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ABSTRACT. This note records the recent results on the following questions: Let $M$ and
$N$ be a closed orientable 3-manifolds, $D(M,N)$ be the set of degrees of maps from $M$ to
$N$ , denote $D(M, M)$ by $D(M)$ .

(1) For which $N$ , is the set $D(M, N)$ finite for any $M$?
(2) If $D(M)$ is unbounded, what is $D(M)$ ?
(3) When is a self-map of degree $\pm 1$ on $M$ homotopic to a homeomorphims?
Some of those results were presented at the RIMS Seminar at Akita Shirakami during

September 13-17, 2010. For the proofs of those results, see $[DeW2],$ $[DeSW]$ , [Wal], [Du],
[SWW], [SWWZ], [Sun].
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1. INTRODUCTION

Let $M$ and $N$ be two closed oriented 3-dimensional manifolds. Let $D(M, N)$ be the set
of degrees of maps from $M$ to $N$ , that is

$D(M, N)=\{d\in \mathbb{Z}|f:Marrow N, \deg(f)=d\}$ .

We will simply use $D(N)$ to denote $D(N, N)$ , the set of self-mapping degrees of $N$ .
The calculation of $D(M, N)$ is a classical topic which often appeared in the literatures.

According to [CT], Gromov thought it is a fundamental problem in topology to determine
the set $D(M, N)$ for any dimension $n$ .

Specially the calculation of $D(M)$ , the integer set naturally associated to each closed
orientable manifold $M$ which presents an interesting connections between topology and
number theory.

The result is simple and well-known for dimension $n=1,2$ . For dimension $n>3$ , there
are some interesting special results (See [DW] for recent ones and references therein), but
it is difficult to get general results, since there are no classification results for manifolds
of dimension $n>3$ .

The case of dimension 3 becomes the most attractive in this topic. Since Thurston‘s
geometrization conjecture, which has been confirmed, implies that closed orientable 3-
manifolds can be classified in reasonable sense.

A basic property of $D(M, N)$ is reflected in the following:

Question 1.1. (see [Wa2, Question 1.3] and [Re, Problem $A]$ ): For which closed orientable
3-manifolds $N$ , is the set $D(M, N)$ finite for any given closed oriented 3-manifold $M$ ?

It is clear if $D(N)$ is unbounded, then $D(M, N)$ is unbounded for some $M$ . For each
$M$ , it is clear $\{0,1\}\subset D(M)$ , and if $D(M)$ is bounded then $D(M)\subset\{0,1, -1\}$ .
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Question 1.2. Let $M$ be a closed orientable 3-manifold.
(1) When is $D(M)$ bounded?
(2) If $D(M)$ is unbounded, what is $D(M)$ ?

Remark 1.3. The still unknown part for $D(M)$ is that if $D(M)$ is bounded, when does
$-1\subset D(M)$?

The following related question is also natural and interesting.

Question 1.4. For which closed orientable 3-manifolds $M_{f}$ whether there is a selfmap of
$degree\pm 1$ on $M$ which is not homotopic to a homeomorphism on $M$ ’;’

Under Thurston $s$ picture of 3-manifold, which is confirmed now, Question 1.2 (1) is
answered 20 years ago; Question 1.1 and Question 1.2 (2) were answered very recently;
the answer of Question 3 is known for Haken manifold and hyperboloic manifolds long
times ago, and the answer is complete now for prime 3-manifolds. In Sections 2, 3 and 4,
we will present those answers as well as how those answers are developed.

To end this section, we present the picture of 3-manifold which will be used to present
the answers. All terminologies not defined are standard, see [He], [Sc] and [IR].

The picture of 3-manifolds: Each closed orientable 3-manifold $N$ has a unique
prime decomposition $N_{1}\#\ldots..\# N_{k}$ , the prime factors are unique up to the order and up
to homeomorphisms. Each closed orientable prime 3-manifold $N$ has a unique geometric
decomposition such that each geometric piece supports one of the following eight geome-
tries: $H^{3},\overline{PSL}(2, R),$ $H^{2}\cross E^{1}$ , Sol, Nil, $E^{3},$ $S^{3}$ and $S^{2}\cross E^{1}$ (where $H^{n},$ $E^{n}$ and $S^{n}$ are
n-dimensional hyperbolic space, Euclidean space and sphere respectively), for details see
[Th] and [Sc]. Moreover each geometric piece of $N$ with non-trivial geometric decomposi-
tion supports either $H^{3}$-geometry or $H^{2}\cross E^{1}$-geometry, hence each 3-manifold supporting
one of the remaining six geometry is closed. Furthermore each 3-manifold supporting ge-
ometries of either $H^{2}\cross E^{1}$ , or $E^{3}$ , or $S^{2}\cross E^{1}$ is covered by a trivial circle bundle, and
each 3-manifold supporting geometries of either Sol, or Nil, or $E^{3}$ is covered by a torus
bundle. Call prime closed orientable 3-manifold $N$ a non-trivial gmph manifold if $N$ has
non-trivial geometric decomposition but contains no hyperbolic piece.
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2010.

