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1 Introduction
The main purpose of this article is to make a resume of recent results obtained by
the author [10]. In this article, we study the following Lotka-Volterra prey-predator
model:

(P) $\{\begin{array}{ll}u_{t}=\triangle[(1+k\rho(x)v)u]+u(\lambda-u-b(x)v), (x, t)\in\Omega\cross(0, \infty),v_{t}=\triangle v+v(\mu+cu-v), (x, t)\in\Omega\backslash \overline{\Omega}_{0}\cross(0, \infty),\partial_{n}u=0, (x, t)\in\partial\Omega\cross(0, \infty),\partial_{n}v=0, (x, t)\in\partial(\Omega\backslash \overline{\Omega}_{0})\cross(0, \infty),u(x, 0)=u_{0}(x)\geq 0, x\in\Omega,v(x, 0)=v_{0}(x)\geq 0, x\in\Omega\backslash \overline{\Omega}_{0},\end{array}$

where $\Omega$ is a bounded domain in $\mathbb{R}^{N}(N\leq 3)$ with smooth boundary $\partial\Omega$ and $\Omega_{0}$ is
a subdomain of $\Omega$ with smooth boundary $\partial\Omega_{0};n$ is the outward unit normal vector
on the boundary and $\partial_{n}=\partial/\partial n;k\geq 0,$ $\lambda>0,$ $c>0$ and $\mu\in \mathbb{R}$ are all constants;
$\rho>0$ and $b>0$ in $\Omega\backslash \Omega_{0}$ , whereas $\rho=b=0$ in $\Omega_{0}$ because $v$ is not defined in
$\Omega_{0}$ . In addition, we make the following assumption: if $N=2$ or 3, then $\overline{\Omega}_{0}\subset\Omega$ ;
if $N=1$ and $\Omega=(a_{1}, a_{2})$ for $a_{1}<a_{2}$ , then $\Omega_{0}=(a_{1}, a)$ or $\Omega_{0}=(a, a_{2})$ for some
$a\in(a_{1}, a_{2})$ . In (P), unknown functions $u(x, t)$ and $v(x, t)$ denote the population
densities of prey and predator respectively; $\lambda$ and $\mu$ denote the intrinsic growth
rates of the respective species; $b(x)$ and $c$ denote the coefficients of prey-predator
interaction; the zero-fiux boundary condition means that no individuals cross the
boundary.

In the first equation of (P), $k\triangle[\rho(x)vu]$ is usually referred to as a cross-diffusion
term which was originally proposed by Shigesada et al. [13]. The cross-diffusion term
$k\triangle[\rho(x)vu]$ means that the movement of the prey species is affected by population
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pressure from the predator species and the cross-diffusion coefficient $k$ denotes the
sensitivity of the prey species to population pressure from the predator species.

In (P), the predator species cannot enter the subregion $\Omega_{0}$ of the habitat $\Omega$ ,
while the prey species can enter and leave $\Omega_{0}$ freely. Namely, $\Omega_{0}$ is a predation-free
zone for the prey species and such a subregion $\Omega_{0}$ is called a protection zone. One
can think that there is a barrier along $\partial\Omega_{0}$ that blocks the predator but not the prey
(see $[2]-[4]$ for further details). In the case where cross-diffusion is absent, Du et al.
$[2]-[4]$ have studied the effects of a protection zone on Lotka-Volterra competition
model [2], Leslie prey-predator model [3], and Holling type II prey-predator model [4]
respectively. They have proved that if the size of the protection zone is larger than
a certain critical patch size, which is common to three models, then a fundamental
change occurs in the dynamical behavior of each of three models.

Let $\Omega_{I}$ $:=\Omega\backslash \overline{\Omega}_{0}$ . The stationary problem associated with (P) is given by

(SP) $\{\begin{array}{ll}\triangle[(1+k\rho(x)v)u]+u(\lambda-u-b(x)v)=0 in \Omega,\triangle v+v(\mu+cu-v)=0 in \Omega_{1},\partial_{n}u=0 on \partial\Omega,\partial_{n}v=0 on \partial\Omega_{1}.\end{array}$

When $\Omega_{0}=\emptyset$ , there are some studies on prey-predator models with cross-diffusion
analogous to (SP) (see e.g. [5], [6], [14]).

