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ON METABELIAN REIDEMEISTER TORSION

TAKAHIRO KITAYAMA

1. INTRODUCTION

Building on ideas of Cochran, Orr and Teichner [2], non-abelian generalizations of
the classical Alexander polynomial which are called higher-order Alexander polynomials
were introduced for knots by Cochran [1] and extended to 3-manifolds by Harvey [8]
and Turaev [18]. The polynomials have coefficients in certain skew fields and are known
by Friedl [3] to be essentially equal to Reidemeister torsion over the functional fields of
the skew fields. In particular, several properties and applications of the degrees of such
polynomials, which are called Cochran-Harvey invariants, were investigated also in [4],
[5], [9], [14] and [15].

Let M be a compact connected oriented 3-manifold with empty or toroidal boundary
and b;(M) > 0, and let ¢: m M — Z be an epimorphism. The aim of this article is to
introduce and study a combinatorially computable invariant ¢() which can be regarded
as the highest degree coefficient of a ‘metabelian higher-order Alexander polynomial’
associated to 1. In the construction of ¢(y)) we use Reidemeister torsion because of its
smaller indeterminacy than higher-order Alexander polynomials. We give a fiberedness
obstruction on c(¢) and show that there are infinitely many non-fibered knots with same
Alexander polynomials as fibered knots of same genus such that the non-fiberedness can
be detected by the obstruction. (See Theorems 3.6 and 3.8.)

By comparing the definitions, we can check from [6, Theorem 5.4] and [7, Theorem
3.8] that the obstruction is essentially equal to that by Goda and Sakasai [6, Theorem
4.6] for homologically fibered links. Note that they considered not only ‘metabelian coeffi-
cients’ but more general non-commutative ones and also gave an obstruction on Magnus
representations of the complementary homology cylinder of a minimal genus Seifert sur-
face. One advantage of using c(¢) is that we do not need to find such a Thurston norm
minimizing surface in computations.

This work was intended as an attempt to extract another kind of information from a
higher-order Alexander polynomial than the degree, and more general results and com-
putational examples are to be provided in [12].

In this paper all homology groups and cohomology groups are with respect to integral
coefficients unless specifically noted.

2. METABELIAN REIDEMEISTER TORSION

We begin with the definition of Reidemeister torsion over a skew field K. See [13], [16]

and [17] for more details.
For a matrix over K, we mean by an elementary row operation the addition of a left
multiple of one row to another row. After elementary row operations we can turn any
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matrix A € GLi(K) into a diagonal matrix (d; ;). Then the Dieudonné determinant det A
is defined to be [[[-, d;;] € K%, := K*/[K*,K*].
Let C, = (C, LNV, _1 — --- = Cp) be an acyclic chain complex of finite dimensional

right K-vector spaces. If we have a basis b;_; of Im 0, for ¢ = 0,1,...,n, picking a lift of
b;1 in C; and combining it with b;, we can obtain a basis b;b;_; of C; for i =0,1,...,n.

Definition 2.1. For a given basis ¢ = {¢;} of C,, we choose a basis {b;} of ImJ, and
define

n

7(Cy,€) = [ [[bibi-s/c) V™ € K,
i=0

where [b;b;—_1/c;] is the Dieudonné determinant of the base change matrix from ¢; to b;b;_;.

It can be easily checked that 7(C,,c) does not depend on the choices of b; and b;b;_;.

Torsion has the following multiplicative property. Let

0-C.—-C,—»C!'>0
be a short exact sequence of acyclic finite chain complexes of finite dimensional right
K-vector spaces and let ¢ = {¢;},c = {c}," = {c]} be bases of C,,C.,C". Picking a
lift of ¢ in C; and combining it with the image of ¢, in C;, we obtain a basis ¢} of C;.
Lemma 2.2. (13, Theorem 3. 1]) If [cic//c;] = 1 for all i, then
7(Cy, ) = 7(C,, &) (CY, ).

The following lemma is a certain non-commutative version of [16, Theorem 2.2]. Tu-
raev’s proof can be easily applied to this setting.
Lemma 2.3. If we find a decomposition C, = C, & C! such that C; and C! are spanned
by subbases of ¢; and the induced map prcy o Gilci: Ci — Ci_; is an isomorphism for
each i, then

7(Cy,c) = £ I_‘[(de’cprcg_1 0 8]V
i=0

Let X be a connected finite CW-complex and let ¢: Z[m; X]| — K be a ring homomor-

phism. We define the twisted homology group associated to ¢ as follows:
HE(X;K) = Hi(Cu(X) ®ggm x) K),

where X is the universal covering of X.

