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Decay estimates of a nonnegative Schrodinger heat semigroup
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1 Introduction

In this note we consider the decay estimate (LP-L? estimate) of a solution to the Cauchy
problem for the heat equation with a potential,

(L1) u(z,0) = ¢(z) in RN,

{ Su=Au-V(z))u in R x (0,00),
where 8; = 8/8t, N > 3, ¢ € L*(R"), and V = V(|z|) is a smooth, nonpositive, and
radially symmetric function satisfying

(1.2) Viz) =wlz|2(1 +o(1)) as |z| — oo,

where w € (—wy,0] and w, = (N — 2)2/4. In the context of the Schrédinger semigroup,
the “positivity” and “negativity” are discussed in the form —(A — V) = —-A + V. We say
that the operator H := —A + V is nonnegative on L*(R”") (we write H > 0), if and only
if
[ AVeP+ V(e do > 0
RN

holds for any ¢ € C°(RY). Here, we discuss the decay rate of a solution under the
condition that —A + V is nonnegative. Due to the Hardy inequality, we easily see that
—A + V is not nonnegative if w < —w,.

The behavior of the solution u of (1.1) heavily depends on the behavior of the potential
V, in particular, the constant w in (1.2). It is of interest to study the relationship between
the large time behavior of u and the constant w, and we descuss the decay rate of LY(R")-
norm (g > 2) of the solution u as t — oc.

Let H := —A + V be a nonnegative Schrédinger operator on L2(RY), where V €

L? (RMN) with p > N/2.We itroduce the notion of criticality of the operator H.

loc

(i) H is said to be subcritical if for any W € C§°(RY), there holds H — ¢W > 0 for small
enough € > 0.



(ii) H is said to be strongly subcritical if H — ¢V_ > 0 for small enough ¢ > 0, where
V_ = max{-V,0}.

(iii) H is said to be critical if H is nonnegative and is not subcritical.
(iv) H is said to be supercritical if H is not nonnegative.

The subcriticality and the criticality of the Schrédinger operator H as well as the structure
and the behavior of harmonic functions for the operator H have been studied intensively
in many papers and in various directions, for examples, see [2], [11], [12], [15]-[17], [19]-
[21], [22], [23], [24], [25], and references therein. Among others, Davies and Simon [2]
considered the subcritical Schrodinger operator H = —A + V satisfying (1.2), and study
the decay rates of |[e~*||,, as t — oo by using the positive harmonic functions for the
operator H. Here |le=*f||,,, is the norm of the operator e~*# from LP(RY) to LI(RY),
where 1 < p < g < co. In particular, if H is strongly subcritical and if H has a positive
harmonic function 7 satisfying

N -2
<a<0

Crl(1+|z))* < p(z) < C1(1 + |z|)* with —

as |z| — oo for some constant Cj, then, Davies and Simon proved that there holds

(1.3) Cylt™ T =57 < [l |00 < Cot~ T+

as ¢ — oo for any e and some constant Cy > 0 (see [2, Theorem 14]). As far as we know, it
is open whether (1.3) holds with € = 0 or not and there are no results giving exact power
decay rates of [le™* ||, , as t — oo for the critical case.

In this paper we consider a nonnegative Schrodinger operator H = —A + V', where V
is a radially symmetric nonpositive function satisfying (1.2), and give the decay rate of
lle=* ||, 2 with ¢ > 2 as t — oo for both of the subcritical case and the critical case. In
particular, for the subcritical case, we prove that (1.3) holds with € = 0. Upper estimates
of |le"*#¢||,2 are given by the use of the behavior of positive harmonic functions for
the operator H at the space infinity and the comparison principle. Lower estimates of
lle=*H ¢||42 are given as byproducts of the study of the large time behavior of the solution
of (1.1).

It is of independent interest to study the large time behavior of hot spots (the set of
maxi,um points of u at time t) for the solution of (1.1). The movement of hot spots for
the heat equation in unbounded domains was first studied by Chavel and Karp [1]. They
studied the movement of hot spots for the heat equation d;u = Au in several Riemannian
manifolds. Subsequently the movement of hot spots has been studied in several papers,
see [10], [3], [4], and [6]-[8]. Among others, in [6]-[8] the authors of this paper studied the
movement of hots spots of the solution of the heat equation (1.1) with a potential V for
the case where V is a nonnegative function satisfying (1.2) with w > 0. In this case the
hot spots move to the space infinity as ¢ — oo, and they gave the rate and the direction
for hot spots to tend to the space infinity. In this case, we can also discuss the behavior
of hot spots, however, we will not investigate that in this paper. Full discussions on this
topic will appear in our forthcoming paper [9].
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From now on, in addition to (1.2), we further assume the following:
(i) V =V(r)€C([0,00)) and V <0 (% 0) on [0,00);
(V) (ii) there exist constants w € (—wx,0] and 6 > 0 such that
V(r)=wr 2+ 0(r %% asr— .
Let ay(w) and By (w) be the roots of the algebraic equation z(z + N — 2) = w such that
Bn(w) < an(w), that is,
—~(N=-2)++/(N-2)?+4w

—(N=2)— /(N =22+ 4w

(14) anw) = 5 , Bn(w) = 3
We remark that
N -2
(1.5) —(N -2) < Bn(w) < — 5 <an(w) <0
and that the functions r*N®) and r#~«) are solutions of the ordinary differential equation
N-1
(1.6) U'+ U - 2U=0 in (0,00).
r T
Furthermore we remark that
(1.7) onor(w) + k= an(w + w)

holds for all £k =0,1,2,....

