
Dynamic Programming Algorithm for
Optimal Double-Base Chains (Extended Abstract)

Vorapong Suppakitpaisarn* Masato Edahiro \dagger Hiroshi Imai \ddagger

February 23, 2011

Abstract
In this work, we propose an algorithm to produce
the double-base chains that optimize the time used
for computing an elliptic curve cryptosystem. The
double-base chains is the representation that com-
bining the binary and ternary representation. By
this method, we can reduce the Hamming weight of
the expansion, and reduce the time for computing
the scalar point multiplication $(Q=rS)$, that is the
bottleneck operation of the elliptic curve cryptosys-
tem. This representation is very redundant, i.e. we
can present a number by many expansions. Then,
we can select the way that makes the operation
fastest. However, the previous works on double-
bases chain have used a greedy algorithm, and their
solutions are not optimized. We propose the algo-
rithm based on the dynamic programming scheme
that outputs the optimized the double-bases chain.
The experiments show that we have reduced the
time for computing the scalar multiplication by
3.88-3.95%.

Keywords: Elliptic Curve Cryptography, Min-
imal Weight Conversion, Digit Set Expansion,
Double-Base Chains

1 Introduction
Scalar multiplication is the bottleneck operation of
the elliptic curve cryptography. It is to compute

$Q=rS$

when $S,$ Q are points on the elliptic curve and r is
a positive integer. There are many works proposed
the ways to reduce the computation time of the
operation. Most of them are based on double-and-

*Graduate School of Information Science and Technol-
ogy, the University of Tokyo & ERATO-SORST Quantum
Computation and Information Project, Japan Science and
Technology Agency

\dagger System IP Core Research Laboratories, NEC Corpora-
tion & Graduate School of Information Science and Tech-
nology, the University of Tokyo

\ddagger Same as $*$

add method. This method depends on the binary
expansion of r explained as follows:

Define $n=\lfloor lgr\rfloor$, and $r= \sum_{t=0}^{n-1}r_{t}2^{t}$ where r_{t} is
a member of a finite set Ds . We call Ds as digit set,
and $R=\langle r_{0},$ $r_{1},$ $\ldots,$

$r_{n-1}\rangle$ as the binary expansion
of r . The $Hamn\dot{u}ng$ weight $W(R)$ is defined as
$W(R)= \sum_{t=0}^{n-1}W(r_{t})$, where $W(r_{t})=0$ when $r_{t}=$

0 and $W(r_{t})=1$ otherwise. For example, let $Ds=$
$\{0,1\}$, and $r=127=2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{5}+2^{6}$.
The binary expansion of r is $R=\langle 1,1,1,1,1,1,1\rangle$,
and the Hamming weight $W(R)=7$.

In the double-and-add scheme, we need two ele-
mentary operations, that are point doubles$(S+S$,
$2S)$ and point additions$(S+Q$ when $S\neq Q)$. The
number of point doubles is constant for each scalar
r . However, the number of point additions depends
on the binary expansion. In some Ds , there are
more than one way to expand a positive integer,
and we need select the efficient way. This problem
has been studied extensively in [1, 2].

In [3, 4], Dimitrov et al. proposed to use double-
base chains on the elliptic curve cryptography. Let
$r= \sum_{t=0}^{m-1}r_{t}2^{x_{\ell}}3^{y_{t}}$, such that r_{t} be a member
of digit set $Ds-\{0\}$ and $x_{t}\leq x_{t+1},$ $y_{t}\leq y_{t+1}$

for all t . We define $C[r]$ $=$ $\langle R,$ $X,$ $Y\rangle$, when
$R=\langle r_{0},$ $r_{1},$ $\ldots,$

$r_{m-1}\rangle,$ $X=\langle x_{0},$ $x_{1},$ $\ldots,x_{m-1}\rangle$,
$Y=\langle y0,$ $y_{1},$ $\ldots,$

$y_{m-1}\rangle$ as the double-base chains of
r . Also, we define the Hamming weight of double-
base chains $W(C[r])=m$. For examples, one of
the double-base chains of $127=2^{0}3^{0}+2^{1}3^{2}+2^{2}3^{3}$

is $C[127]=\langle R,X,$ $Y\rangle$ when $R=\langle 1,1,1\rangle,$ $X=$
$\langle 0,1,2\rangle,$ $Y=\langle 0,2,3\rangle$. In this case $W(C[127])=3$.

In addition to point doubles and point addi-
tions needed in the binary expansion, we also need
point triples(3S). In some elliptic curves where the
point triple is relatively fast, double-base chains are
shown to be faster than the binary expansion.

Similar to the binary expansion, every scalars
have more than one double-base chains, and the ef-
ficiency of elliptic curve strongly depends on which
chain we use. The algorithm to select the good
double-base chains is very important. There are
many works have studied the problem [3, 4, 5, 6],

数理解析研究所講究録
第 1744巻 2011年 129-136 129

and proposed greedy algorithms that cannot guar-
antee the best chain. On the other hand, we
adapted our previous works [7, 8, 9], where we pro-
pose the dynamic programming algorithm to find
the minimal weight expansion of various represen-
tation. Then, we can find the algorithm that always
outputs the best chain, where the computation time
of all elementary operations (point additions, point
doubles, point triples) have been considered. By
the experiment, we have shown that the optimal
double-base chains are better than the best greedy
algorithm proposed on double base chain [6] by
3.9% when $Ds=\{0, \pm 1\}$.

