
組合せの効率的な生成法

清水俊宏 福永拓郎 永持仁

京都大学大学院情報学研究科数理工学専攻
{shimizu,takuro,nag}@amp.i.kyoto-u.ac.jp

Abstract: An unranking algorithm of a finite set S is an algorithm such that, given a number in
$\{0,1, \ldots, |S|-1\}$, it returns an element of S which is associated with the number. In this paper, it is
allowed to associate a number to any element in S whenever the distinct elements are associated with
different numbers. A ranking algorithm is the reverse of an unranking algorithm. In this paper, we
present two unranking algorithms for the set of all m-element subsets of an n-element set. One runs
in $O(n\log m)$ time, and the other runs in $O(m^{3m+3})$ time. We also show that they both have ranking
algorithms with the same running times.

1 Introduction
For a positive integer n , let $\langle n\rangle$ denote $\{0,1,$ $\ldots,n-$

$1\}$. A ranking algorithm of a finite set S is defined
as an algorithm such that, given an element of S , it
returns an integer in $\langle|S|\rangle$ which is associated with
the element. It is allowed to associate an integer
in $\langle|S|\rangle$ to any element in S whenever the distinct
elements are associated with different integers. In
other word, we can order the elements in S arbi-
trarily to obtain an efficient ranking algorithm. If
the algorithm returns $r\in\langle|S|\rangle$ as the answer to an
element in $S,$ r is called the rank of the element
and the element is called the r-th element (with re-
spects to the algorithm). An unranking algorithm
is the reverse of the ranking algorithm; Given an
integer in $\langle|S|\rangle$, it returns an element of S .

This paper discusses ranking and unranking algo-
rithms of a fundamental finite set. For non-negative
integers n and m with $n\geq m$, let

$C(n, m)$

$=\{(a_{1}, a_{2}, \ldots, a_{m}):0\leq a_{1}<a_{2}<\cdots<a_{m}\leq n-1\}$.

$C(n, m)$ is equivalent to the set of all m-element
subsets of the n-element set $\langle n\rangle$, and hence
$|C(n, m)|=(\begin{array}{l}nm\end{array})$.

In this paper, we evaluate the running time
of algorithms by the numbers of arithmetic op-
erations. Since the largest rank in $C(n, m)$ is
$(\begin{array}{l}nm\end{array})-I=\Theta(n^{m})$, algorithms discussed in this pa-
per cannot avoid dealing with numbers represented

by $O(m\log n)$ bits. We assume that each operation
of such numbers can be done in $O(1)$ time.

A naive idea for ranking and unranking of
$C(n, m)$ is to order the elements in the reverse
lexicographic order. In this order, the rank of
$(a_{1}, a_{2}, \ldots, a_{m})\in C(n, m)$ is $\sum_{i=1}^{m}(\begin{array}{l}n-a_{i}-1m-i+1\end{array})$. Since
computation of $(\begin{array}{l}n-a_{i}-1m-i+1\end{array})$ needs $O(m-i+1)$
time, there is an $O(m^{2})$-time ranking algorithm
with this order. On the contrary, the rank r of
$(a_{1}, a_{2}, \ldots, a_{m})\in C(n, m)$ in the reverse lexico-
graphic order is at least $(\begin{array}{l}n-1m\end{array})$ if and only if $a_{1}=0$.
Thus, given the rank r , we can judge whether
$a_{1}=0$ or not in $O(m)$ time. When $a_{1}=0,$ $a_{2}=1$

if and only if $r\geq(\begin{array}{l}n-1m\end{array})+(\begin{array}{l}n-2m-1\end{array})$. This condition can
be checked in $O(I)$ time by computing $(\begin{array}{l}n-2-1m\end{array})$ from

$(\begin{array}{l}n-1m\end{array})$. Repeating such operations gives an $O(n)-$

time unranking algorithm with the reverse lexico-
graphic order.

The aim of this paper is to propose better
unranking algorithms of $C(n, m)$. In fact,
we propose two new unranking algorithms of
$C(n, m)$. At first, we propose an easy recursive
algorithm running in $O(m\log n)$ time. It is
based on the observation that $C(n, m)$ is equiv-
alent to $\bigcup_{i=0}^{m}C(\lfloor n/2\rfloor, i)\cross C(\lceil n/2\rceil, m-i)$.
The algorithm defines an order different
from the lexicographic order and its reverse;
$(a_{1}, a_{2}, \ldots, a_{m})$ is former than $(a_{1}’, a_{2}’, \ldots, a_{m}’)$

if $|\{a_{1}, a_{2}, \ldots,a_{m}\}$ \cap $\{0,1, \ldots, \lfloor n/2\rfloor\}|$ $<$

$|\{a_{1}’, a_{2}’, \ldots, a_{m}’\}\cap\{0, I, \ldots, \lfloor n/2\rfloor\}|$. The de-
teail is explained in Section 2. In the next, we

数理解析研究所講究録
第 1744巻 2011年 99-106 99

propose an $O(m^{3m+3})$ -time unranking algorithm.
Since its running time depends on m only, this
is a huge improvement when m is small. The
order defined by this algorithm implicitely is
also different from the lexicographic order. This
algorithm is designed based on a new insight on
the structure of $C(n, m)$. We also show that each
of our unranking algorithms admits a ranking
algorihtm with the same running time.

