0000000000
93

O 17470 20110 93-108

ON THE REIDEMEISTER-TURAEV TORSION OF STANDARD SPIN¢
STRUCTURES ON SEIFERT FIBERED 3-MANIFOLDS

YUYA KODA

ABSTRACT. The Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped
with Spin¢ structures. Here, a Spin® structure of a 3-manifold is a homology class of
non-singular vector fields on it. Each Seifert fibered 3-manifold has a standard Spin®
structure, which is represented as a non-singular vector field the set of whose orbits gives a
Seifert fibration. This short note provides an algorithm for computing the Reidemeister-
Turaev torsion of the standard Spin® structure on a Seifert fibered 3-manifold. The
machinery used to compute the torsion is that of punctured Heegaard diagrams.

INTRODUCTION

Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped with Spin® struc-
tures. This invariant is defined by Turaev [12] as a refinement of the Reidemeister torsion,
which is one of the most well-known classical invariant of 3-manifolds. A Spin® structure
can be represented as a homology class of non-singular vector fields on the ambient 3-
manifold. On the other hand, a branched standard spine of a 3-manifold carries a non-
singular vector field. The computation of the Reidemeister-Turaev torsion using branched
standard spines is first introduced in [3] for the case with non-empty boundary and then
in [1] for the closed case. In [6], the author developed the method via Heegaard splittings
compatible with the branched standard spines. In [7], the author introduced a Heegaard-
type diagram, which we call a punctured Heegaard diagram, to present a branched spine
and this diagram allows to compute the Reidemeister-Turaev torsion quite easily. In the
case of closed 3-manifolds, a punctured Heegaard diagram is exactly a Heegaard diagram
with a fixed complementary region of slopes satisfying a special condition, see Section 1.5.

In the present paper, we introduce the method for constructing punctured Heegaard
diagrams of Seifert fibered 3-manifolds equipped with standard Spin¢ structures as a par-
allel construction of [11] and then explain how to compute its Reidemeister-Turaev tor-
sion. Each Seifert fibered 3-manifold has a standard Spin® structure, which is represented
as non-singular vector fields everywhere tangent to its Seifert fibration. Recall that most
Seifert fibered 3-manifolds admits a unique Seifert fibration, see Section 1. For such Seifert
fibered 3-manifolds, the Reidemeister-Turaev torsion of the standard Spin¢ structure can
be regarded as the principal values of the Reidemeister torsion of the manifold. Note
that a general algorithm for computing Reidemeister-Turaev torsions of any 3-manifold
equipped with any Spin® structure has already been described by Turaev ([16, 17]) by
means of surgery presentations on links in S°.

In the final section, we observe that the Reidemeister-Turaev torsions of the standard
Spin® structures of a Seifert fibered 3-manifold have standard values among the set of the
Reidemeister-Turaev torsions of all Spin® structures on the manifold.
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Notation 0.1. Let X be a subset of a given topological space or a manifold Y. Through-
out this paper, we will denote the interior of X by Int X, the closure of X by X and the
number of components of X by #X. We will use n(X; Y) to denote a regular neighbor-
hood of X in Y. If the ambient space Y is clear from the context, we simply denote it
by n(X). By 3-manifold, we always mean a connected, compact and oriented one, with
or without boundary, unless otherwise mentioned.

1. PRELIMINARIES

1.1. Spin® structures. Let M be a closed smooth 3-manifold. Two non-singular vector
fields V; and V, on M are said to be homologous if there exists a closed 3-ball B C M such
that the restrictions of V; and V; to M \ Int B are homotopic as non-singular vector fields.
A Spin® structure is a homology class [V] of non-singular vector fields V. We denote by
Spin°(M) the set of Spin® structure on M. The action of H;(M) to Spin°(M) is defined
through Reeb surgery, see [17, 9] for details.

1.2. Review of the Reidemeister-Turaev torsion. Let F be a field and let E be
an n-dimensional vector space over F. For two ordered bases b = (b,...,b,) and ¢ =
(c1,-..,¢n) of E, we write [b/c] = det(a;;) € F*, where b; = } 7, a;;¢;. The bases b and

c are said to be equivalent if [b/c] = 1.

