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1. INTRODUCTION

Building on ideas of Cochran, Orr and Teichner [2], non-abelian generalizations of
the classical Alexander polynomial which are called higher-order Alexander polynomials
were introduced for knots by Cochran [1] and extended to 3-manifolds by Harvey [8]
and Turaev [18]. The polynomials have coefficients in certain skew fields and are known
by IFlriedl [3] to be essentially equal to Reidemeister torsion over the functional fields of
the skew fields. In particular, several properties and applications of the degrees of such
polynomials, which are called Cochran-Harvey invariants, were investigated also in [4],
[5], [9], [14] and [15].

Let $M$ be a compact connected oriented 3-manifold with empty or toroidal boundary
and $b_{1}(M)>0$ , and let $\psi:\pi_{1}Marrow \mathbb{Z}$ be an epimorphism. The aim of this article is to
introduce and study a combinatorially computable invariant $c(\psi)$ which can be regarded
as the highest degree coefficient of a ‘metabelian higher-order Alexander polynomial’
associated to $\psi$ . In the construction of $c(\psi)$ we use Reidemeister torsion because of its
smaller indeterminacy than higher-order Alexander polynomials. We give a fiberedness
obstruction on $c(\psi)$ and show that there are infinitely many non-fibered knots with same
Alexander polynomials as fibered knots of same genus such that the non-fiberedness can
be detected by the obstruction. (See Theorems 3.6 and 3.8.)

By comparing the definitions, we can check from [6, Theorem 5.4] and [7, Theorem
3.8] that the obstruction is essentially equal to that by Goda and Sakasai [6, Theorem
4.6] for homologically fibered links. Note that they considered not only ‘metabelian coeffi-
cients’ but more general non-commutative ones and also gave an obstruction on Magnus
representations of the complementary homology cylinder of a minimal genus Seifert sur-
face. One advantage of using $c(\psi)$ is that we do not need to find such a Thurston norm
minimizing surface in computations.

This work was intended as an attempt to extract another kind of information from a
higher-order Alexander polynomial than the degree, and more general results and com-
putational examples are to be provided in [12].

In this paper all homology groups and cohomology groups are with respect to integral
coefficients unless specifically noted.

2. METABELIAN REIDEMEISTER TORSION

We begin with the definition of Reidemeister torsion over a skew field $\mathbb{K}$ . See [13], [16]
and [17] for more details.

For a matrix over $\mathbb{K}$ , we mean by an elementary row operation the addition of a left
multiple of one row to another row. After elementary row operations we can turn any
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matrix $A\in GL_{k}(\mathbb{K})$ into a diagonal matrix $(d_{i,j})$ . Then the Dieudonne deteminant $\det A$

is defined to be $[ \prod_{i=1}^{k}d_{i,i}]\in \mathbb{K}_{ab}^{\cross}:=\mathbb{K}^{\cross}/[\mathbb{K}^{\cross}, \mathbb{K}^{\cross}]$.
Let $C_{*}=(C_{n}arrow C_{n-1}\partial_{n}arrow\cdotsarrow C_{0})$ be an acyclic chain complex of finite dimensional

right $\mathbb{K}$-vector spaces. If we have a basis $b_{i-1}$ of ${\rm Im}\partial_{i}$ for $i=0,1,$ $\ldots,$
$n$ , picking a lift of

$b_{i-1}$ in $C_{i}$ and combining it with $b_{i}$ , we can obtain a basis $b_{i}b_{i-1}$ of $C_{i}$ for $i=0,1,$ $\ldots,$
$n$ .

Definition 2.1. For a given basis $c=\{q\}$ of $C_{*}$ , we choose a basis $\{b_{i}\}$ of ${\rm Im}\partial_{*}$ and
define

$\tau(C_{*}, c):=\prod_{i=0}^{n}[b_{i}b_{i-1}/c_{i}]^{(-1)^{i+1}}\in \mathbb{K}_{ab}^{\cross}$ ,

where $[b_{i}b_{i-1}/c_{i}]$ is the Dieudonn\’e determinant of the base change matrix from $c_{i}$ to $b_{i}b_{i-1}$ .