We introduce some notation. For 1 < p < oo, we denote by || - ||, the norm of the
LP(RM) space. We also denote by || - || the norm of the L(R") space with weight elel?/4,
that is, L2(RY,el"*/4dz). Let B(0,R) = {z € R" : |z| < R} for R > 0. Let Agn-1 be
the Laplace-Beltrami operator on SV¥~! and {wx}, the eigenvalues of

(1.8) —Agn-1Q =wQ on SNl Qe LSV,
that is,
(1.9) we=k(N+k—-2), k=0,1,2,....

Furthermore let {Qk,i}i": , and I be the orthonormal system and the dimension of the
eigenspace corresponding to wg, respectively. In particular, lp = 1, l; = N, and we may
write

(1.10) Qo.1 (3-> = Ko, Qi (i) =k, i=1,...,N,
|z |z |z|
where kg and k1 are positive constants.
As be pointed in [2], the behavior of |[e7*#||;2 depends on the behavior of positive
harmonic functions at the space infinity. Before stating our results on the decay rate of
le=tH}|,.2, we first give one theorem on the behavior of positive harmonic functions for

the operator H := —A+ V.
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Theorem 1.1 Let N > 3. Assume condition (V), and let H := —A +V be a nonnegative
Schridinger operator on L2(RYN). Then, for any k = 0,1,2,..., there exists a positive
solution Uy 1, of

N-1
(1.11) U+ ——2y - (V(r) + ;’g) U=0 in (0,00)
such that
(1.12) UN,k(r) = dN,k'I‘k(l +0(1)) as r—0,
(1.13) Un k(1) = rAVk(1 + 0(1)) as r— 0o,

where dy i, is a positive constant and

apn(w) if k=0 and H is subcritical,
Anvi =< OBn(w) if k=0 and H is critical,
an(w+w) fk>1

Furthermore r=*Uy(r) is monotone decreasing in [0,0) and

O(r) as r—=0 if k=0,
1.14 U, =
(114) W) { O(r*1) as =0 i k>1,
(1.15) Un () = (Ang + o(1))rAve=1 a5 ¢ — oo,

We remark that the function Uy = Upn,(|z|) is a positive harmonic function for the
operator H = —A + V on L?(R¥) and plays an important role in our study.

Remark 1.1 Murata [17] investigated the structure and the behavior of positive harmonic
functions for nonnegative Schrédinger operator on L*(RN). His results are applicable
to problem (1.1) under assumption (V), and the existence of positive solutions of (1.11)
satisfying (1.12) and (1.13) for the case k = O can be proved as a direct consequence of
[17, Theorem 5.7]. See also [11, Remark 2.2] for the case where w =0 and k = 0.

Remark 1.2 By (1.11) we see that
(1.16) Unk(r) = r*Unako(r)

holds for all T > 0, where k = 1,2,.... See also Lemma 2.1 and (1.7).
Also, for any k =0,1,2,... andi=1,..., 1, the function

Uy,i(z) == Uk(|z|)Qri(z/|z|)
is a harmonic function for the operator H. Furthermore, for the solution u of (1.1),

4 u(z, t) Uy i (z)dz = 0
dt RN ’

holds for all t > 0 under a suitable integrability condition on the solution u.
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In what follows, we use
a(w) = an(w), Bw) = Bn(w), Uk(r) = Unk(r), A= Anp.

For any sets A and £, let f = f(\,0) and h = h(),0) be maps from A x ¥ to (0,00).
Then we say
f(A0) 2 h(A,0)
for all A € A if, for any 0 € I, there exists a positive constant C such that f(A,0)
Ch(), o) for all A € A. In addition, we say f(),0) < h(A,0) for all A € A if f(A,0)
h(\, o) and f(A,0) = h(A,0) for all A € A.
Now we give a result on the decay rate of ||e™t||,2 (g > 2) as t — co. We recall that

<
=

(1.17) sup [le”tH |22 < 1.
t>0

holds if H is nonnegative.

Theorem 1.2 Let N > 3. Assume condition (V), and let H := —A+V be a nonnegative
Schrédinger operator on L>(RN). Let A := Anyg be the constant given in Theorem 1.1.
Then there holds the following:

(i) if A> —N/2, then

G if gA+N >0,
(1.18) e~ llg2 < %% (logt)s if gA+N =0,
2 if gA+N <0,
for all sufficiently large t;
(ii) if A< —N/2, then
(119) et lge < T2 0077

for all sufficiently large t.

We remark that, if H is subcritical, then 4 = a(w) > —N/2 and (1.18) holds with
A = a(w). In the following theorem we assume
(i) V =V(r) € C}(|0,00)) and V satisfies condition (V') for some
V") constants w € (—wsx, 0] and 8 > 0;
(ii) sup |7‘3V'(1')| < 00,
r>1

instead of (V), and prove that if H is subcritical, then the decay rate (1.18) is optimal.