In this article, we study the following two subjects: first, we study the effects of
cross-diffusion on the existence and non-existence of positive solutions of (SP), and
secondly, we study the asymptotic behavior of positive solutions of (SP) as $karrow\infty$ .
From an ecological viewpoint, a positive solution of (SP) means a coexistence state
of the two species. From now on, we always assume that

$p(x)=\chi_{\Omega\backslash \Omega_{0}}(x):=\{$ $01$ $ifx\in\Omega_{0}ifx\in\Omega\backslash \Omega_{0}$

,
and $b(x)=\{\begin{array}{ll}\beta if x\in\Omega\backslash \Omega_{0},0 if x\in\Omega_{0},\end{array}$

where $\beta$ is a positive constant.
This article is organized as follows. In Section 2, we will state the main results

of this article. In Section 3, we will state a priori estimates of positive solutions.
Moreover, we will study the local bifurcation of positive solutions from semitrivial
solutions. In Section 4, we will prove our main results except for Theorem 2.5.

2 Main results
We define

$U=(1+k\rho(x)v)u$ . (2.1)
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Then (SP) is rewritten in the following form:

(EP) $\{\begin{array}{ll}\triangle U+\frac{U}{1+k\rho(x)v}(\lambda-\frac{U}{1+k\rho(x)v}-b(x)v)=0 in \Omega,\triangle v+v(\mu+\frac{cU}{1+kv}-v)=0 in \Omega_{1},\partial_{n}U=0 on \partial\Omega,\partial_{n}v=0 on \partial\Omega_{1}.\end{array}$

Define
$E=C_{n}^{1}(\overline{\Omega})\cross C_{n}^{1}(\overline{\Omega}_{1})$ , (2.2)

where $C_{n}^{1}(\overline{O})=\{w\in C^{1}(\overline{O}) : \partial_{n}w=0 on \partial O\}$ . We say that $(u, v)$ is a positive
solution of (SP) if $(U, v)\in E$ is a positive solution of (EP) and $u$ is defined by (2.1).

Let $\lambda_{1}^{D}(\Omega_{0})$ be the first eigenvalue $of-\triangle$ over $\Omega_{0}$ with the homogeneous Dirichlet
boundary condition (the boundary condition should be replaced by $\phi(a)=\phi’(a_{i})=0$

for $i=1$ or 2 if $N=1$ , but we use the same symbol $\lambda_{1}^{D}(\Omega_{0}))$ . For $q\in L^{\infty}(O)$ , we
denote by $\lambda_{1}^{N}(q, O)$ the first eigenvalue $of-\triangle+q$ over $O$ with the homogeneous Neu-
mann boundary condition. Before stating our main results, we state the following
lemma.

Lemma 2.1. For any fixed $k$ and $\Omega_{0}$ , there exists a continuous and strictly increas-
ing function $\lambda^{*}(\mu)$ with respect to $\mu\geq 0$ such that $\lambda^{*}(0)=0,$ $\lambda^{*}(\mu)<\beta\mu$ for any
$\mu>0,$ $\lim_{\muarrow\infty}\lambda^{*}(\mu)\leq\lambda_{1}^{D}(\Omega_{0})$ and

$\{(\lambda, \mu)\in[0, \infty)^{2}:\lambda_{1}^{N}(\frac{b(x)\mu-\lambda}{1+k\rho(x)\mu},$ $\Omega)=0\}=\{(\lambda^{*}(\mu), \mu):\mu\geq 0\}$ .

Our first result is the following theorem concerning the existence of coexistence
states of (SP) with fixed $k$ and $\Omega_{0}$ .

Theorem 2.2. The following results hold true:

(i) Suppose that $\mu\geq 0$ . Then (SP) has at least one positive solution if and only
if $\lambda>\lambda^{*}(\mu)$ .

(ii) Suppose that $\mu<0$ . Then (SP) has at least one positive solution if $\lambda>-\mu/c$ .

