
2010年度冬の LA シンポジウム [22]

圧縮文字列上での q-gram頻度の高速な計算方法

後藤啓介* 坂内英夫 \dagger 稲永俊介 \ddagger 竹田正幸 \S

2011年 2月 2日

Abstract

We present a simple and efficient algorithm for cal-
culating q-gram frequencies on strings represented
in compressed form, namely, as a straight line pro-
gram (SLP). Given an SLP of size n that represents
string T , the algorithm computes the frequencies of
all q-grams in T in $O(qn)$ time and space. In the
extreme case, n can be as small as $O(\log|T|)$, and
thus the algorithm is exponentially faster than any
algorithm working on the uncompressed represen-
tation, when q is considered constant. Computa-
tional experiments show that our algorithm and a
variation of it is practical for small q , and actually
runs faster on various real-word string data, com-
pared to algorithms that work on the uncompressed
representation. We also discuss applications in data
mining and classification of string data, for which
our algorithm can be useful.

1 Introduction
Many forms of data such as texts, biological se-
quences (DNA/proteins), MIDI sequences, etc. can
be represented as a sequence of characters, or
strings, and developing methods for efficiently pro-
cessing string data is one of the most important
areas of research in computer science. A major
problem is the sheer size of the data, and efficient
algorithms for processing huge amounts of data are
in high demand. To cope with this problem, algo-
rithms that work directly on compressed represen-
tation of strings have gained attention especially for
the string pattern matching problem [1], and there
has been growing interest in what problems can be

$*$九州大学大学院システム情報科学府
\dagger 九州大学大学院システム情報科学研究院
\ddagger第 2著者に同じ
\S第 2著者に同じ

efficiently solved in this kind of setting [12].

In this paper, we attempt to explore a more ad-
vanced field of application in this setting: data min-
ing and classification of string data given in com-
pressed form. Methods for discovering useful pat-
terns hidden in strings as well as methods for au-
tomatic and accurate classification of the data into
various groups, is an important topic in the field of
data mining and machine learning with many ap-
plications. As a first step toward compressed string
mining, we consider q-grams on strings. A q-gram
is simply a string of length q . q-grams are sim-
ple but important features of string data, and have
been used widely in many fields such as natural
language processing, and bioinformatics.

We consider text strings represented as stmight
line programs (SLPs) [6]. An SLP is a context free
grammar in the Chomsky normal form that derives
a single string. SLPs are a widely accepted abstract
model of various text compression schemes, since
texts compressed by any grammar-based compres-
sion algorithms (e.g. [15, 10]) can be represented
as SLPs, and those compressed by the LZ-family
(e.g. [16, 17]) can be quickly transformed to SLPs.
Also recently, self-indexes based on SLPs have ap-
peared [3], and SLP is a promising representation
of a given string, not only for reducing the storage
size of the data, but for conducting various opera-
tions on it.

In this paper, we give an algorithm that com-
putes all q-gram frequencies of a given text rep-
resented as an SLP of size n , in $O(qn)$ time and
space. This generalizes and greatly improves on the
$O(|\Sigma|^{2}n^{2})$-time $O(n^{2})$-space algorithms presented
in [4], and later improved to $O(|\Sigma|^{2}n\log n)$-time
$O(n\log|T|)$ -space in [3], for finding the most fre-
quent substring of length 2 of a given compressed
text. Applying the previous algorithms to q-grams
respectively require $O(|\Sigma|^{q}qn^{2})$ and $O(|\Sigma|^{q}qn\log n)$

数理解析研究所講究録
第 1744巻 2011年 123-128 123

time, since they essentially enumerate and count
the occurrences of all substrings of length q . Our
algorithm has profound applications in the field of
string mining and classification. For example, it
leads to an $O(q(n_{1}+n_{2}))$ time algorithm for com-
puting the q-gram spectrum kernel [11] between
SLP compressed texts of size n_{1} and n_{2} . It also
leads to an $O(qn)$ time algorithm for finding the
optimal q-gram (or emerging q-gram) that discrim-
inates between two sets of SLP compressed strings,
when n is the total size of the SLPs.