Theorem 1.3 Let N > 3. Assume condition (V'), and let H := —A 4+ V be a subcritical
Schrédinger operator on L2(RN). Then, for any q € [2,00], there holds

t_%(%_%) 1 if gqa(w)+ N >0,
(1.20) lemHlga < ¢ =¥ (logt)7 if ga(w)+N =0,
t_%"a;) if qa(w)+ N <0,

for allt > 1.
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Theorem 1.3 with ¢ = co implies that, under assumption (V’), inequality (1.3) holds with
e=0.

Next, we state a result on the large time behavior of the solution u of (1.1). Assume
condition (V') and let Uy := Uny (k = 0,1,2,...) be a solution of (1.11), having the
properties described in Theorem 1.1. Put

(1.21) Mo= [ o(a)tin(ializ

Furthermore, for any k = 0,1,2,..., since a(w + wg) > —N/2, we can define py x by

onk(y) =cn kly‘aN(w+wk)e—IyI2/4’

where cy x is a positive constant such that |on k| = 1. Here, by (1.7) we have

(1.22) eNk =Ntk PNE(Y) = [y onsaro(y).
We write or = pni and ¢ = cy for simplicity. We give a result on the large time

behavior of solution of (1.1).

Theorem 1.4 Let N > 3. Assume condition (V'), and let H := ~A +V be a subcritical
Schrodinger operator on L2(RYN). Let u be a solution of (1.1) with the initial function
¢(z) € L2(RYN,el**/4dx). Then there exists a constant C such that

_N_aw)
(1.23) lu®ll2 < CEF P ] a g gy 21
Furthermore there hold

(1.24) lim sup |t?T*®u(z,t) — EMoUo(a,t)| =0, L >0,

t=00 2eB(0,L)

and

(1.25)  lim 5w (L +1)3y,1) = oMogo(y) in L¥(RY) N I2(RY, e/ dy).

The rest of this paper is organized as follows. In Section 2 we study some properties
of the functions Uy of the ordinary differential equation (1.11), and prove Theorem 1.1.
In Section 3 we prove Theorem 1.2 by using some supersolutions of (1.1), which are
constructed by the function Uy. In Section 4 we study the large time behavior of radially
symmetric solutions of (1.1), and in Section 5 we prove Theorems 1.3 and 1.4. We will
not give proofs to all the lemmas. Their proofs will appear in the forthcoming paper [9].

2 Positive harmonic functions

In this section we study the behavior of the positive harmonic functions for nonnegative
Schrodinger operators, and prove Theorem 1.1.
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Assume V € C([0,00)) and consider the Schrodinger operator H := —A + V(|z]). We
first recall some properties for the operator H, see [17]. By the standard arguments for
ordinary differential equations, we see that there exists a unique solution of U of

N -1

(O) U’ + —T——U' ~V(r)U=0 in (0,00)
with
(2.1) }%U(r) =1.

Then we have the following properties:
(P) H >0, that is, H = —A + V(|z]) is a nonnegative operator on L*(RY) if and only
if U(r) > 0 on [0, 00);
(P;) Assume H > 0. Then there exists a positive constant ¢ such that
U(r) = er(1 +0(1))
as 7 — 00, where A = a(w) if H is subcritical and A = f(w) if H is critical,

(P3) Assume that H is critical. Then, for any nonnegative function W € Cy([0, o)) with
W # 0, there holds
{ H + W is subcritical,

H — W is supercritical.

See Theorems 2.5, 3.1, and 5.7 in [17]. In addition, by the same argument as in [6] we
have

(P,) for any solution U of (O) satisfying lim sup |U(r)| < oo, there exists a constant ¢
r—0
such that U(r) = dU(r) on [0, c0).

Under the assumptions of Theorem 1.1, properties (P;) and (P) ensure the existence of
the function Uy = Uy(r) satisfying (1.12) and (1.13) for the case k = 0.

Next we assume condition (V'), and study the behavior of Uj(r) as r — 0 and 7 — oo.
Let k = 0. Let do := dn o be the constant given in (1.12). Since the function

Uos(0) + /0 Rty ( /0 ) TN_IV(T)UQ(T)dT) dr

is also a solution of (O). Property (P4) implies

@2)  Ualr) =t + [ 57V ( /STN‘IV(T)Uo(T)dT)dT on [0,00).

0 0

Then we have
(2.3) Uy(r) = ri=N / ' NI (r)Up(r)dr < ()0 on [0,00),
0

V(0)Up(0)
N

(2.4) U(r) = r(1+o(1)) as r—0.
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In particular, (2.4) yields (1.14) with k = 0. Furthermore, by (V) (i), (P1), and (2.3) we
see that, if H = —A 4+ V is nonnegative, then Uj(r) < 0 in [0, 00). Next we prove (1.15)
with k = 0.