Hereafter, We write $\lambda^{*}(\mu, k, \Omega_{0})$ instead of $\lambda^{*}(\mu)$ to state the dependence on $k$

and $\Omega_{0}$ explicitly. Moreover, we define $\lambda_{\infty}^{*}(k, \Omega_{0})$ $:= \lim_{\muarrow\infty}\lambda^{*}(\mu, k, \Omega_{0})\leq\lambda_{1}^{D}(\Omega_{0})$ .
When $\Omega_{0}=\emptyset$ , it is known that for any $k\geq 0$ , (SP) has no positive solution if

$\lambda\leq\beta\mu$ . On the other hand, Lemma 2.1 and part (i) of Theorem 2.2 assert that
when $\Omega_{0}\neq\emptyset$ , (SP) has at least one positive solution for any $\mu>0$ if $\lambda\geq\lambda_{\infty}^{*}(k, \Omega_{0})$ .
Namely, we can regard $\lambda_{\infty}^{*}(k, \Omega_{0})$ as a threshold prey growth rate for the survival of
the prey species. Here, we see from [4] that $\lambda_{\infty}^{*}(0, \Omega_{0})$ is given by $\lambda_{1}^{D}(\Omega_{0})$ . Then it
is interesting to study the dependence of the threshold prey growth rate $\lambda_{\infty}^{*}(k, \Omega_{0})$

on $k$ and $\Omega_{0}$ and the following theorem holds.
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Theorem 2.3. The following results hold true:

(i) Suppose that $\mu>0$ . Then $\lambda^{*}(\mu, k, \Omega_{0})$ is strictly decreasing with respect to $k$ .

(ii) For any $k>0_{f}$ it holds that

$\lambda_{\infty}^{*}(k, \Omega_{0})=\inf_{\{\phi\in H^{1}(\Omega):\int_{\Omega_{0}}\phi^{2}dx>0\}}\frac{\int_{\Omega}|\nabla\phi|^{2}dx+\frac{\beta}{k}\int_{\Omega\backslash \Omega_{0}}\phi^{2}dx}{\int_{\Omega_{0}}\phi^{2}dx}\leq\frac{\beta|\Omega\backslash \Omega_{0}|}{k|\Omega_{0}|}$ .

Part (i) of Theorem 2.3 means that when $\mu>0$ , the coexistence region become
larger as $k$ increases, and part (ii) of Theorem 2.3 means that the threshold prey
growth rate $\lambda_{\infty}^{*}(k, \Omega_{0})$ decreases to $0$ as $karrow\infty$ or $\Omega_{0}$ is enlarged to the entire $\Omega$ .
Namely, in the limiting case where $karrow\infty$ or $\Omega_{0}$ is enlarged to $\Omega$ , the prey species
can coexist with the predator species regardless of the values of $\lambda>0$ and $\mu>0$ .
This is in sharp contrast to the no cross-diffusion case, where the threshold prey
growth rate $\lambda_{1}^{D}(\Omega_{0})$ satisfies $\lambda_{1}^{D}(\Omega_{0})\geq\lambda_{I}^{D}(\Omega)>0$ for any $\Omega_{0}\subset\Omega$ . Therefore, we
can say that the cross-diffusion for the prey has beneficial effects on the survival of
the prey species when a protection zone is present.

Concerning the asymptotic behavior of positive solutions of (SP) as $karrow\infty$ , the
following theorem holds.

Theorem 2.4. Let $(u_{k}, v_{k})$ be any positive solution of (SP) for each $k$ .

(i) Suppose that $\mu\geq 0$ . Then

$\lim_{karrow\infty}(u_{k}, u_{k}, v_{k})=(\lambda, 0, \mu)$ $in$ $C^{1}(\Omega_{0})\cross C^{1}(\overline{\Omega}_{1})\cross C^{1}(\overline{\Omega}_{1})$ .

Moreover, $\lim_{karrow\infty}kv_{k}=\infty$ uniformly in $\overline{\Omega}_{1}$ even when $\mu=0$ .