Let C = (0 = Om - Chn Omo3, Cpo1— = Cy 5, Co LN 0) be a finite dimensional chain

complex over F. For each 0 < i < m, set B; = Im §;, Z; = Ker 8;_; and H; = Z;/B;. The
chain complex is said to be acyclic if H; = 0 for all . Suppose that C is acyclic and C; is
endowed with a distinguished basis c; for each ¢. Choose an ordered set of vectors b; in C;
for each : 0 < 7 < m such that 9;_,(b;) forms a basis of B;_;. By the above construction,
0i(b;+1) and b; are combined to be a new basis §;(bi+1)b; of C;. With this notation, the
torsion of C' is defined by

T(C) = H[ai(b¢+1)bi/ci](_l)l+l S Fx.
i=0
Let M be a compact connected orientable smooth manifold of an arbitrary dimension.
Let X be a CW-decomposition of M, X — X be its maximal abelian covering and F be
a field. We can equip X with the CW-structure naturally induced by that of X, and then
we regard C,(X) as a left Z[m;(X, #)]-module via the monodromy. Let {eF} be the set
of all oriented k-cells in X, and {é*} be a family of their lifts to X. Give an orientation
with each of these cells and order the cells {é¥}, for each k, in an arbitrary way. Then
this family gives an ordered Z[H;(X)]-basis of Ci(X). In this way, we can regard C, (X)

as an ordered, based chain complex.
Let ¢ : Z|H;(X)] — F be a ring homomorphism. If the based chain complex C¥(X) =

F®, C*(X ) over F is acyclic, the (p-twisted) Reidemeister torsion of M is defined as
(M) := 7(C{(X)) € F*/ £ o(H1(M)).

Otherwise, set 7¢(M) :=0 € F.

Let M be a smooth 3-manifold and let X be its CW-decomposition. A family of cells
of X is said to be fundamental if over each cell of X exactly one cell of this family
lies. When we choose a fundamental family {é¥} of cells of X and orient and order



95

these cells in arbitrary way, this family becomes a free Z[H;(X)]-basis of Cx(X). (i.e.
Ci(X) = @, Z[H\(X )]é¥). In this way, we can regard C,(X) as a chain complex with
basis.

A Spin® structure [V] on M instructs to obtain a fundamental family of cells of X, and
hence the Reidemeister torsion is refined to be an invariant 7¢(M, [V]) € F/ £ 1 of Spin®
structures on M, see [12, 13, 15, 17]. In [1, 3], this construction is described via the notion
of branched standard spine.

Let M be a Seifert fibered 3-manifold. In this paper, all Seifert fibered 3-manifolds are
assumed to be closed orientable ones having orientable base surfaces. Recall that a Seifert
fibered 3-manifold is said to be large if its base surface is different from a sphere with less
than four singular points.

We call a non-singular vector field (a Spin® structure, respectively) on a Seifert fibered
3-manifold is standard if it is everywhere tangential to a Seifert fibration. In [11],
Taniguchi, Tsuboi and Yamashita introduced an algorithm to obtain a branched spine
of a standard vector field on an arbitrary closed Seifert fibered 3-manifold in term of
the Seifert invariants S(g;b; (p1, 1), (P2, @2), - - -, (Pr, ¢-)), Where g is the genus of the base
surface, b is its obstruction class, and (p;,q;), i = 1,2,...,, are the types of its singu-
lar fibers. It is well-known (see e.g. [5]) that a large Seifert fibered 3-manifold except
5(0;4;(2,1),(2,1), (2, -1),(2,-1)) has a unique (up to isotopy) Seifert fibration.

1.3. Branched spines. Let N be a compact orientable 3-manifold. A branched surface
P C N is a union of finitely many compact smooth surfaces glued together to form a
compact subspace locally modeled on one of the three possibilities in Figure 1. Note that

A

FIGURE 1. Local pictures of a branched surface.

the general definition of branched surface allows more sheets than just two on one side
and one on the other side, but we only consider this situation (which is generic and stable,
i.e. corresponds to an open dense set in the space of branched surfaces).

The branch locus S(P) of P is the set of points none of whose neighborhoods (in P)
is a disk. S(P) is a collection of smooth immersed curves in P. Let V(P) be the set of
double points of S(P). We associate with every component of S(P)\V(P) a vector (in P)
pointing in the locally one-sheeted direction, as shown in Figure 1. We call a component
of P\ S(P) a sector of P. Let R be a sector of P. If all branch directions along OR point
out from R, then P\ R is still a branched surface, see Figure 2 (i). One can regard n(P)
as an interval bundle over P as drawn in Figure 2 (ii). The boundary dn(P) decomposes
into two parts: the endpoints of the fibers, 0,n(P), and the rest, 9,n7(P). In this paper,
all branched surfaces are assumed to be transversely oriented, that is, P is equipped with
a global orientation on the 1-foliation of n(P) whose leaves are fibers of n(B). Refer to
(4, 10] for more details about branched surfaces.