Proof of (1.15) with k£ = 0. The function

U(T‘) — —ﬁ(w)UO(l) + UCIl(l),r,a(w) + a(w)UO(l) — U(,)(]-)rﬁ(w)
a(w) — B(w) a(w) — Bw)

is also a solution of (1.6) such that v(1) = Up(1) and v'(1) = Uj(1). On the other hand,
the function

(25)  G(r) =P / " 1-N-28) ( /1 T N1 (v -3) Uo(T)dT) ds.

1

satisfies

G”_i_ﬁ—_l
T

w w .
G- 56 = (V(r) - T—Q) Uo(r) in (0,00), G(1)=G'(1)=0.
Then the uniqueness theorem for ordinary differential equations implies
(2.6) Uo(r) = o(r) + G(r),  t>1.

Furthermore, since Up(r) = O(r®®)) as r — oo, by condition (V) (ii) and (1.4) we have
o

(2.7) / N80 | () — 2| Uy (r)ar
S

o x
< Cl/ N -14B(w) =20 o(w) g — C’l/ T 170%r < Cys7? < Oy
8

s

for all s > 1, where C; and Cj; are constants. Then, since 2 — N — f(w) = a(w), by (2.5),
(2.6), and (2.7) we have

(2.8) Uo(r) = apr®®) + bprP) 4 O(r@)=8) 4 O (rAW))

as r — oo for some constants ai, ao, b1, and bs.
Assume that H = —A + V is subcritical. Then (1.13) implies az = 1. Furthermore,
by (2.7) and (2.8) we have

Up(r) = aw)r®@)=1 4 by B(w)rPW)-1 4 O(rew)=6-1)

as r — 00. So we have (1.15) with £k = 0.
Next assume that H = —A + V is critical. Then, since Uy(r) = O(r3“)) as r — oo,

by (V) (ii) we have

(e o]
/ FN=148(w) ’V(T) _ _‘32_! Ug(7)dr = O(sN279+28(W)) a5 5 — oo,
T

8

instead of (2.7). Therefore, by (2.8) we have
Uo(r) = aa(w)r®®) =1 + ¥/ B(w)rP@=1 + O(rF)-1)

as r — oo for some constant ¥'. Then, by (1.13) we have a = 0 and ¥ = 1, and obtain
(1.15) with k = 0. Therefore the proof of (1.15) with k¥ = 0 is complete. O

To prove Theorem 1.1, we need the following lemma.
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Lemma 2.1 Assume condition (V) and let Hy := —A + V(|z|) be nonnegative operator
on L*(RYN). Then, for any k =1,2,..., the operator

Hynik = —Onyik +V(|z])

is subcritical as an operator on L*(RN*F), where Ay is the (N + k)-dimensional Lapla-
cian.

Now we are ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. It suffices to prove Theorem 1.1 for the case k¥ > 1. Let
k=1,2,.... Since Hy ok := —ApN+2k+ V is subcritical by Lemma 2.1, Theorem 1.1 with
k = 0 implies the existence of the positive function Up42k,0(r) satisfying (1.11)-(1.15)
with k, N, and Ay x replaced by 0, N + 2k, and an42x(w), respectively. Furthermore the
function Un 9k 0(r) is monotone decreasing in [0, c0).

Put Ui(r) = r*Unyoko(r). Then we easily see that Uy satisfies (1.11), (1.12), and
(1.14) and that 7—*Uy(r) is monotone decreasing in [0, 00). Furthermore, by (1.7) we also
see that Uy satisfies (1.12) and (1.15). Thus the proof of Theorem 1.1 for the case k > 1
is complete, and Theorem 1.1 follows. O

At the end of this section we give two lemmas, which are used in the proof of Theorem 1.4.

Lemma 2.2 Assume condition (V) and let H := —A + V be nonnegative operator on
L2(RYN). Let f € C(|0,00)) and v be a solution of
" N-1, .

(2.9) U +—-T—U -V(r)U=f in (0,00),
such that limsup |v(r)| < 0o. Then there exists a constant c such that

r—0
(2.10) v(r) = cUp(r) + F[f](r), r >0,
where

F(f](r) = Uo(r) /0 ' sTN[Up(s)] 72 ( /0 s ™V 1Us(7) f(T)dT) ds.

Lemma 2.3 Let w <0 and k =1,2,.... Then

a(w+ wg) > a(w) + k.

3 Proof of Theorem 1.2

Assume condition (V) and let H := —A 4+ V be nonnegative operator on L2(R"). In
this section we construct supersolutions of (1.1), and give upper bounds of the solution of
(1.1). Furthermore we prove Theorem 1.2.

For any € > 0, let he = h¢(t) be a function in [0, c0) defined by

(3.1) €(l1+1t) = /Ohe(t) sV [Up(s)) 2 (/Os TN_IUo(T)sz) ds.



Then h(t) is a positive and increasing function in [0, c0), and by Theorem 1.1 we have

(e(1 +1¢))1/2 if A>-N/2,
(3.2) he(t) < { (e(1+1))%(log(2 +t))"1/2 if A=-N/2,
(e(1 + t))1/(2-N-24) if A< -N/2,

for all ¢t > 0. For any ¢ >0 and T > 0, let

D(T) = {(z,t) e RY x (T, 0) : |z] < he(?)},
L(T) = {(z,t) e RY x (T, 00) : |z| = he(t)}
U{(z,T) e RY x {T} : |z| < he(T)}.