The author is partially supported by grant No.11071006 of the National Natural Science
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2. ABOUT $D(M, N)$

This section is based on $[DeW2]$ and $[DeSW]$ .
The answer of Question 1.1 is the following

Theorem 2.1. Let $N$ be a closed orientable 3-manifold. Then there is a closed orientable
3-manifold $M$ such that $|D(M, N)|=\infty$ if and only $if|\mathcal{D}(R)|=\infty$ for each prime factor
$R$ of $N$ .
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In the following we will make a brief recall of the development of Theorem 2.1.

The development of Theorem 2.1: It is a common sense for many people that
$|D(N)|=\infty$ for 3-manifold $N$ which is either a product of a surface and the circle, or $N$

is covered by the 3-sphere. The first significant result in this direction is due to Milnor
and Thurston in the later $1970’ s$ . By using the minimum integer number of 3-simplices
to build $N$ [MT, Theorem 2], they proved

Theorem 2.2. For each given hyperbolic 3-manifold $N_{f}|D(M, N)|<\infty$ for any $M$ .
Gromov [G] introduced the simplicial volume $\Vert N\Vert$ for a manifold $N$ , which is approxi-

mately the minimum real number of 3-simplices to build $N$ . Gromov and Thurston proved
that $\Vert N\Vert$ is proportional to the hyperbolic volume of $N$ in the case of $N$ is a hyperbolic 3-
manifold, and then Soma proved $\Vert N\Vert$ is proportional to the sum of the hyperbolic volume
of the hyperbolic pieces in the geometric decomposition of $N$ (see [G], [Th], [So]). $||*||$

respects the mapping degrees, i.e. for any map $f:Marrow N$ then $||M||\geq|\deg(f)|\cdot||N||$ .
Then it is deduced that

Theorem 2.3. Suppose $N$ is a closed orientable 3-manifold. If a prime factor of $N$ has
a hyperbolic piece in its geometric decomposition, then $|D(M, N)|<\infty$ for any $M$ .

Brooks and Goldman [BGl] [BG2] introduced the Seifert volume $SV(*)$ for closed
orientable 3-manifolds which also respects the mapping degrees and is non-zero for each
3-manifold supporting the $\overline{PSL}(2, R)$ geometry. Then it is deduced that

Theorem 2.4. Suppose $N$ is a closed orientable 3-manifold. If a prime factor of $N$

supports $\overline{PSL}(2, R)$ geometry. Then $|D(M, N)|<\infty$ for any $M$ .

Both Theorems 2.3 and 2.4 were already known in the early 1980 $s$ . The following result
is known no later than early 1990 $s$ (see [Wal] for example).

Theorem 2.5. Suppose $N$ is a closed orientable 3-manifold. Then $|\mathcal{D}(N)|=\infty$ if and
only if either $N$ is covered by a torus bundle or a trivial circle bundle, or each prime
factor of $N$ is covered by $S^{3}$ or $S^{2}\cross E^{1}$ .

After Theorems 2.3, 2.4 and 2.5, the remaining unknown cases for Question 1.1 are:
either a prime factor of $N$ is a non-trivial graph manifold; or $N$ is a non-prime 3-manifold,
and $|\mathcal{D}(R)|=\infty$ for each prime factor $R$ of $N$ , but some $R$ is not covered by either $S^{3}$ or
$S^{2}\cross E^{1}$ .

In 2009 it is proved in $[DeW2]$ that each closed orientable non-trivial graph manifold $N$

has a finite covering $\tilde{N}$ with positive Seifert volume (it is still unknown weather $SV(\tilde{N})>0$

implies $SV(N)>0$ for a finite cover $\tilde{N}arrow N$) $)$ , and therefore it is deduced that

Theorem 2.6. Let $N$ be closed orientable non-trivial graph manifold. Then $|D(M, N)|<$
$\infty$ for any closed orientable 3-manifold $M$ .

Remark 2.7. Two years before $[DeW2]$ , Theorem 2.6 is proved under the restriction that
$M$ are also graph manifolds $[DeW1]$ , by using a standard form of maps between graph
manifolds[Del], and the estimation of the PSL$(2,R)$-volume for a certain special class of
graph manifolds.
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In 2010 it is proved in $[DeSW]$

Theorem 2.8. Let $N$ be a given closed oriented 3-manifold N. If $|\mathcal{D}(R)|=\infty$ for
each prime factor $R$ of $N$ , then there is a closed orientable 3-manifold $M$ such that
$|D(M, N)|=\infty$ .

Theorems 2.32.4, 2.6 and 2.8 (and Theorem 2.5) imply Theorem 2.1.