Definition 2.4. If H#(X;K) = 0, then we define the Reidemeister torsion 7,(X) associ-
ated to p as follows. We choose a lift € in X for each cell e. Then

7o(X) = [r(Cu(X) ®zimx K, (€@ 1)e)] € K3/ £ p(m X).

We can check that 7,,(X) does not depend on the choice of é. It is known that Reide-
meister torsion is a simple homotopy invariant of a finite CW-complex.

Now we define a metabelian torsion invariant of the pair (M, ) as an element of a
functional filed.

We denote by A the quotient group of Ker ¢ /[Ker 1, Ker 9] by the torsion subgroup and
by Q(A) the quotient field of Z[A]. We pick p € m M/[Ker, Ker 9] such that ¢(u) =1
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and let 6: Q(A) — Q(A) be the automorphism given by 8(z) = pzu~! for x € Q(A).
Now the functional field Q(A)(¢) is defined as the quotient (skew) field of the Laurent
polynomial ring Q(A)[¢,¢~!] whose multiplication is given by the rule tz = 6(z)t. Note
that the isomorphism type of Q(A)(t) does not depend on the choice of u. We consider
the homomorphism p: Z[m; M} — Q(A)(t) defined by

Z ayy Z awu—w(v)twh)_

YEMM yeETI M
If H2(M;Q(A)(t)) =0, then we have 7,(M) € Q(A)(£)%,/ £ A (t).
Let =: Q(A)(t)o/ £ A - (t) — Q(A)(t)%,/ £ A - (t) be the involution induced by the
involution a - ¢ — ¢~ - a! for @ € A. The torsion has the following duality. We refer the
reader to [5, Theorem 5.4].

Lemma 2.5. If H?(M;Q(A)(¢)) = 0, then

T,(M) = 7,(M).

For f = 37" ait* € Q(A)[t,t71] with ana, # 0, we write deg f := n — m. Setting
deg fg~' := deg f — deg g, we can extend deg: Q(A)[t,£7}] \ 0 — Z to a homomorphism
deg: Q(A)(t)* — Z, which in turn induces a homomorphism deg: Q(A)(t)}, — Z.

Definition 2.6. If H?(M;Q(A)(t)) = 0, then we define
5(¢p) :==deg1,(M) € Z.

Remark 2.7. The invariant 6(¢) is essentially equal to the Cochran-Harvey invariant
associated to the pair (m; M — m M /[Ker ¢, Ker ¢],v). See [3] and [4] for the correspon-

dence.
3. THE HIGHEST DEGREE COEFFICIENT

First we introduce the highest degree coefficient ¢() of 7,(M).
We denote by C' the subgroup of Q(A)* generated by

{ia-@ |ae€ ApeQ(A)*}.

We define a map c: Q(A)(¢)), = Q(A)*/C by
Am

c([(@mt™ + Qmegt™ ) (bt bt )7 = [bn } ,

where a;,b; € Q(A) for all ¢ and a,,b, # 0. The proof of the following lemma is straight-
forward.

Lemma 3.1. The map c: Q(A)(t)y, — Q(A)*/C is a well-defined homomorphism.
Definition 3.2. If H?(M;Q(A)(t)) = 0, then we define

c(¥) = c(1,(M)) € Q(A)*/C.
Remark 3.3. We say that irreducible p, g € Z[A] are equivalent if there are a € A and
n € Z such that p = +af"(q). Since Z[A] is a unique factorization domain, Q(A)*/C

is the free abelian group generated by such equivalence classes and is, in particular, of
infinite rank.
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The following lemma follows immediately from Lemma 2.5.

Lemma 3.4. The following equality holds:
co(—9) = c(¥).
The following theorem was shown for knots by Cochran {1, Proposition 9.1] and for gen-

eral 3-manifolds by Harvey (8, Theorem 12.1]. The reformulation in terms of Reidemeister
torsion is given by Fried! [3, Theorem 1.2].

Theorem 3.5. If M # S x D? S x 52 is fibered over S* and +: myM — Z is represented
by the fibration, then

§() = [I¥llr,
where ||¢|| is the Thurston norm of v € H*(M).

The following theorem gives another fiberedness obstruction on 7,(M).

Theorem 3.6. If M is fibered over S* and v: miM — Z is represented by the fibration,
then c(y) = 1.

Proof. Let ¥ C M be a fiber surface and let f: ¥ — ¥ be a monodromy map. We take
a triangulation T of ¥ and a cellular approximation g: (3,7) — (X,T) to f. We pick a
homotopy equivalence map between the mapping torus T, := ¥ x [0,1]/(z,1) ~ (g(z),0)
and M, and identify m T, with 7; M. It can be checked that

7o(Ty) = 7,(M).
(See for instance [10, Lemma 3.6] and [11, Lemma 4.2].)