Let us mention the background of this work. It is
a fundamental topic in computer science to study
algorithms to generate all objects in certain sets
one by one, which are sometimes called enumer-
ation algorithms. In fact, a number of enumera-
tion algorithms are known for $C(n, m)$ (for exam-
ple, [6, 11, 21] $)$. They have many applications such
as data mining [1, 2], artificial intelligence [7, 22],
operations research [3, 10, 14, 16, 17, 24], and bioin-
formatics [4, 9]. However there are several situa-
tions in which they are not useful. For example,
let us consider investigating certain objects one by
one. During the investigation, we sometimes need
to retrieve an object which has been already investi-
gated. To do this, an enumeration algorithm needs
to enumerate the objects from the beginning again
whereas an unranking algorithm can directly gen-
erate the object if its rank, which can be obtained
by a ranking algorithm, is remembered. Consid-
ering this fact, ranking and unranking algorithms
can be regarded as more advanced algorithms than
enumeration algorithms. In fact, if we have an un-
ranking algorithm running in $O(t)$ time, then we
can enumerate objects in $O(t)$ time per an object.
We expect that efficient ranking/unranking algo-
rithms of fundamental objects are applied in many
fields by this reason. One example of such appli-
cations is the work due to Imada et al. [9]. They
designed an algorithm for enumerating stereoiso-
mers of chemical compounds, in which an unrank-
ing algorithm of $C(n, m)$ with $m\leq 4$ is used as a
subroutine.

Ranking and unranking algorithms of a set S can
be regarded as an algorithunic implementation of a
bijection between $\langle|S|\rangle$ and S . If efficient ranking
and unranking algorithms of S are available, we can
use an integer in $\langle|S|\rangle$ as a compact representation
of an element in S . It has been pointed in [20] that
this feature of ranking and unranking algorithms
can be applied for random sampling of $|S|$; Gen-
erate an integer in $\langle|S|\rangle$ uniformly at random, and

unrank it by an unranking algorithm. Then ele-
ments of S are sampled uniformly.

Let us mention the previous researches on rank-
ing and unranking algorithms. As for $C(n, m)$,
Liebehenschel [15] presented an average-case analy-
sis of ranking and unranking algorithms for the set
of lexicographically ordered words, which extends
$C(n, m)$. Several parallel unranking algorithms of
$C(n, m)$ are discussed in [12, 13]. To the best
of our knowledge, there are no known algorithms
which outperform our algorithms. Ranking and un-
ranking algorithms are studied for various objects
such as permutations [18, 19], trees [5, 20] and B-
trees [8]. The most related works among them are
about permutations of m elements chosen from an
n-element set, which are discussed in Mare\v{s} and
Straka [18] and Myrvold and Ruskey [19]. In par-
ticular, the approach of Myrvold and Ruskey [19]
is similar with ours in the fact that they did not
persist on the lexicograhic order. Although both
of them proposed $O(m)$ ranking and unranking al-
gorithms, their algorithms canmot be applied to
$C(n, m)$.

The rest of this paper is organized as follows. We
present an $O(m\log n)$-time ranking and unranking
algorithms of $C(n, m)$ in Section 2, and $O(m^{3m+3})-$

time ranking and unranking algorithm of $C(n,m)$

in Section 3. In Section 4, we conclude the paper.

2 $O(m\log n)$-time ranking and
unranking algorithms

We first present an $O(m\log n)$-time unranking al-
gorithms of $C(n, m)$.

For given n , let $\tilde{n}=\lfloor n/2\rfloor$. Moreover we define
$T_{i}=\{e\in C(n, m) : |e\cap\langle\tilde{n}\rangle|=i\}$ for any integer i

satisfying $0\leq i\leq m$, where we here let $|e\cap\langle\tilde{n}\rangle|$ in-
dicate the number of components of e contained by

$\langle\tilde{n}\rangle$. Obviously $T_{0},$ $T_{1},$
$\ldots,$

T_{m} are pairwise disjoint
and $C(n, m)= \bigcup_{i=0}^{m}T_{i}$.

Let $(a_{1},a_{2}, \ldots, a_{m})\in T_{i}$. Then $(a_{1}, a_{2}, \ldots, a_{i})\in$

$C(\tilde{n},i)$ and $(a_{i+1}-\tilde{n},a_{i+2}-\tilde{n}, \ldots, a_{m}-\tilde{n})\in$

$C(n-\tilde{n}, m-i)$. That is to say, each element in
T_{i} is the concatenate of a vector in $C(\tilde{n}, i)$ and
a vector constructed from one in $C(n-\tilde{n}, m-i)$

by adding \tilde{n} to all components. This fact implies
that an unranking algorithm of $C(n, m)$ can be con-
structed from those of $C(\tilde{n}, i),$ $i=0,1,$ \ldots,\tilde{n} and

100

$C(n-\tilde{n}, i),$ $i=0,1,$ $\ldots,$ $n-$ fi, which is described
precisely below.