Recently, there is the independent work [10] pro-
posed the algorithm which can output the chains
with least Hamming weight when $Ds=\{0,1\}$. We
consider their work as the specific case of our works
as we are working on any finite digit sets. Also, our
algorithm can output the least Hamming weight by
adjusting the computation time for point doubles
and point additions to zero. When the point ad-
dition is the only elementary operation concerned,
minimizing the computation time of the scalar mul-
tiplication means optimizing the Hamming weight.

There is also the work utilizing Yao’s algorithm
with double base number system [11, 12], which is
the double-base without the restriction such that
$x_{t}\leq x_{t+1}$ and $y_{t}\leq y_{t+1}[13]$. Their results of
the algorithm is comparable to our results even
when we select the Ds that gives the best result.
However, our algorithm works better on the elliptic
curve that the point triple is fast comparing to the
point double. These include inverted coordinates
on edwards curves which has the fastest point dou-
bles [14] up to this states.

This paper is organized as follows: we show the
double-and-add scheme, and how we utilize the
double-base chain to elliptic curve cryptography
in Section 2. In Section 3, we show our algo-
rithm which outputs the optimal double-base chain.
Next, we show the experimental results comparing
to the existing works in Section 4. Last, we con-
clude the paper in Section 5.

2 Preliminaries
Using the binary expansion $R=\langle r_{0},$ $r_{1},$ $\ldots,$

$r_{n-1}\rangle$,

$Cancomphesca1armu1tip1icationQ=rSbywherer=\sum_{utet^{t=0}}^{n-1}r_{t}2^{t}exp1ainedinSection1,$
we

double-and-add scheme as shown in Algorithm 1.
For example, we compute $Q=127S$ when the bi-
nary expansion of 127 is $R=\langle 1,1,1,1,1,1,1\rangle$ as
follows:

$Q=2(2(2(2(2(2S+S)+S)+S)+S)+S)+S$.
We need six point doubles and six point additions

in this example. Generally, we need $n-1$ point

doubles, and n point additions. However, Q is ini-
tialized to O , and we need not the point addition on
the first iteration. Also, $r_{t}S=0$ if $r_{t}=0$, and we
need not the point addition in this case. Hence, the
number of the point additions is $W(R)-1$, where
$W(R)$ the Hamming weight of the expansion de-
fined in Section 1. The Hamming weight tends to
be less if the digit set Ds is larger. However, as we
need to precompute $r_{t}S$ for all $r_{t}\in Ds$, using big
Ds makes cost for the precomputation higher.

$\frac{A1gorithm1Doub1e-and-addmethod}{Require:Apointone11ipticcurveS,thepos-}$

itive integer r with the binary expansion
$\langle r_{0},$ $r_{1},$ $\ldots,$

$r_{n-1}\rangle$.
Ensure: $Q=rS$

1: $Qarrow O$

2: for $tarrow n-1$ downto 0 do
3: $Qarrow Q+r_{t}S$

4: if $t\neq 0$ then
5: $Qarrow 2Q$

6: end if
7: end for

In Algorithm 2, we show how to apply the
double-base chain

$C[r]=\langle R,$ $X,$ $Y\rangle$,

when
$R=\langle r_{0},$ $r_{1},$ $\ldots,$

$r_{m-1}\rangle$,
$X=\langle x_{0},x_{1},$ $\ldots,x_{m-1}\rangle$,

$Y=\langle y_{0},$ $y_{1},$ $\ldots,$
$y_{m-1}\rangle$

to compute scalar multiplication. For example, one
of the double-base chain of $127=2^{0}3^{0}+2^{1}3^{2}+2^{2}3^{3}$

is $C[12\eta=\langle R,X,Y\rangle$, where $R=\langle 1,1,1\rangle,$ $X=$
$\langle 0,1,2\rangle,$ $Y=\langle 0,1,3\rangle$. Hence, we can compute $Q=$
$127S$ as follows:

$Q=2^{1}3^{2}(2^{1}3^{1}S+S)+S$.
In this case, we need two point additions, two point
doubles, and three point triples. In general, the
number of point additions is $W(C)-1=m-1$
defined in Section 1. On the other hand, the num-
ber of point doubles and point triples are x_{m-1} and
y_{m-1} respectively.

In the double.and-add method, the number of
point doubles required is proved to be constantly
equal to $n-1=\lfloor lgr\rfloor-1$. Then, the efficiency
of the binary expansion strongly depends on the
number of point additions or the Hamning weight.
However, the number of point doubles and point
triples are not constant, as discussed in the previous
paragraph that they are equal to x_{m-1} and y_{m-1}

130

Algorithm 2 Using thedouble-bUhdblbase chain to com-
pute scalar multiplication
R quire: Apoint on elliptic curve $S,$ th$i11$ he pos-

itive integer r with the double-base chains
$C[r]=\langle R,$ $X,$ $Y\rangle$, where $R=\langle r_{0},$

$\ldots,$
$r_{m-1}\rangle$,

$X=\langle x_{0},$ $\ldots,x_{m-1}\rangle,$ $Y=\langle y_{0},.\cdots,y_{m-1}\rangle$.
Ensure: $Q=rS$

