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1 Introduction

In this talk we study evolution of a family of closed smooth plane curves:

$x$ : $[0,1]\cross[0, T)arrow\Gamma(t)=\{x(u, t)\in \mathbb{R}^{2};u\in[0,1]\subset \mathbb{R}/\mathbb{Z}\}$ ,

starting from a given initial curve $\Gamma(0)=\Gamma_{0}$ , and driven by the evolution law:

$\partial_{t}x=\alpha t+\beta n$,

where $t=\partial_{u}x/|\partial_{u}x|$ is the unit tangent vector, and $n$ is the unit outward normal vector
which satisfies $\det(n, t)=1$ . Here and hereafter, we denote $\partial_{\xi}F=\partial F/\partial\xi$ and $|a|=\sqrt{a}a$

where $a.b$ is Euclidean inner product between vectors $a$ and $b$ . The solution curves are
immersed or embedded such that $|\partial_{u}x|>0$ holds.

We remark that the tangent velocity $\alpha$ has no effect of shape of solution curves and
affect only parametrization. Therefore, the shape of solution curves are determined by
the normal velocity $\beta$ , and a nontrivial tangent velocity $\alpha$ will be chosen depending on
the purpose.

The normal velocity $\beta$ may depend on many factors, which are arising in various
applied fields like e.g. the material sciences, dynamics of phase boundaries in thermome-
chanics, computational geometry, image processing and computer vision, fluid dynamics,
the field of ice and snow crystal, etc. For the comprehensive overview of applications we
refer the book by Sethian [14]. According to the book, $\beta$ can be written as:

$\beta=\beta(\mathcal{L};\mathcal{G};\mathcal{I})$ ,

where
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$\bullet$ $\mathcal{L}ocal$ properties are those determined by local geometric information of $\Gamma$ , such as
the curvature $k$ and the normal or the tangential direction.

$\bullet$ $\mathcal{G}lobal$ properties of $\Gamma$ are those that depend on the shape and the position of $\Gamma$ , such
as the position vector $x\in\Gamma$ , the length of $\Gamma$ , and the integrals along $\Gamma$ associated
PDEs, etc.

$\bullet$ $\mathcal{I}ndependent$ properties are those that are independent of the shape of $\Gamma$ , such as
an underlying fluid velocity, etc.

Here $k$ is the curvature in the direction $-n$ , which is defined from $\partial_{s}t=-kn,$ $\partial_{s}n=kt$ ,
and described as $k=\det(\partial_{s}x, \partial_{ss}x)$ , and $\partial_{s}x=t$ is the unit tangent vector. Here and
hereafter, we denote $\partial_{\xi\xi}F=\partial(\partial_{\xi}F)/\partial\xi$. Note that $\partial_{s}$ is not partial differentiation. It
means the operator $\partial_{s}F(u, t)=g(u, t)^{-1}\partial_{u}F(u, t)$ , where $g(u, t)=|\partial_{u}x(u, t)|>0$ is called
the local length and $s$ is the arc length parameter determined from $ds=g(u, t)du$ .

In this note, we will focus on the utilization of a nontrivial tangential velocity $\alpha$ , and
will mention on two applications in the case $\beta=\beta(\mathcal{L};\mathcal{G};\mathcal{I})$ : one is image segmentation
with $\mathcal{L}(k, n);\mathcal{G}(x)$ or $\mathcal{L}(k);\mathcal{G}(x)_{)}\mathcal{I}(const.)$ , and the other one is numerical computation
of Hele-Shaw flow in a time-dependent gap with $\mathcal{G}$ (integral of a PDE).

2 Curvature adjusted tangential velocity

As mentioned in the previous section, the tangential velocity functional $\alpha$ has no effect
of the shape of evolving curves [5, Proposition 2.4], and the shape is determined by the
value of the normal velocity $\beta$ only. Hence the simplest setting $\alpha\equiv 0$ can be chosen.
Dziuk [4] studied a numerical scheme for $\beta=-k$ in this case. In the case general $\beta$ ,
however, such a choice of $\alpha$ may lead to various numerical instabilities caused by either
undesirable concentration and$/or$ extreme dispersion of numerical grid points. Therefore,
to obtain stable numerical computation, several choices of a nontrivial tangential velocity
have been emphasized and developed by many authors. We will present a brief review of
development of nontrivial tangential velocities.