In this section we construct a supersolution W of problem (1.1), and prove Theorem 1.2.

We first construct supersolutions of problem (1.1).

Lemma 3.1 Assume condition (V) and let H := —A +V (|z|) be nonnegative operator on
L2(RN). Letv; >0, 7o > 0, and A be the constant given in Theorem 1.1. Put

(141)~1% [log(2 + )]~ if A>-NJ2,
C(t) =4 (Q+t) M Zlog(2+)]™2"%  if A=-N/2,
(1+t) M~ =~-m[log(2 +t)]"" if A<—N/2.

Then, for any sufficiently small ¢ > 0 and any T > 0, there exist a constant C and a
function W (x,t) such that

(3.3) W > AW =V (lz)W i RN x (0, 00),
(3.4) W(z,t) < CCt)Uo(z]) in D(T),
(3.5) Wiz, t) > (1+t) " log(2+t)]7™" in T(T).

Proof. Let T'> 0, 71 > 0, and 3 > 0. Let x be a positive constant such that

(3.6) OIS w1 +8)71¢EF),  t>0.
Let F[Up)(|z|) be the function given in Lemma 2.2. By (3.1) we can take a sufficiently
small €5 > 0 so that

(3.7) 0 < 5= FlUl(fe)) < exli(la]) < SUo(la)

for all (z,t) € D(T) and 0 < € < €g. Let
(3.8) W (z,t) = C¢(t) [Uo(z]) — w(1 + )™ F[Uo](|z])] ,

where C' is a constant to be chosen suitably. Then W(z,t) is the desired supersolution.
a

Next we give a lemma on pointwise estimates of the solution u = e™*#¢ of (1.1) by
use of Lemma 3.1.
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Lemma 3.2 Assume condition (V). Let € be a sufficiently small positive constant and
T >0. Let u = e ¢ be a solution of (1.1) such that

(3.9) lu@)llz < C1(1+ )" %lgll2, >0,

for some constant C1 > 0 and d > 0. Then there exists a constant Ca such that

N

(1+t)~4 7 if A>—NJ/2,
(3.10) [u(z, )] < Collgllz x § (1+8)~¢"F[log(2+1)]T if A=-N/2,
(1 +t)"4 T=N=2m if A< —N/2,

for all z € RN and t > 0 with |z| > he(t). Furthermore, for any T > 0, there ezists a
constant C3 such that

o
(3.11) lu(z, )| < Cs|l¢ll2Uo(|z]) X { (1+1¢) e if A>—-N/2,
1+t ~ - N=2A) if A<—N/2,

for all (z,t) € D(T).

Proof. Let € be a sufficiently small positive constant. We first prove (3.10). Then we can
assume, without loss of generality, that

he(t)? < t/2

for all t > 0. Let (z,t) € RY x (0,00) with |z| > h(t). For any (2,7) € B(0,1) x (-1,0),
we put

(3.12) i(z,7) = u(nz + 2,77 +1t),  n=he(t)/2.
Then u satisfies
(3.13) 8:i=A,i+nV(nz+z|)a in B(0,1) x (=1,0).

We can find constants C3 and Cy, independent of e, satisfying

Csn?
2 2ol
(3.14) n°V(Inz+z|) < 2+ 2 < Cy, z € B(0,1)
to obtain
|%(0,0)| < Cs sup ||a(7)lL2(B(0,1))
-1<7T<0

for some constant Cs. This together with (3.2) and (3.9) implies

~ -
(3.15) lu(z,t)] = |a(0,0)] =7~z sup [[u(s)llL2(B(zm)

t-n2<s<t

sup [u(r)llz < (1 +8)~%he(t)" % ||$ll2
t/2<T<t

N
2

=< he(t)”



for all (z,t) € RN x (0,00) with |z| > he(t). Then, by (3.2) we have (3.10).
Next we prove (3.11). Let T' > 0. Put

(d + N/4,0) if A>-N/2,
(71,72) = { (d + N/4,-N/4) if A=-N/2,
(d+N/2(2— N —24),0) if A<-N/2.

Let W be the function given in Lemma 3.1. We take a sufficiently large constant Cg, and
put
EL_(IL‘, t) - Cﬁ”¢”2W($a t)

Then, by Lemma 3.1 and (3.10) we apply the comparison principle to obtain

lu(z, t)| < T(z,t)
(14+t)~%7-2 if A>-N/2,
< Crllgll2Uo(lz]) x ¢ (1+8)7° N , i A=-N/2,
(1 + t)_d‘ 22-N-2A) 2-N-24 if A< —N/2

for all (x,t) € D(T), where C; is a constant. Thus we obtain (3.11), and and the proof
of Lemma 3.2 is complete. O

Now we are ready to prove Theorem 1.2.
Proof of Theorem 1.2. Put u = e *¥¢. By (1.17) we have