Remark 2.9. Theorem 2.8 follows from an explicit result [$DeSW$, Theorem 2.5], which
provides the concrete $M$ and the infinite set in $D(M, N)$ for the given $N$ . The proof of
Theorem 2.8 is essentially elementary, which does not appear until now mainly due to
three reasons:

(1) $|\mathcal{D}(N)|$ may be finite even if $|\mathcal{D}(R)|=\infty$ for each prime factor $R$ of $N$ ; for example
$|\mathcal{D}(T^{3})|=\infty$ but $|\mathcal{D}(T^{3}\# T^{3})|<\infty$ for 3-dimensional torus $T^{3}$ [Wal]. Such phenomena
puzzled us to wonder if Theorem 2.8 was always true [Wa2, page 460].

(2) The target concerned in Theorem 2.8 became the only unknown case for Question
1.1 after the work $[DeW2]$ .

(3) The proof of Theorem 2.8 uses the result of $\mathcal{D}(N)$ which was just completely deter-
mined for each $N$ recently ([Du], [SWW], [SWWZ]).

3. ABOUT $D(M)$

This section is based on [Wal], [SWW], [SWWZ] and [Du].

3.1. Finer classes for calculate $D(N)$ when $D(N)$ is unbounded. To make this
section to be complete, we allow it to have some light repeat with Section 2. The following
result, which is a re-statement of Theorem 2.5, is known in early 1990 $s$ and answered
Question 1.2 (1).

Theorem 3.1. Suppose $M$ is a geometntable 3-manifold. Then $M$ admits a self-map of
degree larger than 1 if and only if $M$ is either

$(a)$ covered by a torus bundle over the circle, $or$

$(b)$ covered by $F\cross S^{1}$ for some compact surface $F$ with $\chi(F)<0_{f}$ or
$(c)$ each prime factor of $M$ is covered by $S^{3}$ or $S^{2}\cross E^{1}$ .
Hence for any 3-manifold $M$ not listed in $(a)-(c)$ of Theorem 3.1, $D(M)$ is either

$\{0,1, -1\}$ or $\{0,1\}$ , which depends on whether $M$ admits a self map of degree $-1$ . To
determine $D(M)$ for geometrizable 3-manifolds listed in $(a)-(c)$ of Theorem 1.0, let’s have
a close look of them.

For short, we often call a 3-manifold supporting Nil geometry a Nil 3-manifold, and
so on. Among Thurston‘s eight geometries, six of them belong to the list $(a)-(c)$ in
Theorem 1.0. 3-manifolds in (a) are exactly those supporting either $E^{3}$ , or Sol or Nil
geometries. $E^{3}$ 3-manifolds, So13-manifolds, and some Ni13-manifolds are torus bundle
or semi-bundles; Ni13-manifolds which are not torus bundles or semi-bundles are Seifert
fibered spaces hav\’ing Euclidean orbifolds with three singular points. 3-manifolds in (b)
are exactly those supporting $H^{2}\cross E^{1}$ geometry; 3-manifolds supporting $S^{3}$ or $S^{2}\cross E^{1}$

geometries form a proper subset of (3). Now we divide a113-manifolds in the list $(a)-(c)$

in Theorem 3.1 into the following five classes:
Class 1. $M$ supporting either $S^{3}$ or $S^{2}\cross E^{1}$ geometries;
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Class 2. each prime factor of $M$ supporting either $S^{3}$ or $S^{2}\cross E^{1}$ geometries, but $M$ is
not in Class 1;

Class 3. torus bundles and torus semi-bundles;
Class 4. Ni13-manifolds not in Class 3;
Class 5. $M$ supporting $H^{2}\cross E^{1}$ geometry. We will present $D(M)$ for $M$ in all those

five classes. To do this, we need first to coordinate 3-manifolds in each class, then state
the results of $D(M)$ in term of those coordinates. This is carried in the next subsection.

3.2. Main Results. Class 1. According to [Or] or [Sc], the fundamental group of a 3-
manifold supporting $S^{3}$-geometry is among the following eight types: $\mathbb{Z}_{p},$ $D_{4n}^{*},$ $T_{24}^{*},$ $O_{48}^{*}$ ,
$I_{120}^{*},$ $T_{8\cdot 3^{q}}’,D_{n\cdot 2^{q}}’$ and $\mathbb{Z}_{m}\cross\pi_{1}(N)$ , where $N$ is a 3-manifold supporting $S^{3}$-geometry,
$\pi_{1}(N)$ belongs to the previous seven ones, and $|\pi_{1}(N)|$ is coprime to $m$ . The cyclic group
$Z_{p}$ is realized by lens space $L(p, q)$ , each group in the remaining types is realized by a
unique 3-manifold supporting $S^{3}$-geometry. Note also the sub-indices of those seven types
groups are exactly their orders, and the order of the groups in the last type is $m|\pi_{1}(N)|$ .
There are only two closed orientable 3-manifolds supporting $S^{2}\cross E^{1}$ geometry: $S^{2}\cross S^{1}$

and $RP^{3}\# RP^{3}$

Theorem 3.2. (1) $D(M)$ for $M$ supporting $S^{3}$ -geometry are listed below:

(2) $D(S^{2}\cross S^{1})=D(RP^{3}\# RP^{3})=\mathbb{Z}$ .