Let $\theta_{0}=0$ and $\theta_{i}=\sum_{j=0}^{i-1}|T_{j}|$ for $I\leq i\leq m+1$,
where $|T_{j}|=(\begin{array}{l}\tilde{n}j\end{array})\cdot(\begin{array}{l}n-\tilde{n}m-j\end{array})$. Our unranking algorithm
associates the rank r with a vector in T_{i} if $\theta_{i}\leq r<$

θ_{i+1} . In other words, we order vectors in $C(n, m)$

from those in T_{0} to in T_{m} .
The ordering in each T_{i} is defined ffom the un-

ranking algorithms of $C(\tilde{n}, i)$ and $C(n-\tilde{n}, m-i)$

by the following rule. For $0\leq r’\leq|T_{i}|$, de-
fine r_{1} and r_{2} as the remainder and quotient when
$r’$ is divided by $|C(\tilde{n}, i)|$, respectively (i.e., $r’=$
$r_{2}|C(\tilde{n}, i)|+r_{1}$ and $0\leq r_{1}<|C(\tilde{n},i)|)$. Recall
that $|C(\tilde{n}, i)|=(\begin{array}{l}\tilde{n}i\end{array})$. Let $(a_{1}, a_{2}, \ldots, a_{i})\in C(\tilde{n}, i)$

be the $r_{1^{-}}$th vector of $C(\tilde{n}, i)$ and $(b_{1}, b_{2}, \ldots, b_{m-i})$

be the $r_{2^{-}}$th vector of $C(n-\tilde{n}, m-i)$, respec-
tively. We define the r’-th vector of T_{i} from them
as $(a_{1}, a_{2}, \ldots, a_{i}, b_{1}+\tilde{n}, b_{2}+\tilde{n}, \ldots, b_{m-i}+\tilde{n})$.

Entire our algorithm is described as follows.

Algorithm UNRANKING(n, m, r)

Input: Non-negative integers n and m with $m\leq$

n , and a rank $r\in\langle(\begin{array}{l}nm\end{array})\rangle$

Output: A vector in $C(n, m)$

Step 1: If $m=0$, then return \emptyset . If $n=m$, then
retum $(0,1, \ldots, n-1)$.

Step 2: Compute the index i such that $\theta_{i}\leq r<$

θ_{i+1} , where $\theta_{0}=0$ and $\theta_{i}=\sum_{j=0}^{i-1}(\begin{array}{l}\tilde{n}j\end{array})\cdot(\begin{array}{l}n-\tilde{n}m-j\end{array})$,
$1\leq i\leq m$.

Step 3: Compute the remainder r_{1} and the quo-
tient r_{2} when $(r-\theta_{i})$ is divided by $(\begin{array}{l}\tilde{n}i\end{array})$. Com-
pute the $r_{1^{-}}$th vector $(a_{1}, a_{2}, \ldots, a_{i})$ of $C(\tilde{n}, i)$

and the r_{2}-th vector $(b_{1}, b_{2}, \ldots, b_{m-i})$ of $C(n-$
$\tilde{n},$ $m-i)$ by calling UNRANKING (\tilde{n}, i, r_{1}) and
UNRANKING $(\tilde{n}, m-i, r_{2})$.

Step 4: Return $(a_{1},$ $a_{2},$ $\ldots,$ $a_{i},$ $b_{1}+\tilde{n},$ $\ldots,b_{m-i}+$

$\tilde{n})$.

Now let us analyze the time $t(n, m)$ to compute
the r-th vector of $C(n, m)$ by UNRANKING(n, m, r) .
Obviously $t(n, 0)=O(1)$ and $t(n, n)=O(I)$ by
Step 1.

θ_{i+1} can be computed from θ_{i} in $O(1)$ time, and
hence all of $\theta_{0},$ $\theta_{1},$

$\ldots,$
θ_{m} can be computed in $O(m)$

time in total. Thus all operations except calling
UNRANKING (n, i,r_{1}) and UNRANKING$(n, m-i, r_{2})$

take $O(m)$ time. It implies that

$t(n,m)=t(\lfloor n/2\rfloor, i)+t(\lceil n/2\rceil, m-i)+O(m)$.

From this, $t(n, m)=O(m\log n)$ can be proven by
the induction on n and m .

UNRANKING (n, m, r) can be modified into a
ranking algorithm as follows. Let $(a_{1}, a_{2}, \ldots, a_{m})\in$

$C(n, m)$ be an input to the algorithm. In
Step 2, set i to $|\{a_{1}, a_{2}, \ldots, a_{m}\}\cap\langle\tilde{n}\rangle\}|$. Let
$a’=(a_{1}, a_{2}, \ldots, a_{i})$ and $a”=(a_{i+1}-\tilde{n},$ $a_{i+2}-$

$\tilde{n},$

$\ldots,$
$a_{m}-\tilde{n})$. In Step 3, call the ranking algo-

rithms with inputs $(\tilde{n}, i, a’)$ and $(\tilde{n}, m-i, a’’)$ re-
cursively. Let r_{1} and r_{2} be the obtained ranks
of $a’$ and $a”$. Then the rank of $(a_{1}, a_{2}, \ldots, a_{m})$

is $\theta_{i}+r_{1}|C(\tilde{n}, i)|+r_{2}$. The running time of this
ranking algorithm can be derived similarly.