A branched surface P C N is called a branched spine (of N) if N collapses onto P. A
branched spine P is naturally stratified as V(P) C S(P) C P. A branched spine P is said
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(i) (i)

FIGURE 2. (i) Removable sector; (ii) A regular neighborhood of a branched surface.

to be standard if this stratification induces a CW decomposition of P, namely, there is
no loop in S(P) and sectors are disks. See [2] for a precise definition. If P is a branched
spine of a compact 3-manifold N with 8N = S?, then P is also called a branched spine
of the closed 3-manifold M obtained from N by attaching a 3-ball to the unique 2-sphere
boundary. A branched spine of a closed 3-manifold is called a flow-spine if 9,n(P) is an
annulus.

In [2], Benedetti and Petronio proved that every orientable 3-manifold admits a branched
(standard) spine and it naturally encodes a well-defined homotopy class of vector fields,
which is called the concave traversing field, on the ambient manifold. We require that the
flow intersects P in the same direction as the fixed transverse orientation. In the case
where P is a flow-spine of a closed oriented 3-manifold M, one can extend the concave
traversing field, whose orbits are the I-fibers of the regular neighborhood of the spine, to
the whole of M.

1.4. Oriented, based Heegaard diagrams. Throughout the paper, we only consider
closed orientable 3-manifolds.
By a Heegaard diagram we means a triple (Sy; a, 8) where

(1) S, is a closed, connected, orientable surface of genus g € N; and
2) a =%, & and B = {J2_, B; are compact, mutually transverse 1-manifolds with
=1 =1
g components on S,.

(3) Sp \ (U i3 Sg) = Sg \ n(U Bi; Sg) = (29-th punctured sphere)

A Heegaard diagram gives rise to a closed 3-manifold M(s,q,5) by adding 2-handles
H,,,..., H,, and Hp,, ..., Hg, to Sy x [~1,1] along the curves a; x {—1},...,ag X {-1}
and B; x {1},...,B, x {1}, respectively, and then adding 3-handles along the resulting
9-sphere boundary components. We will denote the core disk of H,, (Hg,, respectively)
(fairly extended so that its boundary is on Sy) by D, (Dg,, respectively) for 1 < ¢ < g.
When we consider (and draw in R®) a Heegaard diagram, we always equip the surface Sy
with the positive normal w, (z € S,) pointing toward the « side, and with the orientation
(tp, V,), Up, U, € TSy, such that (u,, v, w,) gives the right-hand orientation on R®.

A Heegaard diagram is said to be oriented if the 1-manifolds a and B are oriented.
A Heegaard diagram (S,; o, 8) with a fixed point b; € B; \ a for each f3; is said to be
based. A Heegaard diagram (Sy; o, §) is said to be standard if every connected component
of S, \ (@ U B) is an open ball. It is clear that we can make any Heegaard diagram
standard up to isotopy of 8. We often denote an oriented, based Heegaard diagram by
(Sy; &, ﬁ, {bx}{_,). A system of pairwise disjoint, simple, closed, oriented curves v =
U, % on S, is called a dual system of B if each +; intersects f; transversely once at the
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point b; in the positive direction shown in Figure 3, where (ug, v,) is compatible with the
fixed orientation of Sy, and v, N B; =0 when i # j.

% Woy 2w
P
£ Bi

FIGURE 3. The positive intersection with a dual loop.

1.5. Punctured Heegaard diagrams. Given a genus g Heegaard diagram (S,;a, ),
let D be a disk component of S; \ (¢ U B). Then D is said to be joining if it satisfies
the following: i) D is a simple loop, where the closure is taken in the surface S,; and ii)
8D N a; (0D N B;, respectively) is a single connected arc for all 1 < j < g. See Figure 4.
We call a Heegaard diagram (S,; a, 8) with joining disk D a punctured Heegaard diagram

FIGURE 4. A punctured Heegaard diagram of genus 3.

and denote it by (Sg; @, 8; D). Given a punctured Heegaard diagram (Sy;a, 8; D), we
may equip the polyhedron

g g
P(Sg;a,ﬁ;D) = (Sg U (U Dai> U (U Dﬂ;)) \Int D C Ms,.a,8)

i=1
with a structure of an transversely-oriented flow-spine. We denote by VP(s, a8y 8 VECEOT
field on M(s,;q,5;p) Obtained by extending the concave traversing field on a regular neigh-
borhood of Ps,.q,5,0), see Section 1.3. Note that such a vector field Vp( SgienBiD) is uniquely
defined up to homotopy.
Each punctured Heegaard diagram (S,; o, B) defines an oriented, based Heegaard dia-
gram as in the following way:

e Since each of the slopes o and B appears on 8D exactly as a single arc, the
orientation of dD determines orientations of all of these slopes. Here, we consider
that D inherits the orientation from S, and we use “outernomal first” convention.

e For each 1 < i < g, take a base point b; on the interior of the arc §; N 8D.