(ii) Suppose that $\lambda>-\mu/c>0$ and let $\{k_{i}\}_{i=1}^{\infty}$ be any sequence with $\lim_{iarrow\infty}k_{i}=$

$\infty$ . Then, by passing to a subsequence if necessary,

$\lim_{iarrow\infty}u_{k_{i}}=\overline{u}$ uniformly in $\overline{\Omega}$ , $\lim_{iarrow\infty}(v_{k_{i}}, k_{i}v_{k_{i}})=(0,\overline{w})$ in $C^{1}(\overline{\Omega}_{1})^{2}$ ,

where $(\overline{u},\overline{w})$ is a positive solution of

$\{\begin{array}{ll}\triangle[(1+\rho(x)\overline{w})\overline{u}]+\overline{u}(\lambda-\overline{u})=0 in \Omega,\triangle\overline{w}+\overline{w}(\mu+c\overline{u})=0 in \Omega_{1},\partial_{n}\overline{u}=0 on\partial\Omega,\partial_{n}\overline{w}=0 on \partial\Omega_{1}.\end{array}$ (2.3)
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Part (i) of Theorem 2.4 means that when $\mu\geq 0$ , the prey species concentrates
in the protection zone as $karrow\infty$ and when $\mu>0$ in particular, the two species
become spatially segregated as $karrow\infty$ .

We can analyze the bifurcation structure of positive solutions of the limiting
system (2.3).

Theorem 2.5. The set of positive solutions of (2.3) with bifurcation parameter
$\mu$ contains an unbounded connected set $\Gamma$ in $\mathbb{R}\cross L^{\infty}(\Omega)\cross C^{1}(\overline{\Omega}_{1})$ satisfying the
following properties:

(i) $\Gamma b\prime ifu7$ cates from $\{(\mu,\overline{u},\overline{w})=(\mu, \lambda, 0) : \mu\in \mathbb{R}\}$ at $\mu=-c\lambda$ ,

(ii) $(-c\lambda, 0)\subset\{\mu : (\mu,\overline{u},\overline{w})\in\Gamma\}\subset(\tilde{\mu}, 0)$ for some $\tilde{\mu}\in$ (-00, $-c\lambda]$ ,

(iii) $\lim_{\muarrow 0}\overline{u}_{\mu}=\lambda$ in $C^{1}(\Omega_{0})$ and $\lim_{\muarrow 0}(\overline{u}_{\mu},\overline{w}_{\mu})=(0, \infty)$ uniformly in $\overline{\Omega}_{1}$ , where
$(\mu,\overline{u}_{\mu},\overline{w}_{\mu})\in\Gamma$ .

We remark that (iii) of Theorem 2.5 is compatible with (i) of Theorem 2.4.

3 A priori estimates and local bifurcation

3.1 A priori estimates of positive solutions
By combining $L^{2}$-estimates of positive solutions of (EP) with Harnack inequality
(see [7] and [9]), we can prove the following a priori estimates of positive solutions.

Lemma 3.1. Let $\theta\in(0,1)$ . Then there exists a positive constant $C$ independent of
$k$ such that any positive solution $(U, v)$ of (EP) satisfies

$\Vert U\Vert_{C^{1,\theta}(\overline{\Omega})}\leq C$ and $\Vert v\Vert_{C^{1,\theta}(\overline{\Omega}_{1})}\leq C$ .

3.2 Local bifurcation from semitrivial solutions
In this subsection, we regard $\lambda$ as a bifurcation parameter in order to obtain a branch
of positive solutions which bifurcates from the semitrivial solution curve

$\Gamma_{U}=\{(\lambda, U, v)=(\lambda, \lambda, 0):\lambda>0\}$ or $\Gamma_{v}=\{(\lambda, U, v)=(\lambda, 0, \mu):\lambda>0\}$ .

For $p>N$ , we define

$X_{1}=W_{n}^{2,p}(\Omega)\cross W_{n}^{2,p}(\Omega_{1})$ and $X_{2}=L^{p}(\Omega)\cross L^{p}(\Omega_{1})$ ,

where $W_{n}^{2,p}(O)=\{w\in W^{2,p}(O) : \partial_{n}w=0 on \partial O\}$ . We note that $X_{1}\subset E$ by the
Sobolev embedding theorem, where $E$ is the Banach space defined by (2.2).
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We first consider the local bifurcation from $\Gamma_{v}$ for any fixed $\mu>0$ . Let $\lambda^{*}=\lambda^{*}(\mu)$

be the positive number defined in Lemma 2.1 and let $\phi^{*}$ be a positive solution of

$- \triangle\phi^{*}+\frac{b(x)\mu-\lambda^{*}}{1+k\rho(x)\mu}\phi^{*}=0$ in $\Omega$ , $\partial_{n}\phi^{*}=0$ on $\partial\Omega$ .