1.1 Related Work

Several algorithms for finding characteristic se-
quences from compressed texts have been pro-
posed, e.g., finding the longest common substring of

.
two strings [14], finding all palindromes [14], find-
ing most frequent substrings [4], and finding the
longest repeating substring [4]. However, none of

$|$

them have reported results of computational exper-
iments. This implies that this paper is the first to
show the practical usefulness of a compressed text
mining algorithm.

1

1

2 Preliminaries
$)$

Let Σ be a finite alphabet. An element of Σ^{*} is i

called a string. For any integer $q>0$, an element $||$

of Σ^{q} is called an q-gram. The length of a string T
$\}$

is denoted by $|T|$. The empty string ϵ is a string of $($

length 0 , namely, $|\epsilon|=0$. For a string $T=XYZ$, i

$X,$ Y and Z are called a prefix, substring, and suffix
of \mathcal{I}^{1} , respectively. The i-th character of a string $\ulcorner l^{1}$ a
is denoted by $T[i]$ for $1\leq i\leq|T|$, and the substring $l|$

of a string T that begins at position i and ends at
position j is denoted by $T[i : j]$ for $1\leq i\leq j\leq|’l^{1}|$.
For convenience, let $T[i : j]=\epsilon$ if $j<i$.

$]$

For a string T and $q\geq 0$, let pre (T, q) and $($

$suf(T, q)$ represent respectively, the length-q pre- i

fix and suffix of T . That is, pre $(’l^{\urcorner},$ $q)=?^{1}[1$: $|$

$\min(q, |T^{\urcorner}|)]$ and $suf(T^{1}, q)= \prime 1^{\tau}[\max(1, |?^{1}|-q+1):$ l

$|’I’|]$. $\{$

For any strings T and P , let $Occ(T, P)$ be the set $($

of occurrences of P in $\prime 1^{7}$, i.e., $Occ(T, P)=\{k>0|$ a
$T[k : k+|P|-1]=P\}$. The number of elements f

$|Occ(’l^{7},$ $P)|$ is called the occurrence frequency of P

in T . l

2.1 Straight Line Programs

χ_{7}

–\sim
χ_{6} χ_{5}

’一 \sim / \backslash

χ_{4} X_{5} χ_{3} χ_{4}

$/\backslash$ $”\backslash$ $/\backslash$ $/\backslash$

χ_{1} χ_{3} χ_{3} χ_{4} $x_{1}\chi_{2}Xl$ χ_{3}

$::’$

: $X_{1}^{/}\grave{X}_{2}x_{1}^{/}\grave{x}_{2}x_{1}^{/}\grave{x}_{3}$

: : :
$X_{1}^{/}\grave{X}_{2}$

$”’:’$

’

$:””’$

’

$:..;”:’$

’

$:::j:$

’

$’:.::,.$

:
$::j:$

:
$\acute{X_{1}}\grave{X}_{2};.’:$

: $’;.::$

:
$::””$:

$:::’:$

: $|$
$\dot{:j:}’:’$

a a b a b a abab a a b

12345678910111213

Figure 1: The derivation tree of SLP $\mathcal{T}=\{X_{i}\}_{i=1}^{7}$

with $X_{1}=a,$ $X_{2}=b,$ $X_{3}=X_{1}X_{2},$ $X_{4}=X_{1}X_{3}$,
$X_{5}=X_{3}X_{4},$ $X_{6}=X_{4}X_{5}$, and $X_{7}=X_{6}X_{5}$, repre-
senting string $\prime l^{1}=val(X_{7})=$ aababaababaab.