1: $Qarrow O$

2: for $tarrow m-1$ downto 0 do
3: $Qarrow Q+r_{t}S$

4: if $t\neq 0$ then
5: $Qarrow 2^{(x_{t-1}-x_{t})}3^{(y_{t-1}-y_{t})}Q$

6: else
Figure 1: We can compute $C[7]$ by two ways. The7: $Qarrow 2^{x_{O}}3^{yo}Q$

8: end if first way is to compute $C[3]$, and perform a point

$\underline{9:endfor}$ $doub1eandapointaddition.ThecostinthiswayisP(C[3])+P_{dou}+P_{add}.Thesecondwayisto$

compute $C[2]$, and perform a point triple and a
respectively. Hence, we need to optimize the value point addition, where the cost is $P(C[2]+P_{tri}+$

$P_{add})$. The cost of the first way is smaller than the
$x_{m-1}\cdot P_{dou}+y_{m-1}\cdot P_{tri}+(W(C[r])-1)\cdot P_{add}$, second way, and we select the first way to compute

when $P_{dou},$ $P_{tri},$ P_{add} are the cost for point double, $C[7]$.
point triple, and point addition respectively. This
is different ffom the literature [1, 2, 7, 8, 9, 10]
where only the Hamming weight is considered. 1 $=2^{0}3^{0}$. Hence, $x_{0}=0$ and $y_{0}=0$. Then,

$7= \sum_{t=1}^{m-1}2^{x_{t}}3^{y_{t}}+1$. By this equation, there are
3 Algorithm only two ways to compute the scalar multiplication

$Q=7S$ with Algorithm 2. The first way is to com-
3.1 Algorithm for single integer with pute $3S$, do point double to $6S$ and point addition

$Ds=\{0,1\}$
to $7S$. As we know the the optimal chain for 3,
the cost using this way is $P(C[3])+P_{dou}+P_{add}$.

Define the cost to compute r using the chain $C[r]=$ The other way is to compute $2S$, do point triple
$\langle R,X,$ $Y\rangle$ as to $6S$ and point addition to $7S$. In this case, the

cost is $P(C[2])+P_{tri}+P_{add}$. The optimal way is
$P(C[r])=x_{m-1}\cdot P_{dou}+y_{m-1}\cdot P_{tri}+(W(C[r])-1)\cdot P_{add}$to select one of these two ways. We will show later

that $P(C[3])=2$ and $P(C[2])=1$. Then,
when $C[r]\neq\langle\langle\rangle,$ $\langle\rangle,$ $\langle\rangle\rangle$, and $P(C[r])=0$ otherwise.
Our algorithm is to find the double-base chain of $P(C[3])+P_{dou}+P_{add}=2+1+1=4$,
$r,$ $C[r]=\langle R,X,$ $Y\rangle$ such that for all double-base
chain of $r,$ $Ce[r]=\langle Re,$ $Xe,$ $Ye\rangle$, $P(C[2])+P_{tri}+P_{add}=1+20+1=22$.

We select the first choice, and the optimal cost is
$P(Ce[r])\geq P(C[r])$. $P(C[7])=4$. The optimal $c[\eta=\langle R,$ $X,$ $Y\rangle$ when

To explain the algorithm, we start with a small
$R=\langle 1,$ $R[3]\rangle$. $X=\langle x_{0},$ $\ldots,x_{m-1}\rangle$, where $x_{0}=0$

f

example explained in Example 1 and Figure 1. and $x_{t}=x[3]_{t-1}+1$ for 1 $\leq t\leq m-$ 1. Y $=$

$\langle y_{0},$

$\ldots,$
$y_{m-1}\rangle$, where $y_{0}=0$ and $y_{t}=y[3]_{t-1}$ for

Example 1 Find the optimal chain $C[7]$ $=$
$1\leq t\leq m-1$.

$\langle R,X,$ $Y\rangle$ given $Ds=\{0,1\},$ $P_{tri}=20,$ $P_{dou}=1$, Next, we find $C[3]$ that is the optimal double-
and $P_{add}=1$. base chain of $L\frac{7}{2}\rfloor=3$. Similar to $7S$, we can com-

Assume that we are given the optimal chain pute $3S$ by two ways. The first way is to triple the
$C[3]=\langle R[3],X[3],$
$Y[3]\rangle of.3=\lfloor\frac{7}{2}\rfloor andC[2]=\langle R[2],X[2],Y[2]\rangle of2=\lfloor\frac{7}{3}\rfloor Wewanttorewrite7$ $whichcostsP_{tri}=20.$ The$double-basechaininpointSUsingthisway,$we $needonepointtriple$,

this case will be $\langle\langle 1\rangle,$ $\langle 0\rangle,$ $\langle 1\rangle\rangle$. The other way is that$m-1$as $7= \sum_{t=0}r_{t}2^{x_{t}}3$”, when $r_{t}\in Ds-\{0\}=\{1\}$. we double point S to $2S$, then add $2S$ with S to get
As 2 {7 and 3 {7, the smallest term much be $3S$. The cost is $P_{dou}+P_{add}=1+1=2$. In this case,

131

$\frac{r}{2^{q}3^{0}}$

r $–$

$\frac{r}{\underline{2^{q-1}3}^{1}}$

Next, we will step to the algorithm. In Ex-
ample 1, we consider the computation as a top-
down algorithm. However, bottom-up algorithm is
better way to implement the idea. We begin the
algorithm by computing the double-base chain of