Kimura [7, 8] proposed a uniform redistribution scheme in the case $\beta=-k$ by using a
special choice of $\alpha$ which satisfies discretization of an average condition and the uniform
distribution condition:

(U) $r(u, t)= \frac{g(u,t)}{L(\Gamma(t))}\equiv 1$ $(\forall u)$ .

Hou, Lowengrub and Shelley [6] utilized condition (U) directly (especially for $\beta=-k$ )
starting from $r(u, 0)\equiv 1$ , and derived

$\partial_{s}\alpha=\langle k\beta\rangle-k\beta$ , (2.1)
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which comes from

$\partial_{t}r=\frac{g}{L}(\partial_{s}\alpha+k\beta-\langle k\beta\rangle)\equiv 0$ $(\forall u)$ .

It was proposed independently by Mikula and \v{S}ev\v{c}ovi\v{c} [10]. In [6, Appendix 2], Hou et
al. also pointed out generalization of (2.1) as follows:

$\frac{\partial_{s}(\varphi(k)\alpha)}{\varphi(k)}=\frac{\langle f\rangle}{\langle\varphi(k)\rangle}-\frac{f}{\varphi(k)}$ , $f=\varphi(k)k\beta-\varphi’(k)(\partial_{ss}\beta+k^{2}\beta)$ (2.2)

for a given function $\varphi$ . If $\varphi\equiv 1$ , then this is nothing but (2.1). (2.2) is derived from the
following calculation. Let a generalized relative local length be

$r_{\varphi}(u, t)=r(u, t) \frac{\varphi(k(u,t))}{\langle\varphi(k(\cdot,t))\rangle}$ .

Then preserving condition $\partial_{t}r_{\varphi}(u, t)\equiv 0$ leads (2.2).
As mentioned above, in the paper [10] the authors arrived (2.1) in general frame work

of the so-called intrinsic heat equation for $\beta=\beta(\theta, k)$ , where $\theta$ is the angle of $n$ , i.e.,
$n=(\cos\theta, \sin\theta)$ and $t=(-\sin\theta, \cos\theta)$ . This result was improvement of [9] in which
satisfactory results were obtained only in the case $\beta=\beta(k)$ being linear and sublinear
with respect to $k$ . After these results, in the series of the paper [11, 12, 13], they proposed
method of asymptotically uniform redistribution, i.e., derived

$\partial_{s}\alpha=\langle k\beta\rangle-k\beta+(r^{-1}-1)\omega(t)$ (2.3)

for quite general normal velocity $\beta=\beta(x, \theta, k)$ , where $\omega\in L_{loc}^{1}[0, T)$ is a relaxation func-

tion satisfying $\int_{0}^{T}\omega(t)dt=+\infty$ . Their method succeeded and was applied to geodesic

curvature flows and image segmentation, etc.
Besides these uniform distribution method, under the so-called crystalline curvature

flow, grid points are distributed dense (resp. sparse) on the subarc where the absolute
value of curvature is large (resp. small). Although this redistribution is far from uniform,

numerical computation is quite stable. One of the reason is that polygonal curves are
restricted in an admissible class. To apply the essence of crystalline curvature flow to a
general discretization model of motion of smooth curves, the tangential velocity $\alpha=\partial_{s}\beta/k$

was extracted, which is utilized in crystalline curvature flow equation implicitly [18].
The asymptotically uniform redistribution is quite effective and valid for wide range of

application. However, from approximation point of view, unless solution curve is a circle,
there is no reason to take uniform redistribution. Hence the redistribution will be desired
in a way of taking into account the shape of evolution curves, i.e., depending on size of
curvatures. In the paper [15, 16], it is proposed that a method of redistribution which
takes into account the shape of limiting curve such as

$\frac{\partial_{s}(\varphi(k)\alpha)}{\backslash \prime\rho(k)}=\frac{\langle f\rangle}{\langle\varphi(k)\rangle}-\frac{f}{\varphi(k)}+(r_{\varphi}^{-1}-1)\omega(t)$ .
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If $\varphi\equiv 1$ , then this is nothing but (2.3), and if $\varphi=k$ and $\Gamma$ is convex, we have $\alpha=\partial_{s}\beta/k$

in the case $\omega=0$ . Therefore, this is a combination of method of asymptotic uniform
redistribution and the crystalline tangential velocity as mentioned above. Notice that
this method was applied to an image segmentation and nice results were confirmed [2].