(3.16) [u(®)z < llll2, >0

Let € be a sufficiently small positive constant.
We first consider the case A < —N/2. By (3.16) we apply Lemma 3.2 with d = 0 to

obtain Ni2a
lu(t)|oo Xt 2@=N-247||@]|2

Therefore, by (3.16) we have

() lg < lu()llon * Ju(®)]§ <t FR22GE"D g,

for all sufficiently large ¢, where ¢q € [2,00]. So we have (1.19), and the proof of Theorem
1.2 for the case A < —N/2 is complete.
Next we consider the case A > —N/2. By (3.16) we apply (3.10) with d = 0 to obtain

N
e Lo (ei>heryy) 2% lIBll2

for all sufficiently large ¢. Therefore, by (3.16) we have

2 2

1-2 N1
B17)  u®)lpaizi>hen < IOt oo n.on lu®lE 27 TE72g]l
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for all sufficiently large ¢, where ¢ € [2,00]. Furthermore, by Theorem 1.1, (3.2), and
(3.11) with d = 0 we have

1/q
_N_A
lu@)lLa(izeneryyy =X t7 4 2l9ll2 (/ (1+|~’vl)A"dl‘)
{lz|<C(et)/2}

-<
-Na-1 .
t 2V e if gA+ N >0,
N_A 1
2§ tT 172 (logt)e|gll if gA+N=0,
] if gA+N <0,

for all sufficiently large t, where C is a positive constant. By (3.17) and (3.18) we have
(1.18), and the proof of Theorem 1.2 for the case A > —N/2 is complete. Thus Theorem
1.2 follows. O

4 Decay estimates of radial solutions

In this section we assume condition (V) and that the H := —A + V/(|z|) is a subcritical
operator on L2(R™), and consider the radial solutions of problem (1.1). In this case we
have

A = a(w), he(t) < /2(1 + )12 for t>0.
We have the following decay astimates. (see also Lemma 3.2 in [6]).

Lemma 4.1 Assume condition (V) and let H := —A+V (|z|) be a subcritical operator on
L3(RY). Let ¢ be a radial function such that ¢ € L2(R") and put v(t) = e"*H ¢. Assume
that there exist positive constants Cx and d such that

(41) lv(@)ll2 < Cut™?IBll2, ¢ >0.
Then, for any j = 0,1,2,..., there exists a constant Cy such that
(42) I8jv(t)ll2 < 1t~ [ipll2, > 0.

Furthermore, for any T > 0 and any sufficiently small € > 0, there exists a constant C3
such that

(4.3) (Bv)(x,t)] < Cot™ = F=F=U5(|z)) 1 6l2,
(4.4) 0)(z,8)] < Cat~¢= 525 [[U4(I))] + t || Uo(|z])] lI@ll2,

for all (z,t) € D(T).

Next we assume ¢ € L2(R™, el*/4dz), and study the large time behavior of the
solution v = et ¢ via the self-similar transformation. Put

(4.5) w(y,s) =1+ t)%v(az,t), y=1+t)"%z, s=log(l+1).
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Since V' € L*°([0,00)), we apply the comparison principle to obtain
0 < |u(y, s)| < elVlr=wenetBg),  (z,t) e RN x (0,00).
This together with ¢ € L2(RY, e“”|2/4dx) implies that

(4.6) Sup [[w(7)|| < oo

for any s > 0. Furthermore the function w satisfies

(L) Ow=Lw in RYx(0,00), w(y,0)=¢(yl) in RV,
where
s w ]. w N
Lw=Lw-|eV(e2y) - —|w, L*w==div(pV,w)—- —w + —w.
viein - p B PV) —

We next recall the following lemma on the eigenvalue problem for the operator L*,

L*o = —=Xp in RY,
(E) ¢ is a radial function in R" with respect to 0,
¢ € H'(RY, pdy).

Lemma 4.2 Let w € (—wx,0]. Let {\;}32, be the eigenvalues of (E) such that Ag < A\ <
. Then all eigenvalues are simple and

B a(w) |
(4.7) Ai = 5 + 2.

Furthermore the eigenfunction corresponding to Ao is given by the function @g given in
Section 1.2.

This lemma is obtained by the same argument as in the proof of Lemma 2.2 in [14].

Next we apply the arguments in Section 3 in [6] with Lemma 4.2, and obtain the
following proposition. Let ¢g and cg be the function and the constant given in Section 1,
respectively.

Proposition 4.1 Assume condition (V') and let H :== —A + V(|z|) be azsubcrz'tz'cal op-
erator on L2(RY). Let ¢ be a radial function such that ¢ € L2(RN, el*l*/4dz) and put
v(t) = e tH¢p. Then there holds the following:

(i) There exists a constant C such that

lw(s)|| < Ce=*<|¢, §>0,

(4.8) e
vl 2@ pazy SCA+E)"" 2, t>0,

where py(z) = (1 + t)V/2 exp(|x|2/4(1 + t));
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(i1) There holds

@9 Jim tF e (4 0yt) =ale)eoly) in RN, Vidy)

t—o0

and for any L > 0 and | € {0,1,2},

(4.10) lim £ (VL) (14 1)30,1) = a(9)(Vipo) )
in C{L™! < Jy| < L}), where

(4.11) a(@) = [ ole)Un(la)ds.

In particular, if a(¢) = 0, for any L > 0, there ezists a constant Cy such that

(S

(1+1t)2y, t)‘ <Co(1+1)7!