Class 2. We assume that each 3-manifold $P$ supporting $S^{3}$-geometry has the canonical
orientation induced from the canonical orientation on $S^{3}$ . When we change the orientation
of $P$ , the new oriented 3-manifold is denoted by $\overline{P}$ . Moreover, lens space $L(p, q)$ is
orientation reversed homeomorphic to $L(p,p-q)$ , so we can write all the lens spaces
connected summands as $L(p, q)$ . Now we can decompose each 3-manifold in Class 2 as

$M=(mS^{2}\cross S^{1})\#(m_{1}P_{1}\neq n_{1}\overline{P}_{1})\#\cdots\#(m_{s}P_{s}\neq n_{s}\overline{P}_{s})$

$\#(L(p_{1}, q_{1,1})\#\cdots\# L(p_{1}, q_{1,r_{1}}))\#\cdots\#(L(p_{t}, q_{t,1})\#\cdots\# L(p_{t}, q_{t,r_{t}}))$ ,
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where all the $P_{i}$ are 3-manifolds with finite fundamental group different from lens spaces,
all the $P_{i}$ are different from each other, and all the positive integer $p_{i}$ are different from
each other. Define

$D_{iso}(M)=$ {$deg(f)|f$ : $Marrow M,$ $f$ induces an isomorphism on $\pi_{1}(M)$ }.

Theorem 3.3. (1) $D(M)=D_{iso}(m_{1}P_{1}\neq n_{1}\overline{P}_{1})\cap\cdots\cap D_{iso}(m_{8}P_{S}\neq n_{S}\overline{P}_{s})\cap$

$D_{iso}(L(p_{1}, q_{1,1})\#\cdots\# L(p_{1}, q_{1,r}1))\cap\cdots\cap D_{iso}(L(p_{t}, q_{t,1})\#\cdots\# L(p_{t}, q_{t,r_{t}}))$ ;

(2) $D_{iso}(mP\# nP)=\{\begin{array}{ll}D_{iso}(P) if m\neq n,D_{iso}(P)\cup(-D_{iso}(P)) ifm=n;\end{array}$

(3) $D_{iso}(L(p, q_{1})\#\cdots\neq L(p, q_{n}))=H^{-1}(C)$ .

The notions $H$ and $C$ in Theorem 3.3 (3) is defined as below:
Let $U_{p}=$ {all units in ring $\mathbb{Z}_{p}$ }, $U_{p}^{2}=\{a^{2}|a\in U_{p}\}$ , which is a subgroup of $U_{p}$ . We

consider the quotient $U_{p}/U_{p}^{2}=\{a_{1}, \cdots, a_{m}\}$ , every $a_{i}$ corresponds with a coset $A_{\triangleleft}$. of $U_{p}^{2}$ .
For the structure of $U_{p}$ , see [IR] page 44. Define $H$ to be the natural projection from
$\{n\in \mathbb{Z}|gcd(n,p)=1\}$ to $U_{p}/U_{p}^{2}$ .

Define $\overline{A}_{8}=\{L(p, q_{i})|q_{i}\in A_{s}\}$ (with repetition allowed). In $U_{p}/U_{p}^{2}$ , define $B_{l}=$

$\{a_{s}|\#\overline{A}_{s}=l\}$ for $l=1,2,$ $\cdots$ , there are only finitely many $l$ such that $B_{l}\neq\emptyset$ . Let
$C_{l}=\{a\in U_{p}/U_{p}^{2}|a_{i}a\in B_{l}, \forall a_{i}\in B_{l}\}$ if $B_{l}\neq\emptyset$ and $C_{l}=U_{p}/U_{p}^{2}$ otherwise. Define
$C= \bigcap_{l=1}^{\infty}C_{l}$ .

Class 3. To simplify notions, for a diffeomorphism $\phi$ on torus $T$ , we also use $\phi$ to
present its isotopy class and its induced 2 by 2 matrix on $\pi_{1}(T)$ for a given basis.

A torus bundle is $M_{\phi}=T\cross I/(x, 1)\sim(\phi(x), 0)$ where $\phi$ is a diffeomorphism of the
torus $T$ and $I$ is the interval $[0,1]$ . Then the coordinates of $M_{\phi}$ is given as below:

(1) $M_{\phi}$ admits $E^{3}$ geometry, $\phi$ conjugates to a matrix of finite order $n$ , where $n\in$

$\{1,2,3,4,6\}$ ;

(2) $M_{\phi}$ admits Nil geometry, $\phi$ conjugates to $\pm(\begin{array}{ll}1 n0 1\end{array})$ , where $n\neq 0$ ;

(3) $M_{\phi}$ admits Sol geometry, $\phi$ conjugates to $(\begin{array}{ll}a bc d\end{array})$ , where $|a+d|>2$ , ad-bc $=1$ .

A torus semi-bundle $N_{\phi}=N \bigcup_{\phi}N$ is obtained by gluing two copies of $N$ along their
torus boundary $\partial N$ via a diffeomorphism $\phi$ , where $N$ is the twisted I-bundle over the
Klein bottle. We have the double covering $p:S^{1}\cross S^{1}\cross Iarrow N=S^{1}\cross S^{1}\cross I/\tau$ , where
$\tau$ is an involution such that $\tau(x, y, z)=(x+\pi, -y, 1-z)$ .