It can be easily checked that $\tau(C_{*}, c)$ does not depend on the choices of $b_{i}$ and $b_{i}b_{i-1}$ .
Torsion has the following multiplicative property. Let

$0arrow C_{*}’arrow C_{*}arrow C_{*}’’arrow 0$

be a short exact sequence of acyclic finite chain complexes of finite dimensional right
$\mathbb{K}$-vector spaces and let $c=\{c_{i}\}$ , $c’=\{d_{i}\},$ $c”=\{c_{i}’’\}$ be bases of $C_{*},$ $C_{*}’,$ $C_{*}’’$ . Picking a
lift of $d_{i}’$ in $C_{i}$ and combining it with the image of 4 in $C_{i}$ , we obtain a basis $d_{i}d_{i}’$ of $C_{i}$ .
Lemma 2.2. ([13, Theorem 3. 1]) If $[d_{i}d_{i}’/c_{?}]=1$ for all $i$ , then

$\tau(C_{*}, c)=\tau(C_{*}’, c’)\tau(C_{*}’’, c’’)$ .

The following lemma is a certain non-commutative version of [16, Theorem 2.2]. Tu-
raev’s proof can be easily applied to this setting.

Lemma 2.3. If we find a decomposition $C_{*}=C_{*}’\oplus C_{*}^{f\prime}$ such that $C_{i}’$ and $C_{i}’’$ are spanned
by subbases of $q$ and the induced map $pr_{C_{-1}’’}\dot{.}0\partial_{i}|_{C_{i}’}$ : $C_{i}’arrow C_{i-1}’’$ is an isomorphism for
each $i$ , then

$\tau(C_{*}, c)=\pm\prod_{i=0}^{n}(\det prc_{i-1}^{ll}\circ\partial|_{C’}.)^{(-1)^{i}}$

Let $X$ be a connected finite CW-complex and let $\varphi:\mathbb{Z}[\pi_{1}X]arrow \mathbb{K}$ be a ring homomor-
phism. We define the twisted homology group associated to $\varphi$ as follows:

$H_{i}^{\varphi}(X;\mathbb{K}):=H_{i}(C_{*}(\tilde{X})\otimes_{Z|\pi X]}1\mathbb{K})$ ,

where $\tilde{X}$ is the universal covering of $X$ .

Definition 2.4. If $H_{*}^{\varphi}(X;\mathbb{K})=0$ , then we define the Reidemeister torsion $\tau_{\varphi}(X)$ associ-
ated to $\varphi$ as follows. We choose a lift $\tilde{e}$ in $\tilde{X}$ for each cell $e$ . Then

$\tau_{\varphi}(X):=[\tau(C_{*}(\tilde{X})\otimes_{Z[\pi_{1}X]}\mathbb{K}, \langle\tilde{e}\otimes 1\rangle_{e})]\in \mathbb{K}_{ab}^{\cross}/\pm\varphi(\pi_{1}X)$ .

We can check that $\tau_{\varphi}(X)$ does not depend on the choice of $\tilde{e}$ . It is known that Reide-
meister torsion is a simple homotopy invariant of a finite CW-complex.

Now we define a metabelian torsion invariant of the pair $(M, \psi)$ as an element of a
functional filed.

We denote by $A$ the quotient group of $Ker\psi/[Ker\psi, Ker\psi]$ by the torsion subgroup and
by $\mathbb{Q}(A)$ the quotient field of $\mathbb{Z}[A]$ . We pick $\mu\in\pi_{1}M/[Ker\psi, Ker\psi]$ such that $\psi(\mu)=1$
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and let $\theta:\mathbb{Q}(A)arrow \mathbb{Q}(A)$ be the automorphism given by $\theta(x)=\mu x\mu^{-1}$ for $x\in \mathbb{Q}(A)$ .
Now the functional field $\mathbb{Q}(A)(t)$ is defined as the quotient (skew) field of the Laurent
polynomial ring $\mathbb{Q}(A)[t, t^{-1}]$ whose multiplication is given by the rule $tx=\theta(x)t$ . Note
that the isomorphism type of $\mathbb{Q}(A)(t)$ does not depend on the choice of $\mu$ . We consider
the homomorphism $\rho:\mathbb{Z}[\pi_{1}M]arrow \mathbb{Q}(A)(t)$ defined by

$\sum_{\gamma\in\pi_{1}M}a_{\gamma}\gamma\mapsto\sum_{\gamma\in\pi_{1}M}a_{\gamma}\gamma\mu^{-\psi(\gamma)}t^{\psi(\gamma)}$
.