$\lfloor\frac{r}{2^{x}3u}\rfloor$ for all $x,$ $y\in \mathbb{Z}^{+}$ such that $x+y=q$ where
$2^{q}\leq r<2^{q+1}$. Then, we move to compute the
double-base chain of $L\frac{r}{2^{x}3^{y}}\rfloor$ for all $x,$ $y\in \mathbb{Z}^{+}$ such
that $x+y=q-1$ by referring to the double-base
chain of $\lfloor\frac{r}{2^{x}3^{y}}\rfloor$ when $x+y=q$. We decrease the
number $x+y$ until $x+y=0$, and we get the chain
of $r=\lfloor_{F^{r_{3}}}\tau\rfloor$. We illustrate this idea in Figure 2.

– $\frac{r}{2^{0}3^{q},mw-}d$

Figure 2: Bottom-up algorithm to find the optimal
double-base chain of r

the double-base chain is $\langle\langle$ 1, $1\rangle,$ $\langle 0,1\rangle,$ $\langle 0,0\rangle\rangle$. We se-
lect the better double-base chain that is $C[3]=$
$\langle\langle 1,1\rangle,$ $\langle 0,1\rangle,$ $\langle 0,0\rangle\rangle$.

Last, we find $C[2]$, the optimal double-base chain
of $L\frac{7}{3}\rfloor=2$. The interesting point to note is that
there are only one choice to consider in this case.
This is because the fact that we cannot rewrite 2
by $3A+B$ when $A\in \mathbb{Z}$ and $B\in Ds$ if $r\equiv 2mod 3$.
Then, the only choice left is to double the point S ,
which costs 1, and the double-base chain is $C[2]=$
$\langle\langle 1\rangle,$ $\langle 1\rangle,$ $\langle 0\rangle\rangle$.

To conclude, the optimal double-base chain for 7
in this case is $c[\eta=\langle\langle 1,1,1\rangle,$ $\langle 0,1,2\rangle,$ $\langle 0,0,0\rangle\rangle$. We
note that C is not the double-base with the least
Hamming weight as $Ce[\eta=(\langle 1,1\rangle, \langle 0,1\rangle, \langle 0,1\rangle)$

has lower Hamning weight.

Define $C[r],$ $C[\lfloor\frac{r}{2}\rfloor],$ $C[\lfloor\frac{r}{3}\rfloor]$ be the optimal double-
base chain of $r,$ $L\frac{r}{2}\rfloor,$ $L\frac{r}{3}\rfloor$ respectively.From Exam-
ple 1, $P(C^{f})= \min(P(C[\lfloor\frac{f}{2}\rfloor])+P_{dou},$ $P(C[\lfloor\frac{r}{3}\rfloor])+$

$P_{tri})$, when r \equiv $0mod 6$. It is equal to
$\min(P(C[\lfloor\frac{r}{2}\rfloor])+P_{dou}, P(C[\lfloor\frac{f}{3}\rfloor])+P_{tri})+P_{add}$,
when $r\equiv$ lmod6. It is equal to $P(C[\lfloor\frac{r}{2}\rfloor])+P_{dou}$,
when $r\equiv 2mod 6$. It is equal to $\min(P(C[\lfloor\frac{r}{2}\rfloor])+$

$P_{dou}+P_{add},$ $P(C[\lfloor\frac{f}{3}\rfloor])+P_{tri})$, when $r\equiv 3mod 6$.
It is equal to $\min(P(C[\lfloor\frac{r}{2}\rfloor])+P_{dou},$ $P(C[\lfloor\frac{r}{3}\rfloor])+$

$P_{tri}+P_{add})$, when $r\equiv 4mod 6$. It is equal to
$P(C[\lfloor\frac{f}{2}\rfloor])+P_{dou}+P_{add}$ when $r\equiv 5mod 6$.

3.2 Generalized Algorithm for Any
Digit Sets

In this section, we expand our results applying our
former works [7, 8, 9] to our previous subsection.
As a result, the proposed double-base chains can
be used on the digit set other than $\{0,1\}$.

When $Ds=\{0,1\}$, we usually have two choices
to compute $C[v]$. One is to perform a point double,
and use the subsolution $C[v_{2}]=C[\lfloor\frac{v}{2}\rfloor]$. Another is
to perform a point triple, and use the subsolution
$C[v_{3}]=C[\lfloor\frac{v}{3}\rfloor]$. However, we have more choices
when we deploy larger digit set. For example, when
$Ds=\{0, \pm 1\}$

$5=2\cross 2+1=3\cross 2-1=2\cross 3-1$,

the number of cases increase bom one in the pre-
vious subsection to three. Also, we naed more op-
timal subsolution in this caee. Even for point dou-
ble, we naed $C[2]=C[\lfloor\frac{5}{2}\rfloor]$ and $C[3]=C[\lfloor\frac{5}{2}\rfloor+1]$.
We call $v= \lfloor\frac{5}{2}\rfloor=2$ as standard, and the addi-
tional term $g[v](g[2]=1$ in $C[3]$ and $g[2]=0$
in $C[2])$ as carry. By this definition, we get the
relation $(vmod 2)+g[v]=u+g[v_{2}]$, when $u\in$