Denote by $l_{0}$ and $l_{\infty}$ on $\partial N$ be the images of the second $S^{1}$ factor and first $S^{1}$ factor
on $S^{1}\cross S^{1}\cross\{1\}.$ A canonical coordinate is an orientation of $l_{0}$ and $l_{\infty}$ , hence there are
four choices of canonical coordinate on $\partial N$ . Once canonical coordinates on each $\partial N$ are
chosen, $\phi$ is identified with an element $(\begin{array}{ll}a bc d\end{array})$ of $GL_{2}(\mathbb{Z})$ given by $\phi(l_{0}, l_{\infty})=(l_{0}, l_{\infty})$

$(\begin{array}{ll}a bc d\end{array})$ .

With suitable choice of canonical coordinates of $\partial N,$ $N_{\phi}$ has coordinates as below:

(1) $N_{\phi}$ admits $E^{3}$ geometry, $\phi=(\begin{array}{ll}1 00 1\end{array})$ or $(\begin{array}{ll}0 11 0\end{array})$ ;

(2) $N_{\phi}$ admits Nil geometry, $\phi=(\begin{array}{ll}1 0z 1\end{array}),$ $(\begin{array}{ll}0 11 z\end{array})$ or $(\begin{array}{ll}1 z0 1\end{array})$ , where $z\neq 0$ ;
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(3) $N_{\phi}$ admits Sol geometry, $\phi=(\begin{array}{ll}a bc d\end{array})$ , where $abcd\neq 0$ , ad–bc $=1$ .

Theorem 3.4. $D(M_{\phi})$ is in the table below for torus bundle $M_{\phi}$ , where $\delta(3)=\delta(6)=$

$1,$ $\delta(4)=0$ .

To coordinate 3-manifolds in Class 4 and Class 5, we first recall the well known coor-
dinates of Seifert fibered spaces.

Suppose an oriented 3-manifold $M’$ is a circle bundle with a given section $F$ , where $F$

is a compact surface with boundary components $c_{1},$
$\ldots,$

$c_{n}$ with $n>0$ . On each boundary
component of $M’$ , orient $c_{i}$ and the circle fiber $h_{i}$ so that the product of their orientations
match with the induced orientation of $M’$ (call such pairs $\{(q, h_{i})\}$ a section-fiber coor-
dinate system). Now attach $n$ solid tori $S_{i}$ to the $n$ boundary tori of $M’$ such that the
meridian of $S_{i}$ is identified with slope $r_{i}=c_{i}^{\alpha_{i}}h_{i}^{\beta_{i}}$ where $\alpha_{i}>0,$ $(\alpha_{i}, \beta_{i})=1$ . Denote the
resulting manifold by $M( \pm g;\frac{\beta_{1}}{\alpha_{1}}, \cdots, \frac{\beta_{s}}{\alpha_{S}})$ which has the Seifert fiber structure extended
from the circle bundle structure of $M’$ , where $g$ is the genus of the section $F$ of $M$ , with
the sign $+$ if $F$ is orientable and –if $F$ is nonorientable, here ‘genus’ of nonorientable
surfaces means the number of $RP^{2}$ connected summands. Call $e(M)= \sum_{i=1}^{s}\frac{\beta_{t}}{\alpha_{i}}\in \mathbb{Q}$ the
Euler number of the Seifert fiberation.

Class 4. If a Nil manifold $M$ is not a torus bundle or torus semi-bundle, then $M$

has one of the following Seifert fibreing structures: $M( O;\frac{\beta_{1}}{2}, \frac{\beta_{2}}{3}, \frac{\beta_{3}}{6}),$ $M( O;\frac{\beta_{1}}{3}, \frac{\beta_{2}}{3}, \frac{\beta_{3}}{3})$ , or
$M( O;\frac{\beta_{1}}{2}, \frac{\beta_{2}}{4}, \frac{\beta_{3}}{4})$ , where $e(M)\in \mathbb{Q}-\{0\}$ .
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Theorem 3.5. For 3-manifold $M$ in Class 4, we have
(1) $D(M( O;\frac{\beta_{1}}{2}, \frac{\beta_{2}}{3}, \frac{\beta_{3}}{6}))=\{l^{2}|l=m^{2}+mn+n^{2}, l\equiv 1mod 6, m, n\in \mathbb{Z}\}$ ;

$(3)D(2)D\{_{M}^{M}\{_{0_{1}\frac{\frac{\beta_{1}}{\beta_{1}^{3}2}}{},\frac{}{4},\frac))=\{l}^{o,\cdot,\frac{\beta_{2}}{\beta_{2}^{3}},\frac{\beta_{3}}{\beta_{3}43}))=\{\iota_{21_{l=m^{2}+n^{2},l\equiv 1mod 4,m,n\in \mathbb{Z}\}}^{l=m^{2}+mn+n^{2},l\equiv 1mod 3,m,n.\in \mathbb{Z}\}}}^{2}},\cdot$

Class 5. All manifolds supporting $H^{2}\cross E^{1}$ geometry are Seifert fibered spaces $M$ such
that $e(M)=0$ and the Euler characteristic of the orbifold $\chi(O_{M})<0$ .