A stmight line progmm $(SLP)\mathcal{T}$ is a sequence
of assignments $X_{1}=expr_{1},$ $X_{2}=expr_{2},$ $\ldots,$ $X_{n}=$

$expr_{n}$, where each X_{i} is a variable and each $expr_{i}$

is an expression, where $expr_{i}=a(a\in\Sigma)$, or
$expr_{i}=X_{\ell}X_{r}(\ell, r<i)$. Let $val(X_{i})$ represent
the string derived from X_{i} . When it is not confus-
ing, we identify a variable X_{i} with $val(X_{i})$. Then,
$|X_{i}|$ denotes the length of the string X_{i} derives. An
SLP \mathcal{T} represents the string $\prime l^{1}=val(X_{n})$. The size
of the program \mathcal{T} is the number n of assignments
in \mathcal{T} . (See Fig. 1)

The substring intervals of T that each vari-
able derives can be defined recursively as follows:
$itv(X_{n})=\{[1 : |T|]\}$, and $itv(X_{i})=\{[u+|X_{\ell}| : v]|$

$X_{k}=X_{\ell}X_{i},$ $[u;v]\in itv(X_{k})\}\cup\{[u;u+|X_{i}|-1]|$

$X_{k}=X_{i}X_{r},$ $[u : v]\in itv(X_{k})\}$ for $i<n$. For exam-
ple, $itv(X_{5})=\{[4:8], [9:13]\}$ in Fig. 1. Consid-
ering the transitive reduction of set inclusion, the
intervals $\bigcup_{i=1}^{n}itv(X_{i})$ naturally form a binary tree
(the derivation tree). Let $vOcc(X_{i})=|itv(X_{i})|$ de-
note the number of times a variable X_{i} occurs in
the derivation of T. $vOcc(X_{i})$ for all 1 $\leq i\leq n$

can be computed in $O(n)$ time by a simple iter-
ation on the variables, since $vOcc(X_{n})=1$ and
or $i<n,$ $vOcc(X_{i})= \sum\{vOcc(X_{k})$ $|X_{k}=$

$X_{\ell}X_{i} \}+\sum\{vOcc(X_{k})|X_{k}=X_{i}X_{r}\}$. (See Al-
gorithm 1)

124

$\overline{Algorithml:}$Calculating $vOcc(X_{i})$ for all $1\leq$

$i\leq n$.
Input:$\overline{SLP\mathcal{T}=\{X_{i}\}_{i=1}^{n}}$representing string

rl^{1} .
Output: $vOcc(X_{i})$ for alll $\leq i\leq n$

1 $vOcc[X_{n}]arrow 1$;
2 for $iarrow 1$ to $n-1$ do $vOcc[X_{i}]arrow 0$;
3 for $iarrow n$ to 2 do

654
$\lfloor if\lfloor X_{i}=X_{\ell}X_{r}thenvOcc[X_{\ell}]arrow vOcc[X_{l}]+vOcc[X_{i}];vOcc[X_{r}]arrow vOcc[X_{r}]+vOcc[X_{i}]$

;

Algorithm 2: Anaive algorithm for computing

$\frac{q-gramfrequencies}{Input:stringT,integerq\geq 1}$

Output: $(P, Occ(T, P)|)$ for all $P\in\Sigma^{q}$ where
$Occ(’l^{\gamma},$ $P)\neq\emptyset$.

1 $Sarrow\emptyset_{)}\cdot//$ associative array
2 for $iarrow$ lto $|’l^{7}|-q+$ ldo

543 $\lfloor e1seS[qgmm]arrow 1;S[qgram]arrow S[qgram]+1;ifqgram\in keys(S)thenqgramarrow T[i.\cdot i+q-1]$

;

6 return S

2.2 Suffix Arrays and LCP Arrays
We will make use of the suffix array and lcp array.
It is well known that the suffix array for any string
of length $|T|$ can be constructed in $O(|’l^{1}|)$ time [5,
8, 9] assuming an integer alphabet. Given the text
and suffix array, the lcp array can also be calculated
in $O(|?^{1}|)$ time [7].