Ds . This is the case when we choose to perform
point double. Let $C[v_{2}+g[v_{2}]]=\langle R’,$ $X’,$ $Y’\rangle$

be the optimal solution of $r=v_{2}+g[v_{2}]$. De-
fine $X”=\langle x_{0}’’,$ \ldots , $x_{m-1}’’)$ where $x_{i}’’=x_{i}’+1$,
$Y”=Y’,$ $R”=R’$. The edited solution of $C[v+$
$g[v]]=\langle R,$ $X,$ $Y\rangle$ when $X=\langle 0,X’’\rangle,$ $Y=\langle 0,Y’’\rangle$,
$R=\langle u,$ $R”\rangle$. If we perform point triple, the re-
lation is $(vmod 3)+g[v]=u+g[v_{3}]$. Again, we
define $C[v_{3}+g[v_{3}]]=\langle R’,$ $X’,$ $Y’\rangle$ be the opti-
mal solution of $r=v_{3}+g[v_{3}]$, and $X”=X’$,
$Y”=\langle y_{0}’’,$

$\ldots,$
$y_{m-1}’’\rangle$ where $y_{i}’’=y_{i}’+1,$ $R”=R’$.

Similar to the case when we perform point double,
the edited solution of $C[v+g[v]]=(R,$ $X,$ $Y\rangle$ when
$X=\langle 0,$ $X”\rangle,$ $Y=\langle 0,$ $Y”\rangle,$ $R=\langle u,$ $R”\rangle$. We illus-
trate the idea in Figure 3 and Example 2.

Example 2 Compute the optimal double-base

132

Figure 3: Given $Ds=\{0, \pm 1\}$, we can compute
$C[5]$ by three ways. The first way is to compute
$C[2]$, and perform a point double and a point ad-
dition. The second is to compute $C[3]$, perform
a point double, and a point substitution (add the
point $with-S$). The third is to compute $C[2]$, per-
form a point triple, and a point substitution. All
methods consume the same cost.

chain of 5 when $P_{add}=P_{dou}=P_{tri}=1$ and
$Ds=\{0, \pm 1\}$.

When $Ds=\{0, \pm 1\}$, we can compute the carry
set $G=\{0,1\}$.

We want to compute $C[5]=\langle R,$ $X,$ $Y\rangle$ such that
$r_{i}\in Ds$ and $x_{i},$ $y_{i}\in \mathbb{Z},$ $x_{i}\leq x_{i+1},$ $y_{i}\leq y_{i+1}.5$ can
be rewritten as follows:
$5=2\cross 2+1=(2+1)\cross 2-1=(1+1)\cross 3-1$.
We need $C[2](v_{2}=2, g[v_{2}]=0),$ $C[3](v_{2}=2$,
$g[v_{2}]=1)$, and $C[2](v_{3}=1, g[v_{3}]=1)$.

It is easy to see that the optimal chain $C[2]=$
$\langle\langle 1\rangle,$ $\langle 1\rangle,$ $\langle 0\rangle\rangle$ and $C[3]=\langle\langle 1\rangle,$ $\langle 0\rangle,$ $\langle 1\rangle\rangle$. $P(C[2])=$
$P(C[3])=1$.
2 $Wechoosethe+l,5=3\cross 2-l,5=bestchoiceamon\S 5\cross=23-1\cross$.
By the first choice, we get the chain $C’[5]$ $=$

$\langle\langle 1,1\rangle,$ $\langle 0,0\rangle,$ $\langle 0,2\rangle\rangle$. The second choice and the
third choice is $C”[5]=\langle\langle-1,1\rangle,$ $\langle 0,1\rangle,$ $\langle 0,1\rangle\rangle$. We
get $P(C’[5])=P(C”[5])=3$, and both of them
can be the optimal chain $(C[5]=C’[5]=C”[5])$.

Using the idea explained above, we propose Al-
gorithm 3,4.

4 Results
To evaluate our algorithm, we show some exper-
imental results in this section. We perform the
experiment on each implementation environment

Algorithm 3 The algorithm findingthThlihfidhe optimal

$\frac{doub1e-basechainforsing1eintegerforanyDs}{Require:thepositiveintegerr,thefinitedigitset}$

Ds , and the carry set G

Ensure: the optimal double-base chain of r ,
$C[r]=\langle R[r],$ $X[r],$ $Y[r]\rangle$

1: $qarrow\lfloor lgr\rfloor$

2: while $q\geq 0$ do
3: for all $x,$ $y\in \mathbb{Z}^{+}$ such that $x+y=q$ do
4: $v arrow\lfloor\frac{r}{2^{x}3v}\rfloor$

5: for all $g[v]\in G$ do
6: $vaarrow v+g[v]$

7: if $va=0$ then
8: $C[va]arrow(\langle\rangle,$ $(\rangle,$ $\langle\rangle\rangle$

9: else if $va\in Ds$ then
10: $C[va]arrow\langle\langle va\rangle,$ $\langle 0\rangle,$ $\langle 0\rangle)$