Let (S,; @, 5; {bx}i_,) be an oriented, based Heegaard diagram and set M := M(s,:a,8)-
Let p be a point on ;. Then we define the normal vector n, € 7,5, of ¢; at p in such a
way that (n,,a,) is coherent to the fixed orientation of S,, where a, € Tpo; is coherent
to the orientation of a;. Then a; determines an element z; € m (M, x) and j3; determines
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r; =71i(21,...,2,) € m(M, %) starting at the point b; and following the oriented loop £;,
foreach ¢,7 = 1,...,g. Namely, we use the convention such that at each point p € a; N B;
we read z; (z;”!, respectively) when the normal vector n, € T,S; of a; at p is coherent
(not coherent, respectively) to the orientation of 5; at p.

Moreover, if we choose a dual system v = [J]_, 7 of B8, - determines y; € m (M, *)
in the same manner. Let p : Z[m (M, x)] — Z[H,(M)] be the canonical projection and
denote [z] = p(z) for z € m (M, ). The following is immediate from the above setting
and definition of the Reidemeister-Turaev torsion.

Corollary 1.1. Let (Sy, a, B) be a punctured Heegaard diagram and set M = M ((Sy, @, 5))-

Let (Sg; &, E; {b;}) be an oriented, based Heegaard diagram defined by (Sy,a, B). Let the
twisted chain complex C¢(M) be acyclic. Then there exist two integers k,l € {1,...,n}
such that

det By,

(e(fze]) = D{e([w]) - 1)

where By is the (k,l)-minor of the matriz ((,a ([%D)l o namely the matriz obtained
! <ij<g

T‘p(M’ [V(Sg;a,ﬂ;D)]) = € Fx/ + 1,

by removing k-th row and l-th column from the matriz (ga ([-g—;l})) i Here, a—%
* 1<4,j<g
denotes the Fox’s free differential calculus, and if Bry = 0, we set det By = 1.

1.6. BW-decompositions and DS-diagrams. Let P be a flow-spine of a closed 3-
manifold M. Let N be a regular neighborhood of P. Recall that ON = S%2. Then
the collapsing N \, P induced a retraction 7 such that N is the mapping cylinder of
m|on : ON — P. This map satisfies the following:
(1) 7=1(S(P)) N ON is a trivalent graph,;
(2) For z € P, ¢~!(x) consists of 2, 3 or 4 points according as z € P\ S(P), = €
S(P)\V(P) or z € V(P); and
(3) There exists a circle e in 771(S(P)) N ON such that
(a) ON \ e is the disjoint union of B and W (this is called a Black and White (or
simply B-W) decomposition);
(b) Every component of e has B on one side and W on the other side;
(c) m maps e \ 7~}(V(P)) bijectively onto S(P) \ V(P); and
(d) = maps B (W, respectively) bijectively onto P.

The left-hand side of Figure 5 depicts the B-W decomposition of ON. In the figure, the
arrows show the concave traversing field on NV defined by the branched spine P. Remark
that the curve e consists of the concave points on the boundary. The right-hand side
shows the trivalent graph 7=} (S(P))NON. In the figure, the arrows shows the retraction
7 induced by the collapsing, see [2, Section 3.3] for more details on B-W decomposition.

The above description provides a way to present the flow-spine P by a 3-regular graph
G = 7 }(S(P)) NON C ON = S? and the pairing on S? given by 7. This presentation
is called a DS-diagram.

2. THE REIDEMEISTER-TUREAV TORSIONS OF THE STANDARD SPIN® STRUCTURES

In this section, we introduce an algorithmic method for constructing punctured Hee-
gaard diagrams of Seifert fibered 3-manifolds in terms of the Seifert invariants.



m=H(S(P))

TSP FE
XS IPE

The concave traversing field

FIGURE 5. The B-W decomposition of dN.