Suppose $M=(g; \frac{\beta_{1,1}}{\alpha_{1}}, \cdots, \frac{\beta_{1,m_{1}}}{\alpha_{1}}, \cdots, \frac{\beta_{n.1}}{\alpha_{n}}, \cdots, \frac{\beta_{n.m_{n}}}{\alpha_{n}})$ , where all the integers $\alpha_{i}>1$ are
different from each other, and $\sum_{i=1}^{n}\sum_{j=1_{i}^{\frac{\beta}{\alpha’}A}}^{m_{i}}=0$ .

For each $\alpha_{i}$ and each $a\in U_{\alpha_{i}}$ , define $\theta_{a}(\alpha_{i})=\#\{\beta_{i,j}|p_{i}(\beta_{i,j})=a\}$ (with repetition
allowed), $p_{i}$ is the natural projection from $\{n|gcd(n, \alpha_{i})=1\}$ to $U_{\alpha_{i}}$ . Define $B_{l}(\alpha_{i})=$

$\{a|\theta_{a}(\alpha_{i})=l\}$ for $l=1,2,$ $\cdots$ , there are only finitely many $l$ such that $B_{l}(\alpha_{i})\neq\emptyset$ . Let
$C_{l}(\alpha_{i})=\{b\in U_{\alpha_{i}}|ab\in B_{l}(\alpha_{i}), \forall a\in B_{l}(\alpha_{i})\}$ if $B_{l}(\alpha_{i})\neq\emptyset$ and $C_{l}(\alpha_{i})=U_{\alpha_{i}}$ otherwise.
Finally define $C( \alpha_{i})=\bigcap_{l=1}^{\infty}C_{l}(\alpha_{i})$ , and $\overline{C}(\alpha_{i})=p_{i}^{-1}(C(\alpha_{i}))$ .

Theorem 3.6. $D(M(g; \frac{\beta_{1,1}}{\alpha 1}, \cdots, \frac{\beta_{1m}}{\alpha 1}, \frac{\beta_{n,1}}{\alpha_{n}}, \cdots, \frac{\beta_{n,mn}}{\alpha_{n}}))=\bigcap_{i=1}^{n}\overline{C}(\alpha_{i})$.

3.3. A brief comment of the topic and organization of the paper. Theorem 3.1
was appeared in [Wal]. The proof of the “only if‘ part in Theorem 3.1 is based on
the results on simplicial volume developed by Gromov, Thurston and Soma (see [So]),
and various classical results by others on 3-manifold topology and group theory ([He],
[SW], [R] $)$ . The proof of “ if’ part in Theorem 3.1 is a sequence elementary constructions,
which were essentially known before, for example see [HL] and [KM] for (3). That graph
manifolds admit no self-maps of degrees $>1$ also follows from a recent work [De2].

The table in Theorem 3.2 is quoted from [Du], which generalizes the earlier work
[HKWZ], which is presented as below.

Proposition 3.7. For 3-manifold $M$ supporting $S^{3}$ geometry,
$D_{iso}(M)=$ { $k^{2}+l|\pi_{1}(M)|$ , where $k$ and $|\pi_{1}(M)|$ are co-prime}.

The topic of mapping degrees between (and to) 3-manifolds covered by $S^{3}$ has been
discussed for long time and has much relation with other topics (see [Wa2] for details).
We just mention several papers: in very old papers [Rh] and [Ol], the degrees of maps
between any given pairs of lens spaces are obtained by using equivalent maps between
spheres; in [HWZ], $D(M, L(p, q))$ can be computed for any 3-manifold $M$ ; and in a recent
one [MP], an algorithm (or formula) is given for the degrees of maps between given pairs
of 3-manifolds covered by $S^{3}$ in term of their Seifert invariants.

Theorem 3.4 is proved in [SWW].
Theorem 3.3, Theorem 3.5 and Theorem 3.6 are proved in [SWWZ].

3.4. Some examples of computation.

Example 3.8. Let $M_{1}$ $=$ $(P\neq\overline{P})\#(L(7,1)\# L(7,2)\neq 2L(7,3))$ and $M_{2}$ $=$

$(2P\#\overline{P})\#(L(7,1)\# L(7,2)\# L(7,3))$ , where $P$ is the Poincare homology three sphere. Ap-
ply Theorem 3.3 we have

$D(M_{1})=\{840n+i|n\in \mathbb{Z},$ $i=1,71,121,169,191,239,241,289,311,359,361$ ,
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409, 431, 479, 481, 529, 551, 599, 601, 649, 671, 719, 769, 839.}

$D(M_{2})=\{840n+i|n\in \mathbb{Z}, i=1,121,169,289,361,529.\}$

Example 3.9. By Theorem 3.4, for the torus bundle $M_{\phi},$ $\phi=(\begin{array}{ll}2 11 1\end{array})$ , among the first

20 integers $>0$ , exactly 1, 4, 5, 9, 11, 16, 19, $20\in D(M_{\phi})$ .