Definition 1 (Suffix Arrays) The suffix ar-
ray [13] SA of any string $\prime 1^{1}$ is an army of length
$|T|$ such that $SA[i]=j$, where $?^{1}[j:|T|]$ is the i-th
lexicographically smallest suffix of T .

Definition 2 (LCP Arrays) The lcp array of
any string T is an array of length $|T|$ such that
$LCP[i]$ is the length of the longest common prefix of
$T[SA[i-1] : |T|]$ and $T[SA[i] : |T|]$ for $2\leq i\leq|T|$,
and $LCP[1]=0$.

3 Algorithm

3.1 Computing q-gram Frequencies
on Uncompressed Strings

We first describe two very simple algorithms for
computing the q-gram frequencies of a given un-
compressed string 7^{γ} .

3.1.1 A Na’ive Algorithm

A very simple and naive algorithm for computing
the q-gram frequencies is given in Algorithm 2. The
algorithm constructs an associative array, where
keys consist of q-grams, and the values correspond
to the occurrence frequencies of the q-grams. The .

Algorithm 3: A$1A$linear time algorithm for com-
puting q-gram frequencies.
Input: string T , integer $q\geq 1$

Output: $(i, |Occ(T, P)|)$ for all $P\in\Sigma^{q}$ and
some position $i\in Occ(T, P)$.

1 $SAarrow SUFFIXARRAY(T)$;
2 $LCParrow LCPARRAY$ ($T,$ SA);
3 count $arrow 1$;
4 for $iarrow 2$ to $|’l^{1}|+1$ do

98675

$\lfloor ifi\leq|T|andSA[i]\leq|l^{1}|-q+1ifi=|’1^{\gamma}|+1orLCP[i],<qthen\lfloor countarrow count+1;\lfloor_{countarrow 0;}^{ifcount>0thenReport}(SA[i-1],count),\cdot$

then

time complexity depends on the implementation of
the associative array, but requires at least $O(q|T|)$

time since each q-gram is considered explicitly, and
the associative array is accessed $O(|T|)$ times.

3.1.2 $O(|T|)$ Time Algorithm

It is straightforward to compute the q-gram fre-
quencies of string 1^{7} using suffix array SA and lcp
array LCP . For each 1 $\leq i\leq|T|$, the suffix
$SA[i]$ represents an occurrence of q-gram $T[SA[i]$:
$SA[i]+q-1]$, if the suffix is long enough, i.e.
SA $[i]\leq|1^{\urcorner}|-q+1$. The key is that since the suffixes
are lexicographically sorted, intervals on the suffix
array where the values in the lcp array are at least

represent occurrences of the same q-gram. The
procedure is shown in Algorithm 3. The algorithm

125

runs in $O(|’1^{\gamma}|)$ time, since the construction of SA

and LCP can be done in $O(|T|)$. The rest is a sim-
ple $O(|’l’|)$ loop. A technicality is that we encode
the output for a q-gram as one of the positions in
the text where the q-gram occurs, rather than the
q-gram itself. This is because there are a total of
$O(|T|)$ q-grams, and outputting them as length-q
strings would require at least $O(q|’l^{1}|)$ time.

X_{i}

Lemma 1 Given a stnng T , the q-gram frequen-
cies of T can be computed in $O(|T|)$ time for
any $q>0$, assuming an integer alphabet $\Sigma\subseteq$

$\{1, \ldots, |?^{1}|\}$.

3.2 Computing q-gram Frequencies
on SLP]

We now describe the core idea of our algorithms,
$|$

and then go on to explain two variations which uti-
lize variants of the two algorithms presented in the

$($

previous subsection. For $q=1$, the l-gram fre- 11
quencies are simply the frequencies of the alphabet 1
and the output is $(a, \sum\{vOcc(X_{i})|X_{i}=a\})$ for a
each $a\in\Sigma$, which takes only $O(n)$ time. For $q\geq 2$,

s

we make use of Lemma 2 below. The idea is similar
i

to the mk Lemma [2] but more specifically tailored
for our needs.