(4.12) (14 t) 5 lv(

forall L' <|y| < L andt>1;
(iii) There exists a function c(t) in (0,00) satisfying

(4.13) v(z,t) = c(t)Uo(lz)) + F[(B0)(-, )](|z]) in RN x (0,00).
such that
(4.14) T +e@e(t) = coa(v)(1 + 0(1)) + O(t™Y) as t — oo.

Furthermore there ezists a function d(t) in (0,00) satisfying

(4.15) t%“‘(“’)“d(t) = —cpa(v) (% + a(w)) (14+0(1)) as t—

such that, for any sufficiently small € > 0 and | € {0,1, 2},

(4.16) t3+e@)gLF((8) (-, 1)) ()
= t3+Wg(t) (BLF[Up]) (|2]) + O(t~2(Jz] + 1)*~'Up(|z]))
= O(t™1(|z| + 1)*Vo(|z]))

for all (z,t) € D(1).

Proof. Since a(w)+(N—-2)/2 > 0 by (1.5) we can apply the same argument as in the proof
of [6, Proposition 3.1] (see also [6, Theorem 1.1]) to obtain assertion (i). Furthermore,
by the same argument as in the proof of [6, Proposition 3.2, Proposition 3.3] we have
assertions (ii) and (iii), respectively. O.



127

5 Proofs of Theorems 1.3 and 1.4

In this section we study the large time behavior of solution of (1.1) by using the results
in the previous sections, and prove Theorems 1.3 and 1.4.
Put

||
Hy = ~Ay+V(zl),  Hyx==Ay +V(jsl) + 5, pa(z) = (1+0F e,

where k = 1,2,.... Let u = e~*¥¢ be the solution of (1.1). Then there exists a family
of radially symmetric functions {¢x;} C L?(R", pdzx) such that

oo g
(5.1) 6=3"3 brille) Qs (,—jj—,) in  IA(RY, pda).

k=0 i=1

Forany £k =0,1,2,... and i =1,...,1, let
T — _
@y () := o i(||)Qr.s (H) , k(b)) = (e7HN®L ) (2), vkilz,t) = (e7HNkgy ;) ().

Then we have

(5.2) Ui (%, 8) = vk i(@, ) Qki (é—') :
Furthermore, putting

(5.3) bri(2) = 2| " pri(x) € L (RN, pda),

we have

(5.4) vki(,t) = (€7 Nk gy 1) (2) = |z|F(eTH N+ Gy ) ().

(See also Remark 1.1 (ii).) For any m=20,1,2,..., let

oo i m—-1 I
uo(z,t) = u(x,t), Um(z,t)= D > upi(z,t) =u(z,t)— Y Y uki(x,t).
k=m i=1 k=0 i=1

Then we give the following lemma, whose proof is lengthy and is omitted. A proof is left
to [9].

Lemma 5.1 Assume the same conditions as in Theorem 1.4. Let u be the solution of
(1.1). Then, for any m = 0,1,2,..., there exists a constant C1 such that

a(wtwm) a(wtwm)

(5.5) lum (Ol 2w pyazy S C1t™ 2 lum ()] < C1t™ 2 |4

for allt > 0. Furthermore there hold the following:
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(i) For any Lo > 0, there ezists a positive constant Cy such that

a(wtwm) —
(5.6) (i 1)] < G225 it g
for all (z,t) € RY x (0, 00) with |x| > Lt'/? and all L > Ly.
(i) For any any T > 0 and any sufficiently small € > 0, there ezxist constants C3 and Cy
such that

(5.7)  |um(z,t)] < Cst™F -2 +em)y (1))||g]l < Cy(t™ T —lwtom) 4 =7~

Q(U+Wm)

gl

for all (z,t) € D(T). Furthermore, for any R > 0 andl € {0, 1,2}, there ezists a constant
Cs such that

(5.8) (Vium)(z,8)| < Cst™ 7 ~olwrem)| g

for all € B(0, R) and all sufficiently large t.

Lemma 5.2 Assume the same conditions as in Theorem 1.4. Leti = 1,...,N. Then
there hold
N+ao(w
(59) tl—iglot +2 Uup,1 ((1 +t % ) CQMo(po
. N+a(w+wi) 1
(5.10) Jim e (L + Dty = clNM,sol(y)l |

in Cloc(RN \ {0}) and L2(RN,e‘y|2/4dy). Furthermore, for any l = 0,1,2 and any suffi-
ciently small e > 0, there hold

(511)  ¢3+)(Vhuga)(a,t) = GMo(1 + o(1))(V4Uo)(®)
~co (5 + (@) ) €711+ o) (VEF o)) + O(¢2lel* Tin(la))
(5.12)  trrelre)(Viyy ) (z,t) = ANM;(1 + 0(1))(V: Z:)(z) + Ot~ |zl*~ U (x]))
as t — oo, uniformly for all x € RN with |z| < et'/2. Here
Zi(z) = U(lal)
Proof. By (1.10), (1.21), (5.1), and the orthonormality of {Qj;} we have

Co
adns) =co [ dna(@alel)dz = 2 [ 4(a)Unlel)ds = 220,
Then, since ug1(z,t) = kovo,1(z,t), we apply Proposition 4.1 to the function wvg1(z,t),

and we obtain (5.9) and (5.11).
We prove (5.10) and (5.12). Let i = 1,..., N. By (1.16), (1.22), and (5.3) we have

(610 = ensao | Gru@Unsnoliahde =i [ ara)0(lahde
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Furthermore, by (1.10), (1.21), (5.1), and the orthonormality of {Qk:} we have

. 2
(5.13) a(p1,:) = a1 Nky! / . K1¢1,i(x)U1(]xﬂ)I%;5dx =1 Nk M.
R

Then we apply Proposition 4.1 with the dimension N replaced by N + 2 to the function
iz, t) = (e7HN+2(y ) ().