2.1. Construction of punctured Heegaard diagrams of the standard Spin® struc-
tures. It is easy to see that each Seifert fibered 3-manifold decomposes into finite copies
of the pieces (trice-punctured sphere) x S!, (once-punctured torus) x S! and a fibered
torus, where D;, D, and Dj are mutually disjoint closed disks in S? and D' is a closed
disk in S! x S?, by cutting along tori on which the fibers are tangential. Our construc-
tion of a punctured Heegaard diagram of a Standard Spin® structure of a Seifert fibered
3-manifold is based on this decomposition.

Let Hg, Hy,, Hz, H; and H¢ be the pieces of a punctured Heegaard diagram shown in
Figure 6. In the figure, the curves « are bold and the curves 8 are thin. For Hg or Hy,
the disks D~ and D% are identified to be a meridian disk D of genus 1 compact orientable
surface with two boundary components.

Hp He

Hy Hy

FIGURE 6. The pieces Hy, Hg, Hy, Hz and Hc.
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We use the following notation for a continued fraction:

1
[a1,a2,...,a,) == : )
al + a—_l_
2+ ———

.. +_L

For a pair of mutually coprime natural numbers p, ¢ such that p > ¢, we define a word
w(p, q) of the letters L and R as follows:

( ) . L1 Ro2[a3 ... [Gn-2R0n 1]0n (lf n is Odd)
WP:9) =\ [e1Re2[9s... Ran-2[en-1R%  (if n is even),

where a;, ay, ..., a, are natural numbers with ¢/p = [a;, a2, .. ., an, 1].

Given a word w(p, q), where q/p = [a1, a2, . .., an, 1], we construct a piece of punctured
Heegaard diagram H, ), which corresponds to a fibered solid torus of type (p, ), in the
following way. Take a; copies of the diagram Hy. Then attach the boundary OF of the
i-th diagram H; and the disk O of the (i + 1)-th one along their boundaries following
the numbers 1, 2, 3,4, for each i = 1,2,...,a; — 1. For the disk I of the first diagram Hj,,
attach the disk F of the diagram Hs. Next, take a; copies of the diagrams Hgr. Then
attach the boundary OF of the j-th diagram Hp and the boundary OI of the j + 1-th one
along their boundaries so that the numbers 1,2, 3,4 on the both boundary circles match,
for each j = 1,2,...,ay — 1. For the disk I of the first diagram Hpg, attach the boundary
OF of the a;-th diagram H;. Continuing this process, we finally get a diagram by gluing
1+ Z:;l a; pieces of Hy, Hr and H¢, , see Figure 7. We denote the resulting piece of a

ay copies of Hp

FIGURE 7. Gluing H¢ and a, copies of Hj, makes a larger piece of a punc-
tured Heegaard diagram.

punctured Heegaard diagram by H, g).



We define H,, (b € Z) to be another piece of a punctured Heegaard diagram constructed

following the same argument using the word LRYL when b is non-negative and LRT
otherwise.

Let Hg and Hp be the pieces of a punctured Heegaard diagram shown in Figure 8
and 9, respectively. These pieces correspond to either (trice-punctured sphere) x S! and
(once-punctured torus) x S!, respectively. Again, we consider that the curves a are bold
and the curves § are thin in the figure.

FIGURE 9. The piece Hyp.

Let g be a non-negative integer and b be an integer. Let (p1,q1), (D2, q2),- - -, (Pr, gr) be
pairs of mutually coprime integers such that 1 <p; and 0 < ¢; <p; (i =1,2,...,7).
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Assume that g +r > 2. Prepare g +r — 1 copies H}, HZ,..., H} 9+7=2 of the piece Hg
and g copies H}, HZ, ..., HS of the piece Hy. First, attach the boundary E of the piece
H, of punctured Heegaard dlagra.m to the boundary OFE,; of the piece H} so that the
numbers 1,2, 3,4 on the both boundary circles match. For odd k£ with 1 < k < r, attach
the boundary I of the piece H,, q,) of piece to the boundary OE; of the piece H, § in the
same manner as above. For even k with 1 < k < r, attach the boundary E of the piece
Hp, pi—q.) Of & punctured Heegaard diagram to the boundary OF; of the piece HE 5 in the
same manner as above. For 1 < k < g — 1, attach the boundary E of the piece HX to the
boundary 0F; of the piece Hg ik in the same manner as above. Attach the boundary F
of the piece H3 to the boundary OE; of the piece H3*"~! in the same manner as above.
Note that now we have g+ 7 — 1 components of pieces Wi, Wa,. .., Wyir_1 of a punctured
Heegaard diagram such that

e W, contains both H, and H};

e W; contains HE for 2 < k < 7

e W contains HE for r < k < g+r —2; and
e W,4,_1 contains both H‘”" and H%’Lr.