1

Lemma 2 Let $\mathcal{T}=\{X_{i}\}_{i=1}^{n}$ be an SLP that repre- r

sents string T. For an interval $[u : v](1\leq u<v\leq$ 1

$|’l^{\urcorner}|)$, there exists exactly one variable $X_{i}=X_{l}X_{r}$
$|$

such that for some $[u’ : v’]\in itv(X_{i})$, the following $|$

l

holds: $[u:v]\subseteq[u’ : v’],$ $u\in[u’ : u’+|X_{\ell}|-1]\in$

$itv(X_{\ell})$ and $v\in[u’+|X_{\ell}| : v’]\in itv(X_{r})$. l

.
From Lemma 2, we have that each occurrence

of a q-gram $(q\geq 2)$ represented by some length-
$!$

q interval of 1‘, corresponds to a single variable :
$X_{i}=X_{\ell}X_{r}$, and is split in two by intervals cor-
responding to X_{l} and X_{r} . On the other hand,

11

consider all length q intervals that correspond to
a given variable. Then, counting the frequencies
of the q-grams they represent, and summing them

$|$

up for all variables would give the frequencies of all
q-grams of T .

Γ

For variable $X_{i}=X_{\ell}X_{r}$, let $t_{i}=suf(X_{l},$ $q-$
$1)pre(X_{r}, q-1)$. Then, all q-grams represented by
length q intervals that correspond to X_{i} are those
in t_{i} . (Fig. 2). If we obtain q-gram frequencies
of t_{i} , and then multiply the frequencies of each q-
gram by $vOcc(X_{i})$, we obtain the frequencies of the

a

$:”’$

’

$\mapsto^{!_{.}.::,\prime.}$

$:’$

’
$\overline{q:\prime}$

Figure 2: Length-q intervals corresponding to vari-
able $X_{i}=X_{\ell}X_{r}$.

q-grams that occur in all intervals derived by X_{i} .
It remains to sum up the q-gram frequencies of t_{i}

or all $1\leq i\leq n$. Thus, we can regard the problem
as obtaining the weighted q-gram frequencies in the
set of strings $\{t_{1}, \ldots, t_{n}\}$, where each q-gram in t_{i}

is weighted by $vOcc(X_{i})$.
The procedure is shown in Algorithm 4. A sin-

gle string z is constructed by concatenating t_{i} such
that $q\leq|t_{i}|\leq 2(q-1)$, and the weights of q-grams
starting at each position in z is held in array w .
On line 9, 0 ’s instead of $vOcc(X_{i})$ are appended
to w for the last $q-1$ values corresponding to t_{i} .
This is to avoid counting unwanted q-grams that
are generated by the concatenation of t_{i} to z on
line 7, which are not substrings of each t_{i} . Line 10
can be calculated by a slight modification of Al-
gorithm 2 or 3. For Algorithm 2, line 4 should be
modified to increment $S[qgmm]$ by $w[i]$ rather than
1, and line 5 should read: else if $w[i]>0$ then
$S[qgmm]arrow w[i];$. For Algorithm 3, the increment
on line 9 should simply use $w[SA[i]]$.

Theorem 1 Given an $SLP\mathcal{T}=\{X_{i}\}_{i=1}^{n}$ of size n

representing a string T , the q-gram frequencies of
7“ can be computed in $O(qn)$ time for any $q>0$,
assuming an integer alphabet $\Sigma\subseteq\{1, \ldots, n\}$.

Note that the time complexity for using the
weighted version of Algorithm 2 for line 10 of Al-
gorithm 4 would be at least $O(q^{2}n)$.