Then we have

) N+2+ay o) e
(5.14) Jim ¢ 7 014 ((1 + )12y, t) = a(¢1,:)on+2,0(y)

in Cioe(RV*2\ {0}) and L2(RN*2, el¥*/4dy). Furthermore, by (1.7), (1.22), (1.16), and
(5.13) we obtain

(5:15) (Vob1,:)(2,t) = ¢i(t)(VaUnsao)(@) + Ot~ 5 ~ans2@ =1 g2y, o(|a)))

= ()7L [ BUD ]+ o(=moteren -t o))

as ¢ — oo, uniformly for all z € R¥ with |z]| < et!/2, where

(5.16) ci(t) = ensa0a(@r)t™ 7 TN (1 4 o(1))

= c%an“lMit_%_“(‘”“l)(l +o(l)) as t— oc.
Therefore, since
X4

||

ul,i(:c, t) = ll’lﬁlﬂ'(x, t) K1 = mxiﬁl,i(x,t)
by (1.22), (5.15), and (5.16) we have

N+a(w+u1)
lim¢t— 2wy ((1 +1)1/2y, t)

t—00
N4+24a (w) ;
= limt— 7, ((1 + 1)1y, t) = et N My (y) 2
t—o0 ’ fyf

in Cioe(RM \ {0}) and L2(RY, elv1*/4dy) and

(Viura)(z,t) = ENM;t™ 2~ (1 4 o(1))(VE Z)(x)
+O(™ 7 e g 21y (|a)))
as t — oo, uniformly for all z € RY with |z| < et!/2. Therefore we have (5.10) and (5.12),
and the proof of Lemma 5.2 is complete. O
Now we are ready to prove Theorem 1.4.
Proof of Theorem 1.4. By Lemma 5.1 we have (1.23). By (5.8) with m = 1 and (5.11),
for any R > 0, we have

lim t%"'a(“’)u(m,t) = lim t%+°‘(“’)u0’1(x,t) = cEMUy(|z|)
t—oo t—00
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N+0( )

in C(B(0, R)) and obtain (1.24). Furthermore, by (5.5), (5.7), and (5.9) we have

lim ¢ ((1 +1)1/2y, t) = 11m t— 2 wup1 ((1 + t)l/zy,t) = coMopo(y)

t—o0
in Cloe(RYN \ {0}) and in L2(RN,e|y| /4dy). This implies (1.25). Thus the proof of Theo-
rem 1.4 is complete. O

Next, by using Theorem 1.4 we prove Theorem 1.3.

Proof of Theorem 1.3. Assume that H is subcritical. Then, since A = a(w), by
Theorem 1.2 we have only to prove

le=tH g2 = - (Fra@)(3-9)
for all sufficiently large t. Let ¢ be a radial symmetric function such that
¢ € LARN e /4dz), My = / ¢(z)Uo(|x|)dz > 0.
RN

Put u(t) = e"*¥¢ and let ¢ be a sufficiently small positive constant. Since e =

e~tHe=tH g we have

et £llg o Nu@illg o 142 La e+

(5.17 le”),2 = sup > >
= A 7 e IO a2

By Theorem 1.4 we have

(5.18) lu(t)]l2 < ¢~ %55

for all sufficiently large t. On the other hand, by the radially symmetry of ¢ we have
u(z,t) = ug1(z,t), and by (1.15), for any sufficiently small € > 0, we obtain

tFre@y(z, ) = EMG(1 + o(1)Us(J=])

iy (5 + ale)) 7401+ o) PIUe) + O~ el)
= CoMo (1+0(1))Us(|z|) [1 + O(t'1|x|2) + O(t_2|m|4 ]
= AM2(1 + o(1))o(J2]) [1 + O(e) + O(¢?)] > %COMO Us(lz]) >

for all (z,t) € RN x (0, 00) with |z| < (et)}/? and all sufficiently large t. Then, by Theorem

1.1 we have

1/q
- S -a(w a(w
(519)  Nu(®)llaqqaiieorzy = 2 l] ( /{ (1 + |z)oet >dx)

|| < (et)/2}
_1 _M
0 gl if ga(w)+N >0,
1
= Q4 =T W@ (log(l + t))7|l¢|| if ga(w)+ N =0,
=% —e@)||g|| if ga(w)+N <0

for all sufficiently large ¢t. Therefore, by (5.17), (5.18), and (5.19) we have (1.20), and the
proof of Theorem 1.3 is complete. O
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