Example 3.10. For Ni13-manifold $M=M(0; \frac{\beta_{1}}{2}, \frac{\beta_{2}}{3}, \frac{\beta_{3}}{6})$ ,

$D(M)=\{l^{2}|l=m^{2}+mn+n^{2}, l\equiv 1 mod 6, m, n\in \mathbb{Z}\}$ .
The numbers in $D(M)$ smaller than 10000 are exactly 1,49,169,361,625,961,1369, 1849,

2401,3721, 4489, 5329, 6241, 8291, 9409.

$wehaveD(M)=\{5n+1|n\in \mathbb{Z}\}\cap\{7n+i|n\in \mathbb{Z},=,i=\{35n+i|n\in \mathbb{Z},$$i=Example3.11$.
$ForH^{2}\cross E^{1}manifo1dM=M(2;\frac{1}{5}, \frac{1}{5,i},-\frac{2}{5,1},\frac{1}{27},’\frac{2}{4^{7}}-\frac{3}{7}),applyTheorem3.6$

$1,11,16\}$ .

4. REALIZATION OF SELF-MAP OF DEGREE $\pm 1$ BY A HOMEOMORPHISMS

This section is based on [Sun].
Given a closed orientable n-manifold $M$ , it is natural to ask, whether all the degree $\pm 1$

self-maps on $M$ can be homotopic to homeomorphisms. Without specific description, all
the manifolds below are closed and orientable.

If the property stated above holds for $M$ , we say $M$ has property H. In particular,
if all the degree 1 $(-1)$ self-maps on $M$ can be homotopic to homeomorphisms, we say
$M$ has property lH (-IH). $M$ has property $H$ if and only if $M$ has both property
lH and property -IH. We can observe that, if $M$ admits an orientation-reversing self-
homeomorphism, then $M$ has property lH if and only if $M$ has property -IH. So we
mostly only concern property lH.

Below we would like to determine which prime 3-manifolds, which are the basic part of
3-manifolds, has property H.

It is known that each degree $\pm 1$ self-map map $f$ on $M$ induces an isomorphism $f_{*}$ :
$\pi_{1}(M)arrow\pi_{1}(M)$ .

Hyperbolic 3-manifolds and Haken manifolds have property $H$ by the celebrated Mostow
rigidity theorem [M] and Waldhausen‘s theorem on Haken manifolds(see 13.6 of [He]).

This two theorems cover most cases of irreducible 3-manifolds, including: the mani-
folds with nontrivial JSJ decomposition, hyperbolic manifolds, Seifert manifolds $M$ with
incompressible surface. So the remaining cases are:

Class 1. manifolds supporting $S^{3}$-geometry;
Class 2. Seifert manifolds supporting Nil or $P\overline{SL(2,}R$) geometries with orbifold

$S^{2}(p, q, r)$ ;

4.1. Main Results. Class 1. According to [Or] or [Sc], the fundamental group of a 3-
manifold supporting $S^{3}$-geometry is among the following eight types: $\mathbb{Z}_{p},$ $D_{4n}^{*},$ $T_{24}^{*},$ $O_{48}^{*}$ ,
$I_{120}^{*},$ $T_{8\cdot 3^{q}}’,D_{n\cdot 2^{q}}’$ and $\mathbb{Z}_{m}\cross\pi_{1}(N)$ , where $N$ is a $S^{3}$ 3-manifold, $\pi_{1}(N)$ belongs to the
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previous seven ones, and $|\pi_{1}(N)|$ is coprime to $m$ . The cyclic group $Z_{p}$ is realized by lens
space $L(p, q)$ , each group in the remaining types is realized by a unique $S^{3}$-manifold.

Theorem 4.1. For $M$ supporting $S^{3}$ -geometry, $M$ has property lH if and only if $M$

belongs to one of the following classes:
i$)$ $S^{3}$ ;
ii) $L(p, q)$ satisfies one of the following:

a$)$ $p=2,4,p_{1}^{e_{1}},2p_{1}^{e_{1}}$ ;
b$)$ $p=2^{s}(s>2),$ $4p_{1}^{e_{1}},p_{1}^{e_{1}}p_{2}^{e_{2}},2p_{1}^{e_{1}}p_{2}^{e_{2}},$ $q^{2}\equiv 1$ mod $p$ and $q\neq\pm 1$ ;