As a consequence, we have the next theorem.

Theorem 1. There exist ranking and unranking al-
gorithms of $C(n, m)$ which run in $O(m\log n)$ time.

3 $O(m^{3m+3})$-time ranking and
unranking algorithms

3.1 Sketch of idea
In this section, we show that there exist ranking
and unranking algorithms of $C(n, m)$ running in
$O(m^{3m+3})$ time. Our proof is based on the induc-
tion on m ; We prove that, from $O(t_{m’})$-time rank-
ing/unranking algorithms for $C(n’, m’),$ $m’<m$,
it is possible to construct an $O(t_{m’}+m^{3m+2})$-time
ranking/unranking algorithm for $C(n, m)$. In this
subsection, we sketch an idea behind our proof.

It is known as a fundamental theorem that $(\begin{array}{l}nm\end{array})=$

$(\begin{array}{l}nm-1\end{array})+(\begin{array}{l}n-1m-1\end{array})$. Its proof uses the fact that there
exists a bijection between $C(n, m)$ and $C(n,$ $m-$
$1)\cup C(n-1, m-I)$. From this relationship, we
observe that it suffices to consider only n and m

that are coprime (Lemma 7 and Theorem 2).
Now put balls indexed by the numbers

in $\langle n\rangle$ in a circle, and represent a vector
$(a_{1}, a_{2}, \ldots, a_{m})\in C(n, m)$ by filling the balls in-
dexed by $a_{1},$ $a_{2},$ $\ldots,$ a_{m} as in Figure 1. We then
divide $C(n, m)$ into groups such that $a\in C(n, m)$

and $b\in C(n, m)$ are in the same group if the rep-
resentation of a becomes the same with that of b

after removing the indices of balls (see the right-
most figure of Figure 1). The set of vectors each
of which is lexicographically smallest in its group is
denoted by $R(n, m)$ in the next subsection. If n and
m are coprime, each group has exactly n vectors.

101

Hence there exists a bijection between $C(n, m)$ and
$R(n, m)\cross\langle n\rangle$, meaning that a ranking/unranking
algorithm can be constructed from one for $R(n, m)$

(Lemma 6).
In the ball representation of $a\in R(n, m)$ with-

out indices, define the distance between two filled
balls as i if there are $i-1$ balls between them.
Instead of balls, locate distances between two ad-
jacent filled balls in a circle. $SL(n, m)$ defined in
the next subsection is a set of vectors representing
them uniquely (see Figure 2). $SL(n, m)$ is essen-
tially equivalent to $R(n,m)$ (Lemma 5).

Let $a\in SL(n, m)$, and $b_{1},$ $b_{2},$
$\ldots,$

$b_{m’}$ be the dis-
tinct values in the components of a , where $m’\leq m$

because a is an m-dimensional vector. We suppose
that $b_{1}<b_{2}<\cdots<b_{m’}$. The number of possible
places of $b_{1},$ $b_{2},$

$\ldots,$
$b_{m’}$ in a is at most $O(m^{m})$, and

hence we can enumerate all of them. In the proof of
Lemma 4, a vector representing the places is called
position vector p. If a position vector is given, we
know how many times b_{i} appears in a ; Assume
that b_{i} appears e_{i} times for $i=1,2,$ $\ldots,$

$m’$. Then
$\sum_{i=1}^{m’}b_{i}e_{i}=n$. The set MES$(n, m’, e)$ of vectors
is defined as $\{(b_{1}, b_{2}, \ldots, b_{m’}):\sum_{i=1}^{m’}b_{i}e_{i}=n,$ $1\leq$

$b_{1}<b_{2}<\cdots<b_{m’}\leq n\}$ in the next subsection.
This indicates a bijection between $SL(n, m)$ and
$\bigcup_{j=1}^{\ell}MES(n, m^{j}, e^{j})$ where m^{j} and e^{j} are deter-
mined by the enumerated position vectors $\mathscr{S},$ $j=$

$1,2,$
$\ldots,$

ℓ . From this fact, we can construct a rank-
ing/unranking algorithm for $SL(n, m)$ from one for
MES(n, m^{j}, e^{j}) (Lemma 4). We then carefully
transform MES(n, m^{j}, e^{j}) into $C(n’, m’),$ $m’<m$,
meaning that a ranking/unranking algorithm for
$C(n’, m’),$ $m’<m$, gives one for MES(n, m^{j}, e^{j})

(Lemmas 1, 2 and 3).

3.2 Algorithms

Let us present an exact proof of our algorithm. Due
to the space limitation, several prook are omit-
ted. From now on, let us suppose that there exist
$O(t_{m’})$-time ranking and unranking algorithms for
$C(n’, m’)$ with any n and $m’<m$.