For each even k with 1 < k < g+ 7 — 2, change the fixed normal direction of the diagram
Wk and

Now we get a punctured Heegaard diagram by attaching the boundary 0FE;3 of the
diagram Wj to the boundary 9F, of the diagram Wy, for 1 < k < g+ 7 —2. We denote
it by H(gibi(p1,q1).(p2.02),.-(pror))

If g +r < 2, attach the piece H, of a punctured diagram to the boundary OF); of the
piece H. Moreover, attach the rest of the pieces H(y, ) and copies of Hr, if any, to the
boundaries E5 and E3. In particular, if g + 7 < 2, attach the copies of H¢ to all the
remaining boundary components of H}.

Theorem 2.1. The punctured Heegaard diagram Hgp.(p, 0,),(p2,a2),-(prrar)) COTTESPONAS tO
the Seifert fibered 3-manifold S(g;b;(p1,q1), (P2,92),---,(Pr,qr)) with a standard Spin°
structure.

Proof. The idea of the proof is to construct the pieces of the punctured Heegaard diagram
corresponding to the pieces of the DS-diagram constructed in [11] following the proof of
Theorem 5.5.

Let m, B, W and e be as described in Section 1.6. Set A := 7(e; In(P)). Recall that e
has the B part on one side and the W one on the other side. The key idea is to draw a
simple closed curve C in A such that

(1) C is isotopic to e in A;
(2) CNe+#0 and C intersects e transversely; and
(3) Cn=~(S(P)) c e\ n YV (P)).

Let H;, be a piece of DS-diagram (on the annulus) shown in Figure 10 (i). This diagram
was constructed in [11]. The curve e lies horizontally in the middle part of the diagram
and it separates the diagram into B-part, on the upper side, and W-part, on the lower
side. Then the intersection CN#Hp is depicted by the bold lines in Figure 10 (ii). The two
curves CNHp cut the annulus into two disks, the under piece of which corresponds to the
joining disk. Note that the disk D~ shown in the figure is identified via the projection
with D*. Now we get a piece Hy, of a punctured Heegaard diagram. See Figure 11.



(iii)

FIGURE 10. From H;, to H;.

FI1GURE 11. The piece H;, of a punctured Heegaard diagram.

For the other pieces shown in [11], we can apply the same argument. Cnsequently, we
get the assertion. (W]

Remark 2.2. Forgetting the joining disk of the diagram H{gb(p1,q1),(p2,¢2),.s(prsar))» ODE has
a Heegaard diagram of the Seifert fibered manifold S(g; b; (p1, 1), (P2, @2), - - -, (Pr, @r)). For
each piece of the Heegaard diagram corresponding to a singular fiber obtained in the above
construction, the diagram can be destabilized so that it is a diagram on a once-punctured
torus.

2.2. Algorithm. Let M be a Seifert fibered 3-manifold S(g; b; (1, ¢1), (P2, 92), - - -, (Prs @r)-
Let H(s(g:bs(p1,01),02,2)rar)) = (5S¢, B, D) be the punctured Heegaard diagram con-
structed as above. Recall that once given a punctured Heegaard diagram, the Heegaard
surface S, assumed to be naturally oriented as explained in Section 1. Let F be a field and
¢ : Z[H1(M(s,0,5,0))] = F be a ring homomorphism. We can calculate the Reidemeister-
Turaev torsion of the standard Spin® structure of M, i.e. the principal Reidemeister
torsion T%(M), in the following algorithmic way (cf. [7]):
Step 1: Orient « and 8, and take base points of § following the rule prescribed in
Section 1.
Step 2: Get a presentation (zi,...,z, | 71,...,7y) of m (M, %) using the punctured
Heegaard diagram (S; a, 8; D) as in the rule of Section 1.5.
Step 3: Find an arbitrary dual system v of 8 in the diagram (S; ¢, 8; D) and relate
a word y; of zi,..., 2, to each loop +; in 7 in the same rule as in Section 1.5.
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Step 4: If there exist two integers k,[ € {1,..., g} such that all of det By;, ¢([y]) -1
and ¢([y;]) — 1 are nonzero, then we have

det Bk[
T2(M, V) = + ’ € F*/+1,
Vo) =+ o - D@ -1 </
where By, is the (k,[)-minor of the matrix (cp ([%D)K e If there are not
<i,j<g

such integers k and [, then it turns out that the twisted chain complex C*(M) is
not acyclic, hence we have 79(M,Vy) = 0 by definition.