If $H_{*}^{\rho}(M;\mathbb{Q}(A)(t))=0$ , then we have $\tau_{\rho}(l|\prime I)\in \mathbb{Q}(A)(t)_{ab}^{\cross}/\pm A\cdot\langle t\rangle$ .
Let $-:\mathbb{Q}(A)(t)_{ab}^{\cross}/\pm A\cdot\langle t\ranglearrow \mathbb{Q}(A)(t)_{ab}^{\cross}/\pm A\cdot\langle t\rangle$ be the involution induced by the

involution $a\cdot t\mapsto t^{-1}\cdot a^{-1}$ for $a\in A$ . The torsion has the following duality. We refer the
reader to [5, Theorem 5.4].

Lemma 2.5. If $H_{*}^{\rho}(M;\mathbb{Q}(A)(t))=0$ , then
$\overline{\tau_{\rho}(M)}=\tau_{\rho}(M)$ .

For $f= \sum_{i=m}^{n}a_{i}t^{i}\in \mathbb{Q}(A)[t, t^{-1}]$ with $a_{m}a_{n}\neq 0$ , we write $\deg f$ $:=n-m$. Setting
$\deg fg^{-1}$ $:=\deg f-\deg g$ , we can extend $deg:\mathbb{Q}(A)[t, t^{-1}]\backslash 0arrow \mathbb{Z}$ to a homomorphism
$deg:\mathbb{Q}(A)(t)^{\cross}arrow \mathbb{Z}$ , which in turn induces a homomorphism $deg:\mathbb{Q}(A)(t)_{ab}^{\cross}arrow \mathbb{Z}$ .

Definition 2.6. If $H_{*}^{\rho}(M;\mathbb{Q}(A)(t))=0$ , then we define
$\delta(\psi):=\deg\tau_{\rho}(M)\in \mathbb{Z}$ .

Remark 2.7. The invariant $\delta(\psi)$ is essentially equal to the Cochmn-Harvey invariant
associated to the pair $(\pi_{1}Marrow\pi_{1}M/[Ker\psi, Ker\psi], \psi)$ . See [3] and [4] for the correspon-
dence.

3. THE HIGHEST DEGREE COEFFICIENT

First we introduce the highest degree coefficient $c(\psi)$ of $\tau_{\rho}(M)$ .
We denote by $C$ the subgroup of $\mathbb{Q}(A)^{\cross}$ generated by

$\{\pm a\cdot\frac{\theta(p)}{p}|a\in A,p\in \mathbb{Q}(A)^{\cross}\}$ .

We define a map $c:\mathbb{Q}(A)(t)_{ab}^{\cross}arrow \mathbb{Q}(A)^{\cross}/C$ by

$c([(a_{m}t^{m}+a_{m-1}t^{m-1}+ \ldots)(b_{n}t^{n}+b_{n-1}t^{n-1}+\ldots)^{-1}])=[\frac{a_{m}}{b_{n}}]$ ,

where $a_{i},$ $b_{i}\in \mathbb{Q}(A)$ for all $i$ and $a_{m}b_{n}\neq 0$ . The proof of the following lemma is straight-
forward.

Lemma 3.1. The map $c:\mathbb{Q}(A)(t)_{ab}^{\cross}arrow \mathbb{Q}(A)^{\cross}/C$ is a well-defined homomorphism.

Definition 3.2. If $H_{*}^{\rho}(M;\mathbb{Q}(A)(t))=0$ , then we define
$c(\psi):=c(\tau_{\rho}(M))\in \mathbb{Q}(A)^{\cross}/C$.

Remark 3.3. We say that irreducible $p,$ $q\in \mathbb{Z}[A]$ are equivalent if there are $a\in A$ and
$n\in \mathbb{Z}$ such that $p=\pm a\theta^{n}(q)$ . Since $\mathbb{Z}[A]$ is a unique factorization domain, $\mathbb{Q}(A)^{\cross}/C$

is the free abelian group generated by such equivalence classes and is, in particular, of
infinite rank.
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The following lemma follows immediately from Lemma 2.5.

Lemma 3.4. The following equality holds:

$c(-\psi)=c(\psi)$ .

The following theorem was shown for knots by Cochran [1, Proposition 9.1] and for gen-
era13-manifolds by Harvey [8, Theorem 12.1]. The reformulation in terms of Reidemeister
torsion is given by Friedl [3, Theorem 1.2].