iii) $\pi_{1}(M)=\mathbb{Z}_{m}\cross D_{4k}^{*},$ $(m, k)=(1,2^{k}),$ $(p_{1}^{e_{1}},2),$ $(1,p_{2^{2}}^{e})$ or $(p_{1}^{e_{1}},p_{2^{2}}^{e})$ ;
iv) $\pi_{1}(M)=D_{2^{k+2}p_{1^{1}}^{e}}’$ ;
v$)$ $\pi_{1}(M)=T_{24}^{*}$ or $\mathbb{Z}_{p_{1}^{c_{1}}}\cross T_{24}^{*}$ ;
vi) $\pi_{1}(M)=T_{8\cdot 3^{k+1}}^{f}$ ;
vii) $\pi_{1}(M)=O_{48}^{*}$ or $\mathbb{Z}_{p_{1}^{\epsilon_{1}}}\cross O_{48}^{*}$;
viii) $\pi_{1}(M)=I_{120}^{*}$ or $\mathbb{Z}_{p_{1}^{\epsilon_{1}}}\cross I_{120}^{*}$ .
Where all the $p_{1},p_{2}$ are odd prime numbers, $e_{1},$ $e_{2},$ $k,$ $m$ are positive integers.

By [HKWZ] and elementary number theory, among all the $S^{3}$-manifolds, only $S^{3}$ and
lens spaces admit degree $-1$ self-maps. When considering about property -IH, it is
reasonable to restrict the manifold to be $L(p, q)$ .

Proposition 4.2. $L(p, q)$ has property-lH if and only if $L(p, q)$ belongs to one of the
following classes:
i$)$ $4|p$ or some odd prime factor of $p$ is in $4k+3$ type;
ii) $q^{2}\equiv-1$ mod $p$ and $p=2,p_{1}^{e_{1}},2p_{1}^{e_{1}}$ , where $p_{1}$ is $4k+1$ type prime number.

Essentially, it is known that the manifolds in Class 2 have property H. However, the
author can $t$ find a proper reference and he can just copy the proof of Theorem 3.9 of [Sc]
to prove this result.

Theorem 4.3. For Seifert manifolds $M$ supporting Nil or $PS\overline{L(2,}R$) geometries with
orbifold $S^{2}(p, q,r)_{f}M$ has property $H$.

Synthesize from Mostow and Waldhausen‘s theorem and Theorem 4.1, 4.3, Proposition
4.2, we get the following consequence:

Theorem 4.4. Suppose $M$ is a prime geometrizable 3-manifold.
1$)$ $M$ has pmperty lH if and only if $M$ belongs to one of the following classes:

i$)$ $M$ does not support $S^{3}$ -geometry;
ii) $M$ is in one of the classes stated in Theorem 4.1

$2)M$ has property-lH if and only if $M$ belongs to one of the following classes:
i$)$ $M$ does not support $S^{3}$ -geometry;
ii) $M$ is in one of the classes stated in Pmposition 4.2.

$3)M$ has property $H$ if and only if $M$ belongs to one of the following classes;

i$)$ $M$ does not support $S^{3}$ -geometry;
ii) $M$ is in one of the classes except ii) stated in Theorem 4.1;
iii) $L(p, q)$ satisfies one of the following:

a$)$ $p=2,4$ ;
b$)$ $p=p_{1}^{e_{1}},2p_{1}^{e_{1}}$ , where $p_{1}$ is $4k+3$ type prime number;
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c$)$ $p=p_{1}^{e_{1}},2p_{1}^{e_{1}}$ , where $p_{1}$ is $4k+1$ type prime number and $q^{2}\equiv-1$ mod $p$ ;
d$)$ $p=2^{s}(s>2),$ $4p_{1}^{e_{1}},$ $q^{2}\equiv 1$ mod $p,$ $q\neq\pm 1$ ;
e$)$ $p=p_{1}^{e_{1}}p_{2}^{e_{2}},2p_{1}^{e_{1}}p_{2}^{e_{2}}$ , where one of $p_{1},p_{2}$ is $4k+3$ type prime number, $q^{2}\equiv 1$ mod $p_{f}$

$q\neq\pm 1$ .

Indeed the proof of above theorems in [Sun] give much stronger results. For simplicity,
we only explain the situation for lH.

Let $K(M)=\{\phi\in Out(\pi_{1}(M))|\exists f : Marrow M, f_{*}\in\phi, deg(f)=1\}$ . It is known
$K(M)$ is 1–1 corresponds with {degree 1 self-maps $f$ on M}/homotopy.

Let $K’(M)=\{\phi\in Out(\pi_{1}(M))|\phi$ is realized by orientation preserving homeomorph-
ism}, which is a subgroup of $K(M)$ . $K’(M)$ is 1–1 corresponds with $\mathcal{M}C\mathcal{G}^{+}(M)$ , the
orientation preserving subgroup of mapping class group of $M$ .

To determine whether $M$ has property lH, we need only determine whether $K(M)=$
$K’(M)$ , or whether $|K(M)|=|\mathcal{M}C\mathcal{G}^{+}(M)|$ . Define the realization coefficient of $M$ to be

$RC(M)= \frac{|K(M)|}{|K(M)|}$ .

So $M$ has property lH if and only if $RC(M)=1$ . The $RC(M)$ is completely determined
for each 3-manifold support $S^{3}$-geometry in [Sun].
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