11: else
12: $v_{2} arrow\lfloor\frac{r}{2^{x+1}3^{y}}\rfloor$

13: $v_{3} arrow\lfloor\frac{r}{2^{x}3y+1}\rfloor$

14: $C[va]arrow FO(va, C[v_{2}+G], C[v_{3}+G])$

15 : end if
16: end for
17: end for
18: $qarrow q-1$

19: end while

such as the scalar multiplication defined on the bi-
nary field (F_{2q}) and the scalar multiplication de-
fined on the prime field (F_{p}) . To compute point
addition, point double, and point triple defined
in Section 1, we need to compute field inversion,
field squaring, and field multiplication. We de-
fine the cost for field inversion as $[i]$, field squar-
ing as $[s]$, and field multiplication as $[m]$. Basi-
cally, $P_{dou}=P_{add}=[i]+[s]+2[m]$. However,
there are many researches working on optimizing
more complicated operation such as point triple,
point quadruple [3, 4, 15, 16]. Moreover, when
point addition is chosen to perform just after the
point double, we can use some intermediate results
of point double to reduce the computation time of
point addition. Then, it is more convenient to con-
sider point double and point addition together as
the basic operation. We call the operation as point
double-and-add. The computation cost of point
double-and-add is $P_{dou+add}$. The similar thing also
happen when we perform point addition after point
triple, and we also define point triple-and-add as
another basic operation. Also, we define the com-
putation cost of point triple-and-add as $P_{tri+add}$.
It is obvious that we can treat these improvements
by a little modification in Algorithm 3,4.

133

$\underline{Algorithm4FO(va,C[v_{2}+G],C[v_{3}+G])}$
Require: the positive integer va,

the optimal double base chain of $\lfloor\frac{va}{2}\rfloor+g[\lfloor\frac{va}{2}\rfloor]$ for all $g[\lfloor\frac{va}{2}\rfloor]\in G,$ $C[va_{2}+G]$,
and the optimal double base chain of $\lfloor \mathscr{F}\rfloor+g[\lfloor\frac{va}{3}\rfloor]$ for all $g[\lfloor\frac{va}{3}\rfloor]\in G,$ $C[va_{3}+G]$

Ensure: the optimal double base chain of va, $C[va]$

1: $c_{2,u}arrow\infty,$ $c_{3,u}arrow\infty$

2: for all $u\in Ds$ such that $va- u\equiv 0mod 2$ do
3: $c_{2,u} arrow P(C[\frac{va-u}{2}])+P_{dou}$

4: $c_{2,u}arrow c_{2,u}+P_{add}$ if $u\neq 0$

5: end for
6: $c_{2} arrow\min_{u\in D\epsilon}c_{2,u},$ $u_{2} arrow\min\arg_{u\in Ds}c_{2,u},$ $vc_{2}arrowarrow^{va-u2}$

7: for all $u\in Ds$ such that $va– u\equiv 0mod 3$ do
8: $c_{3,u} arrow P(C[\frac{va-u}{3}])+P_{tri}$

9: $c_{3,u}arrow c_{3,u}+P_{add}$ if $u\neq 0$

10: end for
11: $c_{3} arrow\min_{u\in D\epsilon}c_{3,u},$ $u_{3} arrow\min\arg_{u\in D\epsilon}c_{3,u},$ $vc_{3}arrowarrow^{va-u3}$

12: if $c_{2}\leq c_{3}$ and $u_{2}=0$ then
13: $R[v]arrow R[vc_{2}],$ $X[v]arrow\langle x[v]_{0},$ $\ldots,x[v]_{m-1}\rangle$ where $x[v]_{t}arrow x[vc_{2}]_{t}+1,$ $Y[v]arrow Y[vc_{2}]$

14: else if $c_{2}\leq c_{3}$ then
15: $R[v]arrow\langle u_{2},$ $R[vc_{2}]\rangle,$ $X[v]arrow\langle 0,x[v]_{1},$ $\ldots,x[v]_{m-1}\rangle$ where $x[v]_{t}arrow x[vc_{2}]_{t-1}+1,$ $Y[v]arrow\langle 0,$ $Y[vc_{2}]\rangle$

16 : else if $u_{3}=0$ then
17: $R[v]arrow R[vc_{3}],$ $X[v]arrow X[vc_{3}],$ $Y[v]arrow\langle y[v]_{0},$

$\ldots,$
$y[v]_{m-1}\rangle$ where $y[v]_{t}arrow y[vc_{3}]_{t}+1$

ls: else
19: $R[v]arrow\langle u_{3},$ $R[vc_{3}]\rangle,$ $X[v]arrow\langle 0,$ $X[vc_{3}]\rangle,$ $Y[v]arrow\langle 0,y[v]_{1},$

$\ldots,$
$y[v]_{m-1}\rangle$ where $y[v]_{t}arrow y[vc_{3}]_{t-1}+1$

20 : end if
21: $C[v]arrow\langle R[v],X[v],$ $Y[v]\rangle$

4.1 Scalar Multiplication on the Bi- In both experiments, we set $Ds=\{0, \pm 1\}$, and
nary Field we randomly select 10000 positive integers which

are less than 2^{163} , and find the average computa-
tion cost comparing between the optimal chain pro-

In the binary field, the field squaring is very fast, posed in this paper and the greedy algorithm pre-
i.e. $[s]\approx 0$. Normally, $3\leq[i]/[m]\leq 10$. There sented in [3, 4]. The results are shown in Table 1.
are two methods to compute point $doubl\triangleright and$-add, Our result is 4.06% better than [3] when $[i]/[m]=$
point triple, and point triple-and-add proposed by 4, and 4.77% better than [3] when $[i]/[m]=8$.
[15, 16]. We use the same parameter as [3] does, and
perform two experiments. First, We set $[i]/[m]=4$
and use the method $hom[16]$. In this case,