Theorem 3.5. If $M\neq S^{1}\cross D^{2},$ $S^{1}\cross S^{2}$ is fibered over $S^{1}$ and $\psi:\pi_{1}Marrow \mathbb{Z}$ is represented
by the fibmtion, then

$\delta(\psi)=||\psi||_{T}$ ,

where $||\psi||$ is the Thurston norm of $\psi\in H^{1}(M)$ .

The following theorem gives another fiberedness obstruction on $\tau_{\rho}(M)$ .

Theorem 3.6. If $M$ is fibered over $S^{1}$ and $\psi:\pi_{1}Marrow \mathbb{Z}$ is represented by the fibmtion,
then $c(\psi)=1$ .

Proof. Let $\Sigma\subset M$ be a fiber surface and let $f:\Sigmaarrow\Sigma$ be a monodromy map. We take
a triangulation $T$ of $\Sigma$ and a cellular approximation $g:(\Sigma, T)arrow(\Sigma, T)$ to $f$ . We pick a
homotopy equivalence map between the mapping torus $T_{g}:=\Sigma\cross[0,1]/(x, 1)\sim(g(x), 0)$

and $M$ , and identify $\pi_{1}T_{g}$ with $\pi_{1}M$ . It can be checked that
$\tau_{\rho}(T_{g})=\tau_{\rho}(M)$ .

(See for instance [10, Lemma 3.6] and [11, Lemma 4.2].)
A cell decomposition of $T_{g}$ is given by $\{\sigma\cross[0,1]|\sigma\in T\}$ and $T$ . We denote by

$C_{*}’$ and $C_{*}^{\prime f}$ the subcomplexes of $C_{*}(\tilde{T_{g}})\otimes_{Z[\pi_{1}T_{9}]}\mathbb{Q}(A)(t)$ generated by lifts of cells in
$\{\sigma\cross[0,1]|\sigma\in T\}$ and $T$ respectively. Since $P^{r}c_{*-1}’’\circ\partial_{i}|_{C_{i}’}$ : $C_{i}’arrow C_{i-1}’’$ is expressed by a
matrix of the form $tA_{i}-I$ , where coefficients of $A_{i}$ are all in $\mathbb{Z}[A]$ , and is an isomorphism
for each $i$ , by Lemma 2.3

$\tau_{\rho}(T_{g})=\prod_{i}[\det prc_{*-1}’’\circ\partial_{i}|_{C’}\dot{.}]^{(-1)^{i}}$

Therefore we see at once that
$c(\overline{\tau_{\rho}(T_{g})})=1$ .

Now the theorem follows from Lemma 2.5. $\square$

For an oriented tame knot $K\subset S^{3}$ , we denote by $E_{K}$ the exterior of $K$ . In the following
we only consider the case where $M=E_{K}$ and $\psi:\pi_{1}E_{K}arrow \mathbb{Z}$ is the epimorphism which
maps a meridional element compatible with the orientation to 1. We can easily check that
$H_{*}^{\rho}(E_{K};\mathbb{Q}(A)(t))=0$ . Note that by Lemma 3.4 the choice of orientations is inessential
in considering the value of $c(\psi)$ .

It is a classical result of Neuwirth that for a fibered knot $K$ ,

(1) $\Delta_{K}$ is monic and $\deg\Delta_{K}=2g(K)$ .

We call (1) the Neuwirth condition.
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Remark 3.7. From the monotonicity [1, Theorem 5.4], [9, Theorem 2.2], [3, Theorem 1.3]
of $\delta(\psi)$ and the inequality [1, Theorem 7.1], [8, Theorem 10.1], [3, Theorem 1.2] between
$\delta(\psi)$ and $||\psi||_{T}$ we have $\delta(\psi)=||\psi||_{T}$ for a nontrivial knot satisfying that $\deg\triangle_{K}=$

$2g(K)$ .

The following theorem shows non-triviality of the fiberedness obstruction in Theorem
3.6.

Theorem 3.8. There are infinitely many knots satisfying the Neuwirth condition and
that $c(\psi)\neq 1$ for both orientations.

Proof. Let $K\subset S^{3}$ be an oriented fibered knot and let $J\subset S^{3}$ be an oriented knot with
nontrivial $\triangle_{J}$ . We take an oriented knot $\eta$ in the exterior of a fiber surface $\Sigma$ of $K$ which
is unknot in $S^{3}$ and which represents a nontrivial element $[\eta]\in A$ . We consider the result
$K_{0}\subset S^{3}$ of infecting $K$ by $J$ along $\eta$ . (See [1, Section 8].) Namely, $E_{K_{0}}$ is homeomorphic
to the result of attaching $-E_{J}$ to $E_{KU\eta}$ along the boundaries so that a longitude and a
meridian of $\eta$ correspond to a meridian and a longitude of $J$ .