To complete the overview of various tangential redistribution method we also mention
a locally dependent tangential velocity. For the case $\beta=-k$ it was proposed by Deckel-
nick [3] who used $\alpha=-\partial_{u}(g^{-1})$ . Then the evolution equation becomes a simple parabolic
PDE $\partial_{t}x=g^{-2}\partial_{u}^{2}x$ .

As far as $3D$ implementation of tangential redistribution is concerned, in a recent paper
by Barrett, Garcke and N\"urnberg [1] the authors proposed and studied a new efficient
numerical scheme for evolution of surfaces driven by the Laplacian of the mean curvature.
It turns out, that their numerical scheme has implicitly built in a uniform redistribution
tangential velocity vector.

3 Image segmentation

The gradient flow $\beta=-\gamma(x)k-\nabla\gamma(x).n$ is utilized for image segmentation as follows. Let
an image intensity function be $I:\mathbb{R}^{2}\supset\Omegaarrow[0,1]$ . Here $I=0$ (resp. $I=1$ ) corresponds
to black (resp. white) color and $I\in(0,1)$ corresponds to gray colors. For simplicity,
we assume that our target figures are given in white color with black background. Then
the image outline or edge correspond to the region where $|\nabla I(x)|$ is quite large. Let us
introduce an auxiliary function $\gamma(x)=f(|\nabla I(x)|)$ where $f$ is a smooth edge detector
function like e.g. $f(s)=1/(1+s^{2})$ or $f(s)=e^{-s}$ . Hence the solution curve $\Gamma(t)$ of
$\beta=-\gamma(x)k-\nabla\gamma(x).n$ makes the energy $E_{F}(\Gamma(t))$ smaller and smaller, in other words,
its moves toward the edge where $|\nabla I(x)|$ is large. This is a fundamental idea of image
segmentation, and it has developed to a sophisticated scheme [12, 13].

The following scheme is more simple [2]. In the following computations, the target
figure is given by a digital gray scale bitmap image represented by integer values between
$0$ and 255 on some prescribed pixels. The values $0$ and 255 correspond to black and white
colors, respectively, whereas the values between $0$ and 255 correspond to gray colors.

Given a figure, we can construct its image intensity function $I$ : $\mathbb{R}^{2}\supset\Omegaarrow\{0, \ldots, 255\}\subset$

$\mathbb{Z}$ . Note that $I(x)$ is piecewise constant in each pixel.
We consider the fiow $\beta=-k+F$ and define the forcing term $F(x)$ as follows:

$F(x)=(F_{\max}-F_{\min}) \frac{I(x)}{255}-F_{\max}$ $(x\in\Omega)$ ,

where $F_{\max}>0$ corresponds to purely black color (background) and $F_{\min}<0$ corre-
sponds to purely white color (the object to be segmented). Maximal and minimal values
determine the final shape because in general $1/F$ is equivalent to the minimal radius the
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curve can attain. The choice of small values of $F$ causes the final shape to be rounded or
the curve can not pass through narrow gaps.

4 Hele-Shaw flow in a time-dependent gap

The so-called Hele-Shaw flow is flow of viscous liquid which is contained in the narrow
gap between two parallel plates, that is, in the Hele-Shaw cell. Figure 4.1 indicates the

Hele-Shaw cell settled in the xyz-coordinate.

Figure 4.1: Hele-Shaw cell

Let $b$ be the gap between two parallel plates in the z-direction. In classical Hele-Shaw
experiments, $b$ is fixed and taken around lmm. Shelley, Tian and Wlodarski [17] proposed
a problem in the case where $b$ depends on the time $t$ , i.e., the upper plate is being lifted
uniformly at a specific rate. They established the existence, uniqueness and regularity
of solutions in the case where the surface tension is zero. They also studied numerical
computation by means of ODE for the time discretization.

In this section, we will propose the boundary element method with a curvature ad-
justed tangential velocity.

We assume that there are no effect of external force like gravity in the Hele-Shaw cell
and the liquid is govemed by the Navier-Stokes equation:

$\frac{\partial v}{\partial t}+(v\cdot\nabla)v=-\frac{1}{\rho}\nabla p+\nu\Delta v$ , (41)

where $\rho$ is density, $\nu$ is kinetic viscosity. Unknown functions are the pressure $p$ and the

velocity $v=(\begin{array}{l}uvw\end{array})$ . In what follows, we will simplify this equations.