We define a finite set $S(n, m)$ by
$S(n, m)=\leq$

$\{(a_{1},a_{2}, \ldots, a_{m})$: 1 \leq $a_{1},$ $a_{2},$ $\ldots,$ a_{m}

$n,$ $\sum_{i=1}^{m}a_{i}=n\}$. Notice that the range of com-
ponents of vectors in $S(n, m)$ is different hom that
in $C(n, m)$. We also note that $|S(n, m)|=(\begin{array}{l}n-1m-1\end{array})$.

We can observe that a ranking/unranlding algo-

rithm of $C(n, m-1)$ gives a ranking/unranking al-
gorithm of $S(n, m)$.

Lemma 1. There exist ranking and unranking al-
gomthms of $S(n, m)$ running in $t_{m-1}+O(m)$ time.

Proof.
Bijection: Let $(a_{1}, a_{2}, \ldots, a_{m})\in S(n,m)$. More-
over let $b_{i}=(\sum_{j=1}^{i}a_{j})-1$ for $i=1,2,$ $\ldots,$

m , and
$b=(b_{1}, b_{2}, \ldots, b_{m-1})$. It then follows that

$0\leq b_{1}<b_{2}<\cdots<b_{m-1}<b_{m}=n-1$,

and hence $b\in C(n-1, m-1)$. This defines a
bijection from $S(n,m)$ to $C(n-1,m-1)$. In this
proof, let f : $S(n, m)arrow C(n-1, m-1)$ denote this
bijection.
Unranking: For given rank r \in $\langle|S(n,m)|\rangle$,
compute the r-th vector $b=(b_{1}, b_{2}, \ldots, b_{m-1})$ in
$C(n-1, m-1)$ by the unranking algorithm of
$C(n-1, m-1)$ and return $f^{-1}(b)\in S(n, m)$. Since
$f^{-1}(b)$ can be computed from b in $O(m)$ time, this
unranking algorithm runs in $t_{m-1}+O(m)$ time.
Ranking: For given $a\in S(n, m)$, compute the
rank of $f(a)\in C(n-1,m-1)$ by the ranking al-
gorithm of $C(n-1, m-1)$. \square

By an m-dimensional positive vector
b $=$ $(b_{1}, b_{2}, \ldots,b_{m})$, we extend $S(n,m)$

to ES(n, m, b) $=$ $\{(a_{1},a_{2}, \ldots, a_{m})$: 1 \leq

$a_{1},$ $a_{2},$ $\ldots,$
$a_{m}\leq n,$ $\sum_{i=1}^{m}b_{i}a_{i}=n\}$. Note that

ES$(n, m, b)=S(n,m)$ if $b=(1,1, \ldots, 1)$. In
the next, we consider ranking and unranking
algorithms of ES(n, m, b) . For integers i and j , we
let $i|j$ mean that i divides j , i.e., $imod j=0$.
Lemma 2. There exist ranking and unrank-
ing algorithms of ES(n, m, b) running in
t_{m-1} $+O(m^{2}\beta^{2m-1})$ time for any n and
$b=(b_{1},b_{2}, \ldots, b_{m})$ such that $\max_{i=1}^{m}b_{i}$ $\leq\beta$.
Moreover $|ES(n,m, b)|$ can be computed in
$O(m^{2}\beta^{2m-1})$ time.

For $(b_{1},b_{2}, \ldots, b_{m})$, let MES(n, m, b) $=$

$\{(a_{1}, \ldots, a_{m})\in ES(n, m, b)$: $1\leq a_{1}<\cdots<a_{m}\leq$

$n\}$. In the next, we give ranking and unranking
algorithms of MES(n, m, b) .

Lemma 3. There exist ranking and unmnking
algorithms of MES(n,m, b) running in $t_{m-1}+$

$O(m^{2}\beta^{2m-1})$ time for any $b=(b_{1}, b_{2}, \ldots, b_{m})$ such
that $\sum_{i=1}^{m}b_{i}\leq\beta$. $Moreover|MES(n, m, b)|$ can be
computed in $O(m^{2}\beta^{2m-1})$ time.

102

01

� �
00

�
Oo

O $O1$

\copyright @ O � \copyright

O � \copyright \otimes Os

$O4$ $O4$

$(0,2,5)$ (1,3,6)

O \cdots ゆ O \bullet

$O3$ \bullet O

O

(2, 4, 7)

Figure 1: Representation of vectors in $C(n, m)$ by balls in a circle

(b_{1}, b_{2}, b_{2})

$arrow$ $($ 2, 3, $3)\in R(8,3)$ $arrow$ $b_{1}+2b_{2}=8$

$1\leq b_{1}<b_{2}\leq 8$

Figure 2: From $R(n, m)$ to $SL(n, m)$, and $homSL(n, m)$ to pairs of position vectors and MES$(n, m’, e)$

Proof. Ranking: From b , compute d defined as above.
Bijection: From a vector $a=(a_{1}, a_{2}, \ldots, a_{m})\in$ From the given $a\in MES(n, m, b)$, Compute $f(a)$,
MES(n, m, b) , define $c=(c_{1}, c_{2}, \ldots, c_{m})$ by $c_{1}=$ and retum the rank of $f(a)$ in ES(n, m, d) .
a_{1} and $c_{i}=a_{i}-a_{i-1},$ $i=2,3,$ $\ldots,$ m . Let f Since $|MES(n, m, b)|=|ES(n, m, d)|$, we can
denote this mapping in this proof. Observe that also compute $|MES(n, m, b)|$ in the same