Remark that due to [8] and [14], the above also gives an purely combinatorial algorithm
to compute the Seiberg-Witten invariant of standard Spin® structure when the given
Seifert fibered 3-manifold has the first homology group of infinite order.

3. EXAMPLES AND OBSERVATIONS

3.1. Lens spaces. Using the algorithm in Section 2.2 for a lens space L(p,q), we get a
Spin® structure on L(p,q) and a presentation of m;(L(p,q)) corresponding to the Spin®
structure can be written as m(L(p,q)) = (z | zP) after simplifying the generators and
relators. Then for a representation ¢ : H;(L(p,q)) — F*, we have a well-known result
T‘p(L(p, q)7 [vst]) = il/(( - 1)(41‘ - 1)a where C = (,0([.’13])

Let us focus on the lens space L(11,1). The set of the values of the Reidemeister-Turaev
torsions of the Spin® structures of L(11,1) is:

{7°(L(11,1),[V]) | [V] € Spin® (L (11,1))} = {:l:—(z—c—ﬁi e F*/+1
In this set, only the two values #:1/(¢ —1)? and +¢2?/(¢ — 1)? can be modified so that the
numerator is =1 and the denominator are the form of ({¢ — 1)(¢® — 1) for some a,b € Z.
In fact, we have +¢2/(¢ — 1)? = £1/(¢* — 1)%. Note that the value +1/(¢ — 1)? is the
torsion of the Spin® structure derived from the standard Seifert fibration of (L(11,1)) and
+¢?/(¢ — 1)? is that of the Spin°® structure derived from the standard Seifert fibration of
(L(11,10)).

0<i<11}.

¢C/E-17  ¢/g-1)
[} [ ]

¢/C-1)e o C/(C - 1)
G/C-1)Ye 0%/~ 1)
¢C/¢—-1)e 0C?/(¢ — 1) = 1/(¢!0 — 1)?
¢/ - 1) e /(¢ —1)?
o]
/(¢ -1)?

FIGURE 12. The set of Spin® structures on L(11,1) and their Reidemeister-
Turaev torsions (the signs & are omitted). The white dots are the standard
Spin¢ structures.

Next, consider the lens space L(11,2). For this manifold, the set of the values of the
Reidemeister-Turaev torsions of the Spin¢ structures is:
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{r*(L(11,2),[V]) | [V] € Spin® (L (11,2))} = {:l:(c — l)c(icﬁ —y € Fr/ 1 ’ 0<i< 11}

In this set, exactly the four values +1/(¢ — 1)(¢® — 1), £¢/(¢ — 1)(¢® — 1), £¢8/(¢ -
1)(¢® — 1) and £¢7/(¢ — 1)(¢® — 1) can be modified so that the numerator is +1 and
the denominator are the form of (¢¢ — 1)(¢® — 1) for some a,b € Z. In fact, we have
+(/(C-1)(¢° = 1) = £1/(¢® = 1)(¢** ~ 1), £¢*/(( = 1)(¢® — 1) = £1/(¢ - 1)(¢° — 1) and
+CT/(C=1)(¢°— 1) = £1/(¢° = 1)(¢*° - 1),

¢/C=1(EC°-1) =1/ - 1) ~01) Ci/(( -1 -1

/=D ~-1) =1/~ 1)~ 1o o /(¢ -1 1)
C/C-DEE-e 0 (3/(C -1t -1)
¢F/C-1D(1e o /(¢ -1t -1)
/-1 -1e OC/(C -1 - 1) =1/(¢C*° ~ 1)(C® - 1)

0
/(-1 -1)

FIGURE 13. The set of Spin® structures on L(11,2) and their Reidemeister-
Turaev torsions (the signs =+ are omitted). The white dots are the standard
Spin® structures.

Observation 3.1. The Reidemeister-Turaev torsion of a Spin® structure of a lens space
is of the form £1/(¢* — 1)(¢® — 1) for some a,b € Z if and only if the Spin® structure is
standard.