Firstly, we require the following.
(Al) the velocity of water is very slow, and the flow is stationary.

By this assumption, we operate $sorightarrow called$ Stokes approximation for stationary flow,
and the LHS of (4.1) is neglected:

$0=- \frac{1}{\rho}\nabla p+\frac{\mu}{\rho}\Delta v$ , (4.2)

where $\mu=\rho\nu$ is viscosity.
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Secondly, we assume that
(A2) the fluid does not move in the vertical direction, i.e.. $w=0$ .

Then we have

$\nabla p=(\begin{array}{l}\partial_{x}p\partial_{y}p\partial_{z}p\end{array})=\mu\triangle v$ , $v=(\begin{array}{l}uv0\end{array})$ .

From this, $p=p(x, y, t)$ holds.
Thirdly, we assume the following profile of $u$ and $v$ (Figure 4.2):

(A3) graphs of $u$ and $v$ with respect to a variable $z$ draw a parabola satisfying $u=v=0$
at $z=0$ and $z=b.$ ”

$z$

Figure 4.2: Velocity profile of $u$ and $v$

Note that this assumption for $u$ (same as for v) is equivalent to that the terms $\partial_{xx}u$

and $\partial_{yy}u$ are negligible and the term $\partial_{zz}u$ is dominant in $\triangle u$ . Then $u$ and $v$ can be
expressed as

$u(x, y, z, t)=\varphi(x, y, t)z(z-b)$ , $v(x, y, z, t)=\psi(x, y, t)z(z-b)$

with functions $\varphi$ and $\psi$ . Hence we have

$\partial_{x}p=\mu((\partial_{xx}\varphi+\partial_{yy}\varphi)z(z-b)+2\varphi)$ , $\partial_{y}p=\mu((\partial_{xx}\psi+\partial_{yy}\psi)z(z-b)+2\psi)$ .

Since the pressure is $p=p(x, y, t)$ , we obtain

$\partial_{xx}\varphi+\partial_{yy}\varphi=0$ , $\partial_{xx}\psi+\partial_{yy}\psi=0$.

Therefore from

$\partial_{xx}u+\partial_{yy}u=0$ , $\partial_{xx}v+\partial_{yy}v=0$ ,

we have

$\{\begin{array}{l}\partial_{x}p=\mu\partial_{zz}u=2\mu\varphi=\frac{2\mu}{z(z-b)}u,\partial_{y}p=\mu\partial_{zz}v=2\mu\psi=\frac{2\mu}{z(z-b)}v.\end{array}$ $\Leftrightarrow\{\begin{array}{l}u=\frac{p_{x}}{2\mu}z(z-b),v=\frac{p_{y}}{2\mu}z(z-b).\end{array}$
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Fourthly, we require the following.
(A4) to take average of $u$ and $v$ in z-direction.

Then, the two dimensional average velocity vector is expressed by a gradient of pres-
sure:

$\overline{u}=\frac{1}{b}\int_{0}^{b}udz=\frac{\partial_{x}p}{2\mu b}[\frac{z^{3}}{3}-\frac{bz^{2}}{2}]_{0}^{b}=-\frac{b^{2}}{12\mu}\partial_{x}p)$ $\overline{v}=-\frac{b^{2}}{12\mu}\partial_{y}p$ .

Hence the average velocity Of, $\overline{v}$ and the pressure $p$ are functions of three variables $(x, y, t)$ ,

respectively. We define the two dimensional velocity such as

$u=( \frac{\overline u}{v})$ .

Then we have

$u=- \frac{b^{2}}{12\mu}\nabla p$ , $\nabla p=(\begin{array}{l}\partial_{x}p\partial_{y}p\end{array})$ ,

and from the incompressibility

$0= \frac{1}{b}\int_{0}^{b}divvdz=\frac{1}{b}\int_{0}^{b}(\partial_{x}u+\partial_{y}v+0)dz=\partial_{x}\overline{u}+\partial_{y}\overline{v}=-\frac{b^{2}}{12\mu}(\partial_{xx}p+\partial_{yy}p)$.