$running\square$
$c_{i}\geq$ Ifor $i=1,2,$ $\ldots,$ m Moreover, define $d=$ time with the computation of $|ES(n, m, d)|$.
$(d_{1},d_{2}, \ldots, d_{m})$ by $d_{i}= \sum_{j=i}^{m}b_{j},$ $i=1,2,$ $\ldots,$ m .
Since $\sum_{i=1}^{m}a_{i}b_{i}=n$ and $a_{i}= \sum_{j=1}^{i}c_{j}$ for $i=$ We say that a vector $(a_{1}, a_{2}, \ldots, a_{m})$ is a slide of
1, 2, . . . , m , it follows that another vector $(b_{1}, b_{2}, \ldots, b_{m})$ whenever there ex-

ists $j\in\{0,1,2, \ldots, m-1\}$ such that $a_{i}=b_{(i+j)}$

$\sum_{i=1}^{m}c_{i}d_{i}=\sum_{i=1}^{m}c_{i}\sum_{j=i}^{m}b_{j}=\sum_{j=1}^{m}b_{j}\sum_{i=1}^{j}c_{i}=\sum_{j=1}^{m}b_{j}a_{j}=n,$ if $i+j>m$ for convenience. Let $SL(n, m)$ be the
for all $i\in\{I, 2, \ldots, m\}$ where we let $b_{i+j}=b_{i+j-m}$

subset of $S(n, m)$ such that $a\in S(n,m)$ belongs to
implying that $c\in ES(n, m, d)$. Hence f is a bijec- $SL(n, m)$ if and only if a is lexicographically smaller
tion ffom MES(n, m, b) to ES(n, m, d) . than or equal to any of its slides.
Unranking: Let $r\in\langle|MES(n, m, b)|\rangle$ be the Lemma 4. There exist ranking and unranking al-
given rank. From b , we compute d defined as gorithms of $SL(n, m)$ running in $O(t 1+m^{3m+2})$$m-$above. Recall that $d_{i}= \sum_{j=i}^{m}b_{j}\leq\beta$ for every time.
$i=1,2,$ $\ldots,$ m . We then compute the r-th vec-
tor c of ES(n, m, d) by the unranking algorithm We say that a vector $a=(a_{1}, a_{2}, \ldots, a_{m})$ is
of ES(n, m, d) , which runs in $t_{m-1}+O(m^{2}\beta^{2m})$ a rotation of $b=(b_{1}, b_{2}, \ldots, b_{m})$ whenever there
time by Lemma 2. We then compute $f^{-1}(c)\in$ exists an integer j such that $\{a_{1}, a_{2}, \ldots, a_{m}\}\equiv$

$MES(n, m, b)$ and retum it. It is easy to see that $\{b_{1}+j, b_{2}+j, \ldots, b_{m}+j\}(mod n)$. Let $R(n, m)$

the rumning time of this unranking algorithm is de- be the subset of $C(n, m)$ such that $a\in C(n, m)$ be-
termined by those of the unranking algorithm in longs to $R(n, m)$ if and only if a is lexicographically
Lemma 2. smaller than or equal to any of its rotations.

103

Lemma 5. If n and m are copriime, then there
exist mnking and unranking algorithms of $R(n, m)$

running in $t_{m-1}+O(m^{3m+2})$ time.

Proof.
Bijection: From $a=(a_{1}, a_{2}, \ldots, a_{m})\in S(n, m)$,
define $b=(b_{1}, b_{2}, \ldots, b_{m})$ by

$b_{i}=\{\begin{array}{ll}0 i=1,a_{1}+a_{2}+\cdots+a_{i-1} 2\leq i\leq m.\end{array}$

Then $0\leq b_{1}<b_{2}<\cdots<b_{m}<n$, i.e., $b\in$

$C(n, m)$, because $a_{i}\geq 1$ for $i=1,2,$ $\ldots,$
m and

$\sum_{i=1}^{m}a_{i}=n$. It is easy to see that this transforma-
tion from a to b defines a bijection $homS(n, m)$ to
$\{(b_{1}, b_{2}, \ldots,b_{m})\in C(n, m):b_{1}=0\}$. We denote it
by f .

The restriction of f onto $SL(n, m)$ is a bijection
$homSL(n, m)$ to $R(n, m)$ when n and m are cx

prime. For proving this fact, we need to show that
the following two conditions hold:

(Fl) For each $a\in SL(n, m),$ $f(a)\in R(n,m)$;

(F2) For each $b\in R(n, m)$, there exists $a\in$

$SL(n, m)$ such that $f(a)=b$.