We also define
$\psi^{*}=(-\triangle+\mu I)_{\Omega_{1}}^{-I}[\frac{c\mu}{1+k\mu}\phi^{*}]$ ,

where $I$ is the identity mapping and $(-\triangle+\mu I)_{\Omega_{1}}^{-1}$ is the inverse operator $of-\triangle+\mu I$

over $\Omega_{1}$ subject to the homogeneous Neumann boundary condition. Then we can
prove the following proposition by applying the local bifurcation theorem of Crandall
and Rabinowitz [1] to (EP).

Proposition 3.2. Assume that $\mu>0$ . Positive solutions of (EP) bifurcate from $\Gamma_{v}$

if and only if $\lambda=\lambda^{*}$ . To be precise, all positive solutions of (EP) near $(\lambda^{*}, 0, \mu)\in$

$\mathbb{R}\cross X_{1}$ can be expressed as

$\hat{\Gamma}_{\delta}=\{(\lambda, U, v)=(\lambda(s), s(\phi^{*}+U(s)), \mu+s(\psi^{*}+v(s))):s\in(0, \delta)\}$

for some $\delta>0$ . Here $(\lambda(s), U(s), v(s))$ is a smooth function with respect to $s$

and satisfies $(\lambda(0), U(O), v(O))=(\lambda^{*}, 0,0)$ and $\int_{\Omega}U(s)\phi^{*}dx=0$ . Furthermore,
$\lambda’(0)>0$ .

Proof. We only prove $\lambda’(0)>0$ . Define a mapping $F:\mathbb{R}\cross X_{1}arrow X_{2}$ by

$F( \lambda, U, v)=(^{\triangle U}+\frac{U}{1+k\rho(x)v}\triangle(\lambda-\frac{U}{1+k\rho(x)v,+kv^{-v)}cU}-b(x)vI)$

Then we can verify that

$KerF_{(U,v)}(\lambda^{*}, 0, \mu)=$ span$\{(\phi^{*}, \psi^{*})\}$ .

Using the direction formula of bifurcation (see [12]), we have

$\lambda’(0)=-\frac{\langle F_{(U,v)(U,v)}(\lambda^{*},0,\mu)[\phi^{*},\psi^{*}]^{2},l_{I}\rangle}{2\langle F_{\lambda(U,v)}(\lambda^{*},0,\mu)[\phi^{*},\psi^{*}],l_{1}\rangle}$ ,

where $l_{I}$ is the linear functional on $X_{2}$ defined by $\langle[\phi, \psi],$ $l_{I}\rangle$ $:= \int_{\Omega}\phi\phi^{*}dx$ . By simple
calculations, we obtain

$F_{(U,v)(U,v)}( \lambda^{*}, 0, \mu)[\phi^{*}, \psi^{*}]^{2}=2(^{-\frac{(\phi}{(1+k\rho}\frac{b(x)+k\rho(x)\lambda^{*}}{*\psi-(\psi^{*})^{2}(1_{*}+k\rho(x)\mu)^{2}}\phi^{*}\psi^{*}}\frac{*(x)_{c})^{2}\mu)^{2^{-}}}{(1+k\mu)^{2}}\phi)$
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and

$F_{\lambda(U,v)}( \lambda^{*}, 0, \mu)[\phi^{*}, \psi^{*}]=(\frac{\phi^{*}}{1+k\rho(x)\mu,0}I$

Hence

$\lambda’(0)=\int_{\Omega}\frac{(\phi^{*})^{3}+(b(x)+k\rho(x)\lambda^{*})(\phi^{*})^{2}\psi^{*}}{(1+k\rho(x)\mu)^{2}}dx/\int_{\Omega}\frac{(\phi^{*})^{2}}{1+k\rho(x)\mu}dx>0$ .

$\square$

Next we consider the local bifurcation from $\Gamma_{U}$ for any fixed $\mu<0$ . We define

$\phi_{*}=(-\triangle+\frac{-\mu}{c}I)_{\Omega}^{-1}[-\frac{\mu}{c}(-\frac{k\rho(x)\mu}{c}-b(x))]$ . (3.1)

Then we can prove the following proposition.