Taking average of fluid region in z-direction, we deduce the problem to two dimensional
problem like Figure 4.3. Then the pressure $p=p(x, y, t)$ satisfies

Figure 4.3: Liquid in the Hele-Shaw cell

$\triangle p=0$ , $(x, y)\in\Omega$ , $t>0$

in the interior of two dimensional fluid region. Here we have defied two dimensional Lapla-
cian such as $\triangle p=\partial_{xx}p+\partial_{yy}p$ . Since the boundary $\Gamma$ moves with the fluid, deformation
velocity $\beta$ in the normal direction $n$ of $\Gamma$ is given as

$\beta=u\cdot n=-\frac{b^{2}}{12\mu}\frac{\partial p}{\partial n}$ , $\frac{\partial p}{\partial n}=\nabla p\cdot n$ .

Here the normal velocity of $\Gamma=\Gamma(t)$ is defined as

$\beta=(\begin{array}{l}\dot{x}\dot{y}\end{array})\cdot n$, $(x, y)\in\Gamma$ .
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Here and hereafter, we denote $\dot{F}=\partial_{t}$ F.
On the boundary $\Gamma$ , we use the Laplace‘s relation

$p-p_{*}=\tau k$ , $\tau>0$ .

Here $p_{*}$ is the atmospheric pressure and $\tau$ is a surface tension coefficient. Since $p_{*}$ is a
constant, we have $\nabla(p-p_{*})=\nabla p$ and $\triangle(p-p_{*})=\triangle p$ . Then we can assume $p:=p-p_{*}$ .

Consequently, we have the following classical Hele-Shaw problem:

(CHS) $\{\begin{array}{ll}\triangle p=0, (x, y)\in\Omega(t), t>0,p=\tau k, (x, y)\in\Gamma(t), t>0,\beta=-\frac{b^{2}}{12\mu}\frac{\partial p}{\partial n}, (x, y)\in\Gamma(t), t>0.\end{array}$

In our case, the gap $b$ is lifted uniformly at a specific rate. Then instead of (A2), we
assume that
(A2)’ $w$ is a linear function with respect to $z$ , i.e., $w=\eta(t)z+\xi(t)$ .

At the bottom $z=0$ , the fluid does not move. Then $\xi(t)=0$ . At the top $z=b(t)$ ,
the fluid moves with the plate. Then $\eta(t)=\dot{b}(t)/b(t)$ . Hence we have

$w= \frac{\dot{b}(t)}{b(t)}z$ .

In this case, the pressure $p$ does not depend on $z$ , since

$p_{z}=l^{l}\triangle w=0$ .

We can discuss the same argument of $u$ and $v$ as above, except the contribution from
incompressibility:

$0= \frac{1}{b(t)}\int_{0}^{b(t)}divvdz=\frac{1}{b(t)}\int_{0}^{b(t)}(u_{x}+v_{y}+w_{z})dz$

$= \overline{u}_{x}+\overline{v}_{y}+\frac{\dot{b}(t)}{b(t)}=-\frac{b(t)^{2}}{12\mu}(p_{xx}+p_{yy})+\frac{\dot{b}(t)}{b(t)}$ .

Hence we have

$\triangle p=12\mu\frac{\dot{b}(t)}{b(t)^{3}}$ ,

and the following Hele-Shaw problem in a time-dependent gap $b(t)$ :

(TDHS) $\{\begin{array}{ll}\triangle p=12\mu\frac{\dot{b}(t)}{b(t)^{3}}, (x, y)\in\Omega(t), t>0,p=\tau k, (x, y)\in\Gamma(t), t>0,\beta=-\frac{b(t)^{2}}{12\mu}\frac{\partial p}{\partial n}, (x, y)\in\Gamma(t), t>0.\end{array}$
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In the case the plates are fixed, then $\dot{b}(t)=0$ and the above problem is nothing but the
classical Hele-Shaw problem.

Now we will arrange the above problem by dimensionalization as follows. The variables
$x,$ $y$ and $t$ are scaled by a characteristic rate $l_{0}>0$ and $t_{0}>0$ , respectively:

$\tilde{x}=\frac{x}{l_{0}}$ , $\tilde{y}=\frac{y}{l_{0}}$ , $\tilde{t}=\frac{t}{t_{0}}$ .