Here we do not prove (Fl) and (F2) due to the
space limitation.
Unranking: For the given rank $r\in\langle|R(n, m)|\rangle$,
compute the r-th vector $a\in SL(n, m)$ by the un-
ranking algorithm of $SL(n,m)$ in Lemma 4, and
return $f(a)$. Since $f(a)$ can be computed hom

a in $O(m)$ time, this algorithm runs in $t_{m-1}+$

$O(m^{3m+2})$ time.
Ranking: The reverse operations of the unrank-
ing algoritlm give a ranking algoritlm of $R(n, m)$.
Since $f^{-1}(b)$ can be computed from $b\in R(n,m)$ in
$O(m)$ time, this runs in $t_{m-1}+O(m^{3m+2})$ time. 口

Lemma 6. If n and m are $\omega prime$, then there
exist mnking and unmnking algorithms of $C(n,m)$

running in $t_{m-1}+O(m^{3m+2})$ time.

Proof.
Bijection: Let $a=(a_{1}, a_{2}, \ldots, a_{m})\in C(n, m)$.
We define U_{a} as the set of rotations of a in $C(n, m)$.
First we prove that $|U_{a}|$ $=n$. We represent
$\{a_{1}, a_{2}, \ldots, a_{m}\}$ by A , and $\{(a_{1}+j)mod n,$ $(a_{2}+j)$

$mod n,$ $\ldots,$ $(a_{m}+j)mod n\}$ by $A+j$ for an inte-
ger j . Notice that each vector in U_{a} can be defined

from each of $A+j,$ $j\in\langle n\rangle$. If $|U_{a}|=n$ is proven,
we can see that each of $A+j,$ $j\in\langle n\rangle$ defines a dis-
tinct vector of U_{a} . Recall that $R(n, m)$ consists of
the vectors $a\in C(n, m)$ such that a is lexicograph-
ically smallest in U_{a} . Hence these imply a bijection
from $R(n, m)\cross\langle n\rangle$ to $C(n, m)$. We omit the proof
of $|U_{a}|=n$ due to the space limitation.
Unranking: For the given rank $r\in\langle|C(n, m)|\rangle$,
let p be the remainder and q be the quotient when
r is divided by n . By the unranking algorithm
of $R(n,m)$ given in Lemma 5, compute the q-th
vector $(a_{1}, a_{2}, \ldots, a_{m})$ in $R(n, m)$. There exists
only one slide of $(a_{1}+p, a_{2}+p, \ldots, a_{m}+p)mod n$

which is in $C(n, m)$. Hence return it as the r-
th vector of $C(n,m)$. This computation needs
$t_{m-1}+O(m^{3m+2})$ time.
Ranking: For the given $a=(a_{1},a_{2}, \ldots, a_{m})\in$

$C(n, m)$, compute the lexicographically smallest
vector $a’=(a_{1}’, a_{2}’, \ldots, a_{m}’)$ in U_{a} . Then compute
the rank $r’$ of $a’$ in $R(n, m)$ by the ranking algo-
rithm in Lemma 5. Moreover, compute $j\in\langle n\rangle$

such that $\{a_{1}, a_{2}, \ldots, a_{m}\}=\{a_{1}’+j,$ $a_{2}’+j,$
$\ldots,$

$a_{m}’+$

$j\}$. Return $r’n+j$ as the rank of a . Observe that
the running time is dominated by the time for call-
ing the ranking algorithm of $R(n, m)$. 口

The next lemma is important to extend the un-
ranking algorithm described in Lemma 6 to any
pair of n and m .

Lemma 7. Let n and m be positive integers. If
there exists an unmnking (resp., a ranking) algo-
rithm of $C(n-1, m)$ running in $O(t)$ time, and an
unranking (resp., a mnking) algomthms of $C(n-$
$1,$ $m-1)$ running in $O(t’)$ time, then there exists an
unmnking (resp., a mnking) algorithms of $C(n, m)$

running in $O(m+ \max\{t,t’\})$ time.

Finally we obtain our main theorem.

Theorem 2. There estst ranking and unranking
$algo7\dot{t}thm$ of $C(n,m)$ running in $O(m^{3m+3})$ time.

Proof. There exists a non-negative integer $m’<m$
such that $n-m’\equiv 1(mod m)$. Then $n’=n-m’$
and m are coprime. By applying Lemma 7 re-
peatedly, we can observe that an unranking (resp.,
a ranking) algorithm of $C(n,m)$ is constructed
from unranking (resp., ranking) algorithms of
$C(n’,m-1),$ $C(n’+1, m-1),$ $\ldots,$ $C(n,m-1)$ and
$C(n’, m)$. For each of $C(n’,m-1),C(n’+1,$ $m-$

104

1 $)$, . . . , $C(n, m-1)$, we have ranking and unrank-
ing algorithms running in t_{m-1} time by the as-
sumption. Lemma 6 tells that there exist rank-
ing and unranking algorithms of $C(n’, m)$ running
in $t_{m-1}+O(m^{3m+2})$ time. From these, we ob-
tain ranking and unranking algorithms of $C(n, m)$,
which runs in $t_{m}=t_{m-1}+O(m^{3m+2})$ time. Ob-
viously we can let $t_{1}=O(1)$. In consequence, we
have $t_{m}=O(m^{3m+3})$. 口

4 Concluding remarks
We have presented two unranking algorithms of
$C(n, m)$. One algorithm runs in $O(m\log n)$ time,
and the other runs in $O(m^{3m+3})$ time. In partic-
ular, the running time of the latter algorithm de-
pends on m only. This running time is evaluated
by the number of arithmetic operations on num-
bers represented by $O(m\log n)$ bits. In a standard
word-RAM model, it may be usual to suppose that
the word-size is $O(\log n)$. Even in this model, the
running time of this algorithm depends on m only.