3.2. Sy xS Let S, be a closed orientable surface of genus g > 1 and consider the Seifert
fibered 3-manifold S, x S*. Using the algorithm in Section 2.2 for S, x S*, we get a Spin®
structure V;; on .S; x S' and a presentation of (S, x S') corresponding to the Spin®
structure can be written as

g

7T1(Sg X Sl) = <.’L'1,l‘2, < T2g, Y I .’Eiy.’L'i_ly—l,i = 1, 2, ey 29, H(ﬂfzi;lﬂ!zimgi_l_1332,5—1»,

i=1

and its abelianization is:
H(S, x §') = (@ quin) ®%y).

Let ¢ : Z[H,(S, x S*;Z)] — F be a ring homomorphism to a field F' such that each of
G = ¢([z;]) and ¢ = ¢([y]) has an infinite order. Then we have

T#(Sy x S, [Va]) = £(¢ — 1)*72
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The set of the values of the Reidemeister-Turaev torsions of the Spin® structures of
S, x S is:
{r*(S, x §', V) | V] € Spin‘ (S, x 5')}
- {iql G~ )P e P/ £ 1 , i1, ... g0 € Z}

™ ™ o ((¢-1)%2 o L
™ PY o (¢ —1)%-? o °
° o P (e Vi e o
o . o(¢—1)7t(¢ = 1) ° o
a Spin°® structure derived from a Spin structure

° ° o . °
. . o (TEA(( -~ 1) = (¢TH - 1)%?

. ™ . ° °

FIGURE 14. The set of Spin® structures on Sy x S! and their Reidemeister-
Turaev torsions (the signs + are omitted). The white dots are the standard
Spin€ structures.

Observation 3.2. The Reidemeister- Turaev torsion of a Spin® structure of Sy x S* is of
the form £(¢* — 1)29-2 for some a € Z if and only if the Spin® structure is standard.

3.3. Brieskorn 3-manifolds. The Brieskorn manifold X(p,q,r) of type (p,q,r) is a
closed 3-manifold defined by:
S(p,q,7) == {(z,9,2) € C*| [z]* + [y* + |2* = 1, 2P + y? + 2" = 0},

where p, ¢ and r are integers greater than 1.
¥(p, g,r) is the r-fold branched covering of the 3-sphere S* branched along a torus knot

or link of type (p,q). The first integral homology groups of the Brieskorn manifolds is

1 n = %1 (mod 6)

o) Z/3Z n = £2 (mod 6)
Hy(%(p,q,7); Z) ) Z2Z&®Z/2Z n =3 (mod 6)
787 n =0 (mod 6)

Using the algorithm in Section 2.2 for (2, 3, 6n), we get a Spin® structure Vy; on ¥(2, 3, 6n)
and a presentation of m;(X(2,3,6n)) corresponding to the Spin® structure can be written
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71(X(2,3,6n)) = (21,22, ..., Ten | TiTiven1 Tir1 5,1 <3 < 6n)
and its abelianization is:
Hi(2(2,3,6n); Z) := Z{[z1]) & Z{[z,]).

Let ¢ : Z[H,(X(2,3,6n); Z)] — F be a ring homomorphism to a field F' such that each of
¢1 = ¢([z1]) and {; = ¢([z2]) has an infinite order. Then we have

det (cp([azix"*s"é;; lz”l_l])) .
(G =1)(G-1)

The set of the values of the Reidemeister-Turaev torsions of the Spin® structures of S, x S!
is:
{T(2(2,3,6n), V]) | [V] € Spin° (£(2,3,6n))} = {£n('(F € F*/ £ 1] i1,ip € Z}

= +n.

79(%2(2,3,6n), [Va]) = £

n¢r*G  nGtG G nGE GG

~2 - .
n¢r?G nG'e nG nGé& nddé
° ° ° ° '
-2 -1 2
nG ng n n G n ¢y
° ° o ° ° <o
| a Spin® structure derived from a Spin structure

n(CG n GG nc.;l nGGt ndEG?

—2,-2 -1,-2 -2 -2 -2
UASTRS IS ® e n(1Gy n C¢;
[ ] [ J [ ] L ] [ ]

FIGURE 15. The set of Spin® structures on X(2,3,6n) and their
Reidemeister-Turaev torsions (the signs + are omitted). The white dot
is the standard Spin¢ structure.

Observation 3.3. The Reidemeister- Turaev torsion of a Spin® structure of the Brieskorn
3-manifolds (2, 3,6n) (n € N) is of the form +a for some a € Z if and only if the Spin°
structure is standard.

From the above observations, we may roughly say that the Reidemeister-Turaev torsions

of the standard Spin® structures of a Seifert fibered 3-manifold have standard values among
the set of the Reidemeister-Turaev torsions of all Spin® structures on the manifold.
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