Table 1: Comparing the computation cost for scalar
$P_{dou}=P_{add}=[i]+[s]+2[m]=6[m]$, point multiplication using double-base chains when

$P_{tri+add}=3[i]+3[s]+4[m]=16[m]$.
$P_{dou+add}=P_{tri}=2[i]+2[s]+3[m]=11[m]$,

$\frac\frac{thee\overline{Method[i]/[m]=4[i]/[m]=8}m_{P}ticcurveisimplementedinthebinaryfie1d}{Binary1627[m]2441[m]}$

In another experiment, we set $[i]/[m]=8$ and use
the method from [15]. In this case, NAF [1] $1465[m|$ $2225[m]$

Ternary/Binary [12] 1463 $[m]$ 2168$[m]$

$P_{dou}=P_{add}=[i]+[s]+2[m]=10[m]$, DBC (Greedy) [3] 1427 $[m]$ 2139$[m]$

Optimized DBC$P_{dou+add}=1[i]+2[s]+9[m]=17[m]$,
(Our Result) $1369[m]$ $2037[m]$

$P_{tri}=1[i]+4[s]+7[m]=15[m]$,
$P_{tri+add}=2[i]+3[s]+9[m]=25[m]$.

134

4.2 Scalar Multiplication on the
Prime Field

When we compute the scalar multiplication on the
prime field, field inversion is very expensive task
as $[i]/[m]$ is usually more than 30. To cope with
that, we compute in the coordinate in which we
need to perform field inversion as least as possible
such as inverted Edward coordinate with a curve
in Edwards form [17]. Up to this state, it is the
fastest way to implement scalar multiplication. In
this case, the number of field inversion required in
each scalar multiplication is constant, and $P_{add}=$

$9[m]+1[s],$ $P_{dou}=3[m]+4[s]$, and $P_{tri}=9[m]+4[s]$
[18]. To compare our results with the existing
work, we set the parameter similar to what [6] does.
$[s]=0.8[m]$, and $Ds=\{0, \pm 1\}$. We perform five
experiments, for the positive integer less than 2^{256} ,
$2^{320},2^{384},2^{448}$, and 2^{512} . In each experiment, we
randomly select 10000 integer, and find the aver-
age computation cost in term of $[m]$. We show the
results in Table 2. Our results improve the tree-
based approach proposed by Doche and Habsieger
by 3.95%, 3.88%, 3.90%, 3.90%, 3.90% when the bit
number is 192 bits, 256 bits, 320 bits, 384 bits, 512
bits respectively.

We also compare our results with the other digit
sets. In this case, we compare our results with
the works by Bernstein et al. [5]. In the paper,
they use the different way to measure the compu-
tation cost of the scalar multiplication. In addi-
tion to the cost of computing rS , they also con-
sider the cost for the precomputation. For exam-
ple, we need to precompute $3S,$ $5S,$

$\ldots,$
$17S$ when

$Ds=\{0, \pm 1, \pm 3, \ldots, \pm 17\}$. We perform the exper-
iment on eight different curves and coordinates. In
each curve, the computation cost for point double,
point addition, and point triple are different, and
we use the same parameter as defined in [5]. We
use $Ds=\{0, \pm 1, \pm 3, \ldots, \pm(2h+1)\}$, and we check
all $0\leq h\leq 20$ to find the digit set that give us the
minimal average computation cost. Although, the
computation cost of the scalar multiplication tends
to be lower if we use larger digit set, the higher
precomputation cost makes optimal h lied between
6 to 8 in most of cases.

Recently, there is a research by Meloni and Hasan
[13]. Instead of using double-base chain, they use
double-base number system defined in Section 1.
To cope with the difficulties computing the num-
ber system, they introduce Yao’s algorithm. Their
result significantly improves the result using the
double-base chain using greedy algorithm, espe-
cially the curve where point triple is expensive.

In Table 3, we compare the results in [5], [13]
with our algorithm. We randomly choose 10000
positive integers less than 2^{160} . As the improve-
ment ffom [5], our algorithm significantly improves
the efficiency. On the other hand, our results do not

improve the result ffom [13] in many cases. These
cases are the case when point triple is costly op-
eration, and we need only few point triples in the
optimal chain. In this case, Yao’s algorithm works
efficiently. However, our algorithm works better
in the inverted Edward coordinate, which is com-
monly used as the benchmark to compare the algo-
rithm.

5 Conclusion
In this work, we use the dynamic programming al-
gorithm to present the optimal double-base chain.
The chain guarantees the optimal computation cost
on the scalar multiplication. The time complexity
of the algorithm is $O(lg^{2}r)$, similar to the greedy
algorithm. Also, our algorithms consume the same
amount of memory as the tree-based approach,
$O(lg^{2}r)$. The experiment result shows that the op-
timal chain significantly improve the efficiency of
scalar multiplication from the greedy algorithm.