126

Algorithm 4: Calculating q-gram frequencies

$\frac{ofanSLPforq\geq 2}{Input:SLP\mathcal{T}=\{X_{i}\}_{i=1}^{n}representingstring}$

7“, integer $q\geq 2$.
1 Calculate $vOcc(X_{i})$ for all $1\leq i\leq n$;
2 Calculate pre $(X_{i}, q-1)$ and $suf(X_{i}, q-1)$ for

alll $\leq i\leq n-1$;
3 $zarrow\epsilon;warrow[]$;
4 for $iarrow$ lto n do

98675

$\{\begin{array}{l}if X_{i}=X_{\ell}X_{r} and |X_{i}|\geq q then\lfloor wappend(vOcc(X_{i}));forjarrow 1toq-1dowappend(0);fo.rjarrow 1to|t_{i}|q+1dot_{i}.=suf(X_{\ell},q-1)pre(X_{r}.’ q-l);zappend(t_{i});\end{array}$

10 Calculate q-gram frequencies in z , where each
q-gram starting at position i is weighted by
$w[i]$.

4 Experiments

used a linear time greedy algorithm based on RE-
PAIR [10] which recursively replaces the most fre-
quent 2-grams occurring in the string, until the
string is converted to a single variable.

0 05
$|z|/^{t}$ text length

$t5$ 2

Figure 3: Time ratios: NMP/SMP and NSA$/SSA$

plotted against ratio: (length of z in Algo-
rithm 4) $/$ ($length$ of uncompressed text).

To evaluate the effectiveness of our algorithms, Fi. 3 shows the time ratio where is variedwe implemented 4 algorithms (NMP, NSA, SMP,
g . s ows e me ra o, were $q1S$ varle

from 2 to 10: NMP SMP and NSA SSAom 2 to 10: NMP/SMP and $NSA/$, plottedSSA) to solve the simple problem of calculating against ratio: (length of z in Algorithm 4) $/(length$the most frequent q-gram. NMP (Algorithm 2) of uncompressed text). As expected, the SLP ver-and NSA (Algorithm 3) work on the uncompressed sions are basically faster than their naive counter-text. SMP (Algorithm 4 $+$ weighted version of parts, when $|z|/$ (text length) is less than 1, sinceAlgorithm 2) and SSA (Algorithm 4 $+$ weighted the SLP versions run the weighted versions of theversion of Algorithm 3) work on SLPs. The algo-
$nai\cdot ve$ algorithms on a text of length $|z|$.rithms were implemented using the $C++$ language.

We used std: : map from the Standard Template Li-
$tionbrary_{1}(STL)$ for the associative array implementa- 5 Conclusion

The running time is measured in seconds, start-
ing from after reading the uncompressed text into We showed that for an SLP \mathcal{T} of size n representing
memory for NMP and NSA, and after reading the string $T,$ q-gram frequency problems on T can be
text represented as an SLP into memory for SMP reduced to weighted q-gram frequency problems on
and SSA. Each computation is repeated at least 3 a string of length $O(qn)$, which can be much shorter
times, and the average is taken. than T . This idea can further be applied to obtain

We applied the algorithms on texts XML, DNA, faster algorithms for many interesting problems.

ENGLISH, and PROTEINS, with sizes $50MB$, This paper is a new addition in the line of work
IOOMB, and $200MB$, obtained from the Pizza & aimed for efficient string processing on compressed
Chili Corpus2. To obtain SLPs for this data, we texts. The main conceptual contribution of the pa-

per in this sense is that it takes the first steps in$\overline{1}$We also used std; :hashmap but. omit the results due showing the potential of these approaches for de-
to lack of space. Choosing the hashing function to use is
difficult, and we note that its performance was unstable and veloping efficient and pmctical algorithms for very
sometimes very bad tvhen varying q . large scale data, to problems in the field of string

2http: $//pizzachili.dcc.$ uchile. $c1/texts.htm$l mining and classification.