Then the curvature $k$ and the normal velocity $\beta$ are scaled by $\tilde{k}=k/k_{0},$ $k_{0}=l_{0}^{-1}$ and
$\tilde{\beta}=\beta/\beta_{0},$ $\beta_{0}=l_{0}/t_{0}$ , respectively. The pressure $p$ , the gap $b$ and surface tension coefficient
$\tau$ are scaled by a characteristic rate $p_{0}>0,$ $b_{0}>0$ and $\tau_{0}>0$ , respectively:

$\tilde{p}(\tilde{x},\tilde{y},$ $t \gamma=\frac{p(x,y,t)}{p_{0}},$ $\tilde{b}(t\gamma=\frac{b(t)}{b_{0}},$
$\tilde{\tau}=\frac{\tau}{\tau_{0}}$ .

If we take

$p_{0}= \frac{12\mu l_{0}^{2}}{b_{0}^{2}t_{0}}$ , $\tau_{0}=p_{0}l_{0}$ ,

then retaining the same variable names, the nondimensional (TDHS) becomes

(NDHS) $\{\begin{array}{ll}\triangle p=\frac{\dot{b}(t)}{b(t)^{3}}, (x, y)\in\Omega(t), t>0,p=\tau k, (x, y)\in\Gamma(t), t>0,\beta=-b(t)^{2}\frac{\partial p}{\partial n}, (x, y)\in\Gamma(t), t>0.\end{array}$

Note that RHS of the Poisson equation depends only on time. Then RHS can be

erased by means of a special solution $p_{\star}$ satisfying $\Delta p_{\star}=\dot{b}(t)/b(t)^{3}$ . If we put $\hat{p}=p-p_{\star}$ ,

then (NDHS) becomes

$\{\begin{array}{ll}\triangle\hat{p}=0, (x, y)\in\Omega(t), t>0,\hat{p}=\tau k-p_{\star}, (x, y)\in\Gamma(t), t>0,\beta=-b(t)^{2}\frac{\partial}{\partial n}(\hat{p}+p_{\star}), (x, y)\in\Gamma(t), t>0.\end{array}$

For instance, in the case

$p_{\star}= \frac{\dot{b}(t)}{4b(t)^{3}}|x|^{2}$ ,

we have

(HS) $\{\begin{array}{ll}\triangle p=0, (x, y)\in\Omega(t), t>0,p=\tau k-\frac{\dot{b}(t)}{4b(t)^{3}}|x|^{2}, (x, y)\in\Gamma(t), t>0,\beta=-b(t)^{2}\frac{\partial p}{\partial n}-\frac{\dot{b}(t)}{2b(t)}x\cdot n, (x, y)\in\Gamma(t), t>0.\end{array}$
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Here we denoted $p=\hat{p}$ .
Properties. It is easy to check that the time transition of enclosed area $|\Omega(t)|$ is

$\partial_{t}|\Omega(t)|=\int_{\Gamma(t)}\beta ds=-\frac{\dot{b}(t)}{b(t)}|\Omega(t)|$ .

Hence the volume is preserved in the following sense:

$b(t)|\Omega(t)|\equiv b(0)|\Omega(0)|$ .

One more important property is preserving the center of mass:

$c= \frac{1}{|\Omega|}\int\int_{\Omega}xd\Omega$ .

The time derivative of $c$ is

$\dot{c}=\frac{\dot{b}}{b}c-\frac{b^{2}}{|\Omega|}\int_{\Gamma}x\frac{\partial p}{\partial n}ds$ .

Here we have used the solution $p$ of (NDHS) and

$\partial_{t}\int\int_{\Omega}xd\Omega=\int_{\Gamma}x\beta ds$.

Therefore the following equations imply $\dot{c}=0$ .

$\int_{\Gamma}x\frac{\partial p}{\partial n}ds=\int_{\Gamma}p\frac{\partial x}{\partial n}ds+\int\int_{\Omega}(x\triangle p-p\triangle x)d\Omega$

$= \int_{\Gamma}pnds+\frac{\dot{b}}{b^{3}}\int\int_{\Omega}xd\Omega$

$= \tau\int_{\Gamma}knds+\frac{\dot{b}}{b^{3}}\int\int_{\Omega}xd\Omega$

$=- \tau\int_{\Gamma}\partial_{s}tds+\frac{\dot{b}}{b^{3}}|\Omega|c$

$= \frac{\dot{b}}{b^{3}}|\Omega|c$ .

Remark. In the presentation talk, we showed a numerical simulation of (HS) by means of
boundary element method (BEM) and technique of curvature adjusted tangential velocity.
It is to be desired that numerical scheme should satisfy the above two properties in some
sense, e.g. in discrete sense. However, it is still open problem.
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