An obvious future work is to achieve better run-
ning time. For permutations of m-element subsets
chosen from an n-element set, $O(m)$-time ranking
and unranking algorithms are proposed by [18, 19].
Hence the existence of $O(m)$-time ranking and un-
ranking algorithms for $C(n, m)$ is an interesting
open problem.

References
[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivo-

nen, A. I. Verkamo. Fast discovery of associa-
tion rules. Advances in Knowledge Discovery
and Data Mining, pp. 307-328, 1996.

[2] R. Agrawal, R. Srikant. Fast algorithms for
mining association rules in large databases.
Very Large Data Bases Conference 94,
pp. 487-499, 1994.

[3] E. A. Akkoyunlu. The enumeration of maxi-
mal cliques of large graphs. SIAM Journal on
Computing 2: 1-6, 1973.

[4] R. Aringhieri, P. Hansen, F. Malucelli. Chem-
ical trees enumeration algorithms. $4ORI:67-$
83 , 2003.

[5] C.J. Colbourn, R.P.J. Day, L.D. Nel. Unrank-
ing and ranking spanning trees of a graph.
Journal of Algorithms $10:27I-286$, 1989.

[6] P. Eades. An algorithm for generating sub-
sets of fixed size with a strong minimal
change property. Information Processing Let-
ters 19: 131-133, 1984.

[7] T. Eiter, K. Makino. On computing all abduc-
tive explanations hom a propositional Horn
theory. Journal of the ACM 54:24, 2007.

[8] U.I. Gupta, D.T. Lee, C.K. Wong. Ranking
and unranking of B-trees. Journal of Algo-
rithms 4:51-60, 1983.

[9] T. Imada, S. Ota, H. Nagamochi, T. Akutsu.
Enumerating stereoisomers of tree structured
molecules using dynamic programming. The
20th International Symposium on Algorithms
and Computation, LNCS 5878, pp. I4-23,
2009.

[10] L. Khachiyan, E. Boros, K. Borys, K. Elbas-
sioni, V. Gurvich, K. Makino. Enumerating
spanning and connected subsets in graphss and
matroids. Journal of the Operations Research
Society of Japan 50:325-338, 2007.

[11] D.E. Knuth. Generating all combinations and
partitions, The Art of Computer Program-
ming, Volume 4, Fascicle 3, 2005.

[12] Z. Kokosinskirtski, Unranking combinations in
parallel, 2nd International Conference “Paral-
lel and Distributed Processing Techniques and
Applications,” pp.79-82, 1996.

[13] Z. Kokosinski\’{n}ski. Algorithms for unranking
combinations and other related choice func-
tions. The University of Aizu, Technical Re-
port 95-1-006, 1995.

[14] E. L. Lawler, J. K. Lenstra, A. H. G. Rin-
noy Kan. Generating all maximal independent
sets, NP-hardness and polynomial-time algo-
rithms. SIAM Journal on Computing 9:558-
565, 1980.

[15] J. Liebehenschel. Ranking and unranking of
lexicographically ordered words: an average-
case analysis. Journal of Automata, Languages
and Combinatorics 2:227-268, 1998.

105

[16] H. Liu, J. Wang. A new way to enumerate cy-
cles in graph. Advanced International Confer-
ence on Telecommunications and International
Conference on Internet and Web Applications
and Services, pp. 57, 2006.

[17] K. Makino, T.Uno. New algorithn for enumer-
ating all maximal cliques. 9th Scandinavian
Workshop on Algorithm Theory, LNCS 3111,
pp. 260-272, 2004.

[18] M. Mare\v{s}, M. Straka. Linear-time ranking of
permutations. 15th Annual European Confer-
ence on Algorithms, LNCS 4698, pp. 187-193,
2007.

[19] W. Myrvold, F. Ruskey. Ranking and unrank-
ing permutations in linear time. Information
Processing Letters 79:281-284, 2001.

[20] J.B. Remmel, S.G. Williamson. Ranking and
unranking trees with a given number or a given
set of leaves. arXiv: 1009.2060, 2010.

[21] F. Ruskey, A. Williams. Generating combina-
tions by prefix shifts. 11th Annual Interna-
tional Conference on Computing and Combi-
natorics, LNCS 3595, pp.570-576, 2005.

[22] B. Selman, H. J. Levesque. Support set se-
lection for abductive and default reasoning.
The International Journal of Artificial Organs
82:259-272, 1996.

[23] T. Takaoka, S. Violich. Fusing loopless algo-
rithms for combinatorial generation. Interna-
tional Journal of Foundations of Computer
Science lS:263-293,2007.

[24] T. Uno. A fast algorithm for enumerating bi-
partite perfect matchings. The 12th Interna-
tional Symposium on Algorithms and Compu-
tation, LNCS 2223, pp. 367-379, 2001.

106