References
[1] Egecioglu, O., Koc, C.K.: Exponentiation us-

ing canonical recoding. Theoretical Computer
Science 8(1) (1994) 19-38

[2] Muir, J.A., Stinson, D.R.: New minimal
weight representation for leffi-to-right window
methods. Department of Combinatorics and
optimization, School of Computer Science,
University of Waterloo (2004)

[3] Dimitrov, V., Imbert, L., Mishra, P.K.: Effi-
cient and secure elliptic curve point multipli-
cation using double-base chains. In: Proc. of
ASIACRYPT 2005. (2005) 59-78

[4] Dimitrov, V., Imbert, L., Mishra, P.K.: The
double-base number system and its application
to elliptic curve cryptography. Mathematics of
Computation 77 (2008) 1075-1104

[5] Bernstein, D.J., Birkner, P., Lange, T., Pe-
ters, C.: optimizing double-base elliptic-curve
single-scalar multiplication. In: In Progress
in Cryptology-INDOCRYPT 2007. Volume
4859 of Lecture Notes in Computer Science.,
Springer (2007) 167-182

[6] Doche, C., Habsieger, L.: A tree-based ap-
proach for computing double-base chains. In:
ACISP 2008. (2008) 433-446

[7] Suppakitpaisarn, V.: Optimal average joint
hamming weight and digit set expansion on
integer pairs. Master’s thesis, The University
of Tokyo (2009)

135

Table 2: Comparing the computation cost for scalar point multiplication using double-base chains when
the elliptic curve is implemented in the prime field

$\overline{\overline{Methodl92}}$bits256bits320bits384bits512bits
$\overline{NAF[1]1817.6[m]2423.5[m]3029.3[m]3635.2[m]}$4241.1 [m]
Ternary/Binary [12] 1761.2[m] 2353.6[m] 2944.9[m] 3537.2[m] 4129.6[m]
DB-Chain (Greedy) [4] 1725.5[m] 2302.0[m] 2879. 1 [m] 3455.2 [m] 4032.4[m]
Tree-Based Approach [6] $1691.3[m]$ $2255.8[m]$ $2821.0[m]$ $3386.0[m]$ $3950.3[m]$

Our Result $1624.5[m]$ $2168.2[m]$ $2710.9[m]$ $3254.1[m]$ $3796.3[m]$

Table 3: Comparing the computation cost for scalar point multiplication using double-base chains in
larger digit set when the elliptic curve is implemented in the prime field, and the bit number is 160

$\overline{\overline{Method3DIK}}$Edwards ExtJQuartic Hessian
DBC $+$ Greedy Alg. [5] $1502.4[m]$ $1322.9[m]$ $1311.0[m]$ $1565.0[m]$

DBNS $+$ Yao’s Alg. [13] $1477.3[m]$ $1283.3[m]$ $1226.0[m]$ $1501.8[m]$

Our Algorithm $1438.7[m]$ $1284.3[m]$ $1276.5[m]$ $1514.4[m]$

$\overline{\overline{Method}}$InvEdwards JacIntersect Jacobian Jacobian-3
DBC $+$ Greedy Alg. [5] $1290.3[m]$ $1438.8[m]$ $1558.4[m]$ $1504.3[m]$

DBNS $+$ Yao’s Alg. [13] $1258.6[m]$ $1301.2[m]$ $1534.9[m]$ $1475.3[m]$

Our Algorithm $1257.5[m]$ $1376.0[m]$ $1514.5[m]$ $1458.0[m]$

[8] Suppakitpaisarn, V., Edahiro, M.: Fast scalar-
point multiplication using enlarged digit set on
integer pairs. Proc. of SCIS 2009 (2009) 14

[9] Suppakitpaisarn, V., Edahiro, M., Imai, H.:
Optimal average joint hamming weight and
minimal weight conversion of d integers. Cryp-
tology ePrint Archive 2010/300 (2010)

[10] Imbert, L., Philippe, F.: How to compute
shortest double-base chains? In: ANTS IX.
(July 2010)

[11] Dimitrov, V., Cooklev, T.V.: Two algorithms
for modular exponentiation based on nonstan-
dard arithmetics. IEICE Tkans. FUndamentals
E78-A(1) (January 1995) 82-87 special issue
on cryptography and information security.

[12] Dimitrov, V.S., Jullien, G.A., Miller, W.C.:
An algorithm for modular exponentiations. In-
formation Processing Letters 66 (1998) 155-
159

[13] Meloni, N., Hasan, M.A.: Elliptic curve scalar
multiplication combining yao’s algorithm and
double bases. In: CHES 2009. (2009) 304-316

[14] Doche, C., Kohel, D.R., Sica, F.: Double-
base number system for multi-scalar multipli-
cations. In: EUROCRYPT 2009. (2009) 502-
517

[15] Ciet, M., Joye, M., Lauter, K., Montgomery,
P.L.: hading inversions for multiplications
in elliptic curve cryptography. Daeigns, Codae
and Cryptography 39(6) (2006) 189-206

[16] Eisentrager, K., Lauter, K., Montgomery,
P.L.: Fast elliptic curve arithmetic and im-
proved Weil pairing evaluation. In: Topics in
Cryptology-CT-RSA 2003. Volume 2612 of
Lecture Notes in Computer Science., Springer
(2003) 343-354

[17] Bernstein, D.J., Lange, T.: Inverted edwards
coordinates. In Boztas, S., H.-F.Lu, eds.:
AAECC 2007. Volume 4851 of Lecture Note
in Computer Science., Heidelberg, Springer
(2007) 20-27

[18] Bernstein, D., Lange, T.: Explicit-formulas
database

136