Proposition 3.3. Assume that $\mu<0$ . Positive solutions of (EP) bifurcate from
$\Gamma_{U}$ if and only if $\lambda=-\mu/c$ . To be precise, all positive solutions of (EP) near
$(-\mu/c, -\mu/c, 0)\in \mathbb{R}\cross X_{1}$ can be expressed as

$\{(\lambda, U, v)=(\tilde{\lambda}(s),\tilde{\lambda}(s)+s(\phi_{*}+\tilde{U}(s)),$ $s(1+\tilde{v}(s))):s\in(0,\tilde{\delta})\}$

for some $\tilde{\delta}>0$ . Here $(\tilde{\lambda}(s),\tilde{U}(s),\tilde{v}(s))$ is a smooth function with respect to $s$

and satisfies $(A(0), \tilde{U}(0),\tilde{v}(0))=(-\mu/c, 0,0)$ and $\int_{\Omega_{1}}\tilde{v}(s)dx=0$ . Furthermore,
$\tilde{\lambda}’(0)>0$ .

Proof. We only prove $\tilde{\lambda}’(0)>0$ . We can verify that

$KerF_{(U,v)}(-\mu/c, -\mu/c, 0)=$ span$\{(\phi_{*}, 1)\}$ .

Moreover, we see that

$\tilde{\lambda}’(0)=-\frac{\langle F_{(U,v)(U,v)}(-\mu/c,-\mu/c,0)[\phi_{*},1]^{2},l_{2}\rangle}{2\langle F_{\lambda(U,v)}(-\mu/c,-\mu/c,0)[\phi_{*},1],l_{2}\rangle}$,

where $l_{2}$ is the linear functional on $X_{2}$ defined by $\langle[\phi, \psi],$ $l_{2}\rangle$ $:= \int_{\Omega_{1}}\psi dx$ . By simple
calculations, we have

$F_{(U,v)(U,v)}(-\mu/c, -\mu/c, 0)[\phi_{*}, 1]^{2}$

$=2(\begin{array}{ll}-\phi_{*}^{2}+\{3k\rho(x)(-\mu/c)- b(x)\}\phi_{*}+k\rho(x)(-\mu/c)\{b(x)-2k\rho(x)(-\mu/c)\}c\phi_{*} -\{ck\rho(x)(-\mu/c)+1\}\end{array})$
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and

$F_{\lambda(U,v)}(- \mu/c, -\mu/c, 0)[\phi_{*}, 1]=(-\phi_{*}-\frac{2k\rho(x)\mu}{cc}-b(x))$ .

We notice from (3.1) that

$c \phi_{*}-\{ck\rho(x)(-\mu/c)+1\}=-\frac{c^{2}}{\mu}\triangle\phi_{*}-cb(x)-1$ .

Thus

$\tilde{\lambda}’(0)=-\frac{\int_{\Omega_{1}}[c\phi_{*}-\{ck\rho(x)(-\mu/c)+1\}]dx}{\int_{\Omega_{1}}cdx}=\frac{\int_{\Omega_{1}}(cb(x)+1)dx}{c|\Omega_{1}|}>0$ .

$\square$

4 Proof of main results

4.1 Proof of Theorem 2.2
We first consider the case $\mu>0$ . By virtue of the strong maximum principle and
the global bifurcation theory of Rabinowitz (see [8] and [11]), we can show that $\hat{\Gamma}_{\delta}$

in Proposition 3.2 is extended to an unbounded connected set of positive solutions
of (EP) in $\mathbb{R}\cross E$ . Moreover, we can easily show that if $\lambda\leq\lambda^{*}(\mu)$ , then (EP) has no
positive solution. It thus follows from Lemma 3.1 that (EP) has at least one positive
solution if and only if $\lambda>\lambda^{*}(\mu)$ . Thus the proof for the case $\mu>0$ is complete.

