeneracy for many-state
RLEMs should be defined appropriately.) Consider a 2-state 2-symbol RLEM e.g., 2-2.
It is easy to construct a many-state many-symbol reversible sequential machine $M$ by
using only RLEM 2-2, and we can regard $M$ as an RLEM. Therefore, if the RLEM 2-
2 is proved to be non-universal, then there exist non-universal non-degenerate n-state
k-symbol RLEMs for infinitely many $(n, k)$ such that $n>2$ and $k>1$ .
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