Regarding $E_{K}$ as $E_{Ku\eta}\cup(D^{2}\cross S^{1})$ and extending a degree 1 map $(E_{J}, \partial E_{J})arrow(D^{2}\cross$

$S^{1},$ $\partial D^{2}\cross S^{1})$ by the identity map on $E_{\kappa u_{\eta}}$ , we have $f:E_{K_{0}}arrow E_{K}$ . Comparing the Meyer-
Vietoris homology long exact sequences for the decompositions of $E_{K_{0}}$ and $E_{K}$ , we can see
that the Alexander modules of them are isomorphic by $f_{*}$ . Hence $f_{*}:\pi_{1}E_{K_{0}}/(\pi_{1}F_{K_{0}}\lrcorner)’’arrow$

$\pi_{1}E_{K}/(\pi_{1}E_{K})’’$ is also isomorphic. Moreover, since $f^{-1}(\Sigma)$ is a Seifert surface of $K_{0}$ and
has the minimal genus $g(K)$ , we can see that $K_{0}$ also satisfies the Neuwirth condition.

Since $H_{*}^{\rho of_{*}}(E_{K_{0}};\mathbb{Q}(A)(t))=H_{*}^{\rho of_{*}}(E_{J)}\mathbb{Q}(A)(t))=H_{*}^{\rho of_{*}}(\partial E_{J};\mathbb{Q}(A)(t))=0$ , it follows
again from the Meyer-Vietoris homology long exact sequence that $H_{*}^{\rho}(E_{Ku_{\eta}};\mathbb{Q}(A)(t))=0$ .
We have the following short exact sequences of acyclic chain complexes:

$0arrow C_{*}(\overline{\partial E_{J}})arrow C_{*}(\overline{E_{Ku\eta}})\oplus C_{*}(\overline{E_{J}})arrow C_{*}(\overline{E_{K_{0}}})arrow 0$ ,

$0arrow C_{*}(\partial\overline{D^{2}\cross}S^{1})arrow C_{*}(\overline{E_{KU\eta}})\oplus C_{*}(D^{\overline{2}}\cross S^{1})arrow C_{*}(\overline{E_{K}})arrow 0$ ,

where we implicitly tensor all the chain complexes with $\mathbb{Q}(A)(t)$ . By Lemma 2.2 we obtain
$\tau_{\rho\circ f_{*}}(\partial E_{J})\cdot\tau_{\rho}(E_{Ku\eta})=\tau_{\rho\circ f_{*}}(E_{J})\cdot\tau_{\rho\circ f_{*}}(E_{K_{0}})$ ,

$\tau_{\rho}(\partial D^{2}\cross S^{1})\cdot\tau_{\rho}(E_{Ku\eta})=\tau_{\rho}(D^{2}\cross S^{1})\cdot\tau_{\rho}(E_{K})$ .
Here

$\tau_{\rho\circ f_{*}}(E_{J})=[\triangle_{K}([\eta])([\eta]-1)^{-1}]$ ,
$\tau_{\rho}(D^{2}\cross S^{1})=[[\eta]-1]^{-1}$ ,
$\tau_{\rho\circ f_{*}}(\partial E_{J})=\tau_{\rho}(\partial D^{2}\cross S^{1})=1$ ,

which are easy to check. Combining them, we obtain
$\tau_{\rho\circ f_{*}}(E_{K_{0}})=[\triangle_{K}([\eta])]\cdot\tau_{\rho}(E_{K})$ .

Now it follows from Theorem 3.6 that
$c(\tau_{\rho\circ f_{*}}(E_{K_{0}}))=[\triangle_{K}([\eta])]\neq 1$ .

Since we can choose $K,$ $J$ and $[\eta]$ arbitrarily, the knot type of $K_{0}$ can be changed into
infinitely many types, which proves the theorem. $\square$
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Remark 3.9. We have actually given how to construct knots satisfying the desired condi-
tions. By a similar technique we can show that there are also infinitely many non-fibered
knots satisfying the Neuwirth condition and that $c(\psi)=1$ for both orientations. See [12]
for a proof.
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