A cell decomposition of T, is given by {o x [0,1] | 0 € T} and T. We denote by
C. and C; the subcomplexes of C.(T,) ®zr,1,) Q(A)(t) generated by lifts of cells in

!

{o x[0,1] | 0 € T} and T respectively. Since prer 0 9|c;: C] — Ci_, is expressed by a
matrix of the form tA; — I, where coefficients of A; are all in Z[A], and is an isomorphism
for each i, by Lemma 2.3

o(Tg) = H[det proy o Ble] N
i

Therefore we see at once that

(7 (Ty) = 1.
Now the theorem follows from Lemma 2.5. O

For an oriented tame knot K C 53, we denote by Ex the exterior of K. In the following
we only consider the case where M = Ex and ¢: m Ex — Z is the epimorphism which
maps a meridional element compatible with the orientation to 1. We can easily check that
H?(FEg;Q(A)(t)) = 0. Note that by Lemma 3.4 the choice of orientations is inessential
in considering the value of ¢(%).

It is a classical result of Neuwirth that for a fibered knot K,

1) Ak is monic and deg Ax = 2g(K).
We call (1) the Neuwirth condition.



Remark 3.7. From the monotonicity [1, Theorem 5.4], [9, Theorem 2.2], [3, Theorem 1.3]
of (%) and the inequality [1, Theorem 7.1], [8, Theorem 10.1], [3, Theorem 1.2] between
0(¢) and ||[¢||r we have 6(vp) = |[¢||r for a nontrivial knot satisfying that deg Ax =
29(K).

The following theorem shows non-triviality of the fiberedness obstruction in Theorem
3.6.

Theorem 3.8. There are infinitely many knots satisfying the Neuwirth condition and
that c(v) # 1 for both orientations.

Proof. Let K C S® be an oriented fibered knot and let J C S® be an oriented knot with
nontrivial A;. We take an oriented knot 7 in the exterior of a fiber surface ¥ of K which
is unknot in % and which represents a nontrivial element [n] € A. We consider the result
Ko C S3 of infecting K by J along 7. (See [1, Section 8].) Namely, E, is homeomorphic
to the result of attaching —E; to Ek, along the boundaries so that a longitude and a
meridian of 7 correspond to a meridian and a longitude of J.

Regarding Ex as Fki, U (D? x S') and extending a degree 1 map (E;,0E;) — (D? x
S',0D*x S') by the identity map on Eky, we have f: Ex, — Ex. Comparing the Meyer-
Vietoris homology long exact sequences for the decompositions of Fx, and Ex, we can see
that the Alexander modules of them are isomorphic by f,. Hence f.: m Fy,/(m1 FExk,)" —
m Ex /(m Ex)" is also isomorphic. Moreover, since f~!(Z) is a Seifert surface of Ky and
has the minimal genus g(K), we can see that K also satisfies the Neuwirth condition.

Since HP°F(Exey; QUA)(1)) = Heo (Ey; Q(A)(1)) = HEH (9B, QA)(2)) = 0, it follows
again from the Meyer-Vietoris homology long exact sequence that H?( Ex,; Q(A)(t)) = 0.
We have the following short exact sequences of acyclic chain complexes:

0 — C.(BE;) — C*(E;:,_./T,) ® C.(E;) = Cu(Ex,) — 0,

0 — C.(8D?2 x S1) = C.(Exuy) ® C.(D? x 81) = Cu(Ex) — 0,
where we implicitly tensor all the chain complexes with Q(A)(t). By Lemma 2.2 we obtain
Toof (O 1) - To(Exin) = Tpor. (E) * Tpos. (Eky),
7,(0D? x S*) - 7,(Exuy) = T,(D? x S*) - 1,( Ex).

Here

Tpos. (Bs) = [Ar([n))([n] — 1),

7p(D? x 8Y) = [[n] - 1],

Toofa (OE;) = 7,(0D* x S*) = 1,
which are easy to check. Combining them, we obtain

Tpof. (ko) = [Ax([n])] - 7o(Ek)-
Now it follows from Theorem 3.6 that

A(Tpos. (Fro)) = [Ax ()] # 1.

Since we can choose K, J and [n] arbitrarily, the knot type of Kj can be changed into
infinitely many types, which proves the theorem. O
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Remark 3.9. We have actually given how to construct knots satisfying the desired condi-
tions. By a similar technique we can show that there are also infinitely many non-fibered
knots satisfying the Neuwirth condition and that ¢(1)) = 1 for both orientations. See [12]
for a proof.
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