127

Acknowledgments
This work was supported by KAKENHI 22680014.

References
[1] Amihood Amir and Gary Benson. Efficient

two-dimensional compressed matching. In
Data Compression Conference, pages 279-288,
1992.

[2] Moses Charikar, Eric Lehman, Ding Liu, Rina
Panigrahy, Manoj Prabhakaran, Amit Sahai,
and abhi shelat. The smallest grammar prob-
lem. IEEE $\prime 1^{\tau}mnsactions$ on Information The-
ory, 51 (7) $:2554-2576$, 2005.

[3] Francisco Claude and Gonzalo Navarro. Self-
indexed grammar-based compression. Funda-
menta Infomaticae, ’10 appear.

[4] Shunsuke Inenaga and Hideo Bannai. Find-
ing characteristic substring from compressed
texts. Intemational Joumal of Foundations of
Computer Science, accepted for publication.

[5] Juha K\"arkk\"ainen and Peter Sanders. Simple
linear work suffix array construction. In Proc.
ICALP’03, volume 2719 of Lecture Notes in
Computer Science, pages 943-955. Springer-
Verlag, 2003.

[6] M. Karpinski, W. Rytter, and A. Shinohara.
An efficient pattern-matching algorithm for
strings with short descriptions. Nordic Joumal
of Computing, 4: 172-186, 1997.

[7] Toru Kasai, Gunho Lee, Hiroki Arimura, Set-
suo Arikawa, and Kunsoo Park. Linear-time
Longest-Common-Prefix Computation in Suf-
fix Arrays and Its Applications. In Proc. of
CPM’Ol, volume 2089 of LNCS, pages 181-
192. Springer-Verlag, 2001.

[8] Dong Kyue Kim, Jeong Seop Sim, Heejin Park,
and Kunsoo Park. Linear-time construction
of suffix arrays. In Proc. Combinatorial Pat-
tem Matching, volume 2676 of Lecture Notes
in Computer Science, pages 186-199, 2003.

[9] Pang Ko and Srinivas Aluru. Space efficient
linear time construction of suffix arrays. In

Proc. Combinatori al Pattem Matching, vol-
ume 2676 of Lecture Notes in Computer Sci-
ence, pages 200-210, 2003.

[10] N. J. Larsson and A. Moffat. Oflline
dictionary-based compression. In Proc. Data
Compression Conference 1999, pages 296-305.
IEEE Computer Society, 1999.

[11] Christina Leslie, Eleazar Eskin, and
William Stafford Noble. The spectrum
kernel: A string kernel for SVM protein
classification. In Pacific Symposium on
Biocomputing, volume 7, pages 566-575, 2002.

[12] Yury Lifshits. Processing compressed texts:
A tractability border. In Proc. Combinatorial
Pattem Matching, pages 228-240, 2007.

[13] U. Manber and G. Myers. Suffix arrays: A
new method for on-line string searches. SIAM
J. Computing, $22(5):935-948$, 1993.

[14] Wataru Matsubara, Shunsuke Inenaga, Akira
Ishino, Ayumi Shinohara, Tomoyuki Naka-
mura, and Kazuo Hashimoto. Efficient algo-
rithms to compute compressed longest com-
mon substrings and compressed palindromes.
Theoretical Computer Science, $410(8-10):900-$
913 , 2009.

[15] C. G. Nevill-Manning, I. H. Witten, and D. L.
Maulsby. Compression by induction of hierar-
chical grammars. In Data Compression Con-
ference 1994, pages 244-253. IEEE Computer
Society, 1994.

[16] J. Ziv and A. Lempel. A universal algorithm
for sequential data compression. IEEE Trans-
actions on Infomation Theory, $ITarrow 23(3):337-$

349 , 1977.

[17] J. Ziv and A. Lempel. Compression of in-
dividual sequences via variable-length coding.
IEEE Transactions on Information Theory,
$24(5):530-536$, 1978.

128