We can discuss the case $\mu<0$ in a similar manner and so omit the proof. Hence it
only remains to discuss the case $\mu=0$ . Fix any $\lambda>0$ . By virtue of the above result,
we can take a sequence $\{(\mu_{i}, U_{i}, v_{i})\}_{i=1}^{\infty}$ such that $(U_{i}, v_{i})$ is a positive solution of (EP)
with $\mu=\mu_{i}$ and $\lim_{iarrow\infty}\mu_{i}=0$ . Since $\{\mu_{i}\}_{i=1}^{\infty}$ is a bounded sequence, it follows from
Lemma 3.1 that there exists a subsequence, still denoted by $\{(\mu_{i}, U_{i}, v_{i})\}_{i=1}^{\infty}$ , such
that

$\lim_{iarrow\infty}(U_{i}, v_{i})=(U_{\infty}, v_{\infty})$ in $C^{1}(\overline{\Omega})\cross C^{1}(\overline{\Omega}_{1})$

for a pair of non-negative functions $(U_{\infty}, v_{\infty})\in C^{1}(\overline{\Omega})\cross C^{1}(\overline{\Omega}_{I})$. By $\lim_{iarrow\infty}\mu_{i}=0$ ,
$(U_{\infty}, v_{\infty})$ is a non-negative solution of (EP) with $\mu=0$ . Then we can verify from
the strong maximum principle that $U_{\infty}>0$ in $\overline{\Omega}$ and $v_{\infty}>0$ in $\overline{\Omega}_{1}$ . This means
the existence of a positive solution of (EP) with $\mu=0$ for any fixed $\lambda>0$ . We have
thus proved Theorem 2.2.
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4.2 Proof of Theorem 2.3
We only prove part (ii). For any $\mu\geq 0$ , let $\phi_{\mu}$ be a unique positive solution of

$- \triangle\phi_{\mu}+\frac{b(x)\mu-\lambda^{*}(\mu,k,\Omega_{0})}{1+k\rho(x)\mu}\phi_{\mu}=0$ in $\Omega$ , $\partial_{n}\phi_{\mu}=0$ on $\partial\Omega$ (4.1)

satisfying $\int_{\Omega}\phi_{\mu}^{2}dx=1$ . Multiplying the above differential equation by $\phi_{\mu}$ and
integrating the resulting expression over $\Omega$ , we see from Lemma 2.1 that

$\int_{\Omega}|\nabla\phi_{\mu}|^{2}dx=\int_{\Omega}\frac{\lambda^{*}(\mu,k,\Omega_{0})-b(x)\mu}{1+k\rho(x)\mu}\phi_{\mu}^{2}dx\leq\lambda_{1}^{D}(\Omega_{0})$.

Thus $\{\phi_{\mu}\}_{\mu\geq 0}$ is bounded in $H^{1}(\Omega)$ and so there exists a sequence $\{\mu_{i}\}_{i=1}^{\infty}$ with
$\lim_{iarrow\infty}\mu_{i}=\infty$ such that $\lim_{iarrow\infty}\phi_{\mu_{i}}=\phi_{\infty}$ weakly in $H^{1}(\Omega)$ and strongly in $L^{2}(\Omega)$

for some non-negative function $\phi_{\infty}\in H^{1}(\Omega)$ satisfying $\int_{\Omega}\phi_{\infty}^{2}dx=1$ . Moreover, we
find from (4.1) that

$\int_{\Omega}(\nabla\phi_{\mu_{i}}\cdot\nabla\psi+\frac{b(x)\mu_{i}-\lambda^{*}(\mu_{i},k,\Omega_{0})}{1+k\rho(x)\mu_{i}}\phi_{\mu_{i}}\psi)dx=0$

for any $\psi\in H^{1}(\Omega)$ . Letting $iarrow\infty$ in the above equation, we have

$\int_{\Omega}\nabla\phi_{\infty}\cdot\nabla\psi dx+\frac{\beta}{k}\int_{\Omega\backslash \Omega_{0}}\phi_{\infty}\psi dx-\lambda_{\infty}^{*}(k, \Omega_{0})\int_{\Omega_{0}}\phi_{\infty}\psi dx=0$

for any $\psi\in H^{1}(\Omega)$ , where $\lambda_{\infty}^{*}(k, \Omega_{0})=\lim_{\muarrow\infty}\lambda^{*}(\mu, k, \Omega_{0})$. Namely, $\phi_{\infty}$ is a weak
solution of

$- \triangle\phi_{\infty}+\frac{\beta}{k}\chi_{\Omega\backslash \Omega_{0}}\phi_{\infty}-\lambda_{\infty}^{*}(k, \Omega_{0})\chi_{\Omega_{0}}\phi_{\infty}=0$ in $\Omega$ , $\partial_{n}\phi_{\infty}=0$ on $\partial\Omega$ .

Since $\phi_{\infty}\geq 0$ in $\Omega$ and $\int_{\Omega}\phi_{\infty}^{2}dx=1$ , we see $\phi_{\infty}>0$ in $\overline{\Omega}$ by the strong maximum
principle. This means that $\eta=\lambda_{\infty}^{*}(k, \Omega_{0})$ is the first eigenvalue of

$- \triangle\phi+\frac{\beta}{k}\chi_{\Omega\backslash \Omega_{0}}\phi=\eta\chi_{\Omega_{0}}\phi$ in $\Omega$ , $\partial_{n}\phi=0$ on $\partial\Omega$ .

Therefore, by the variational characterization of the first eigenvalue, we have

$\lambda_{\infty}^{*}(k, \Omega_{0})=\inf_{\{\phi\in H^{1}(\Omega):\int_{\Omega_{0}}\phi^{2}dx>0\}}\frac{\int_{\Omega}|\nabla\phi|^{2}dx+\frac{\beta}{k}\int_{\Omega\backslash \Omega_{0}}\phi^{2}dx}{\int_{\Omega_{0}}\phi^{2}dx}\leq\frac{\beta|\Omega\backslash \Omega_{0}|}{k|\Omega_{0}|}$ ,

where the last inequality is obtained by setting $\phi\equiv 1$ in $\Omega$ .
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4.3 Proof of Theorem 2.4
Theorem 2.4 is proven by combining the following three lemmas.

Lemma 4.1. Let $\{(k_{i}, u_{k_{i}}, v_{k_{i}})\}_{i=1}^{\infty}$ be any sequence such that $(u_{k_{i}}, v_{k_{i}})$ is a positive
solution of (SP) with $k=k_{i}$ and $\lim_{iarrow\infty}k_{i}=\infty_{f}$ and set $U_{k_{i}}$ $:=(1+k_{i}\rho(x)v_{k_{i}})u_{k_{i}}$ .
Then, by passing to a subsequence if necessary,

$\lim_{iarrow\infty}(U_{k_{i}}, v_{k_{i}})=(\overline{U}, \max\{\mu, 0\})$ $in$ $C^{1}(\overline{\Omega})\cross C^{1}(\overline{\Omega}_{1})$

for some non-negative function $\overline{U}\in C^{1}(\overline{\Omega})$ .

Lemma 4.2. Suppose $\lambda>-\mu/c\geq 0$ and let $\{(k_{i}, u_{k_{i}}, v_{k_{i}})\}_{i=1}^{\infty}$ be any sequence
such that $(u_{k_{i}}, v_{k_{i}})$ is a positive solution of (SP) with $k=k_{i}$ and $\lim_{iarrow\infty}k_{i}=\infty$ . If
$\{\max_{\overline{\Omega}_{1}}k_{i}v_{k_{i}}\}_{i=1}^{\infty}$ is bounded, the$7\iota\mu<0$ and by passing to a subsequence if $necessa7y$,

$\lim_{iarrow\infty}u_{k_{i}}=\overline{u}$ uniformly in $\overline{\Omega}$ and $\lim_{iarrow\infty}k_{i}v_{k_{i}}=\overline{w}$ in $C^{1}(\overline{\Omega}_{1})$ ,

where $(\overline{u},\overline{w})$ is a positive solution of (2.3).

Lemma 4.3. Assume that $\mu=0$ and let $\{(k_{i}, u_{k_{i}}, v_{k_{i}})\}_{i=1}^{\infty}$ be any sequence such
that $(u_{k_{i}}, v_{k_{i}})$ is a positive solution of (SP) with $k=k_{i}$ and $\lim_{iarrow\infty}k_{i}=\infty$ . Then
$\{\min_{\overline{\Omega}_{1}}k_{i}v_{k_{i}}\}_{i=1}^{\infty}$ is unbounded.
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