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ON THE MAPPING DEGREE SETS FOR 3-MANIFOLDS
SHICHENG WANG

ABSTRACT. This note records the recent results on the following questions: Let M and
N be a closed orientable 3-manifolds, D(M, N) be the set of degrees of maps from M to
N, denote D(M, M) by D(M).

(1) For which N, is the set D(M, N) finite for any M?

(2) If D(M) is unbounded, what is D(M)?

(3) When is a self-map of degree +1 on M homotopic to a homeomorphims?

Some of those results were presented at the RIMS Seminar at Akita Shirakami during
September 13-17, 2010. For the proofs of those results, see [DeW2], [DeSW), [Wal], [Du],
[SWW], [SWWZ], [Sun].
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1. INTRODUCTION

Let M and N be two closed oriented 3-dimensional manifolds. Let D(M, N) be the set
of degrees of maps from M to N, that is

D(M,N)={d€Z|f: M — N, deg(f) = d}.

We will simply use D(N) to denote D(N, N), the set of self-mapping degrees of N.

The calculation of D(M, N) is a classical topic which often appeared in the literatures.
According to [CT], Gromov thought it is a fundamental problem in topology to determine
the set D(M, N) for any dimension n.

Specially the calculation of D(M), the integer set naturally associated to each closed
orientable manifold M which presents an interesting connections between topology and
number theory.

The result is simple and well-known for dimension n = 1, 2. For dimension n > 3, there
are some interesting special results (See [DW] for recent ones and references therein), but
it is difficult to get general results, since there are no classification results for manifolds
of dimension n > 3.

The case of dimension 3 becomes the most attractive in this topic. Since Thurston’s
geometrization conjecture, which has been confirmed, implies that closed orientable 3-
manifolds can be classified in reasonable sense.

A basic property of D(M, N) is reflected in the following;:

Question 1.1. (see [Wa2, Question 1.3] and [Re, Problem A]): For which closed orientable
3-manifolds N, is the set D(M, N) finite for any given closed oriented 3-manifold M ?

It is clear if D(N) is unbounded, then D(M, N) is unbounded for some M. For each
M, it is clear {0,1} C D(M), and if D(M) is bounded then D(M) C {0,1,—1}.
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Question 1.2. Let M be a closed orientable 3-manifold.
(1) When is D(M) bounded?
(2) If D(M) is unbounded, what is D(M)?

Remark 1.3. The still unknown part for D(M) is that if D(M) is bounded, when does
-1 c D(M)?

The following related question is also natural and interesting.

Question 1.4. For which closed orientable 3-manifolds M, whether there is a selfmap of
degree +1 on M which is not homotopic to a homeomorphism on M ?

Under Thurston’s picture of 3-manifold, which is confirmed now, Question 1.2 (1) is
answered 20 years ago; Question 1.1 and Question 1.2 (2) were answered very recently;
the answer of Question 3 is known for Haken manifold and hyperboloic manifolds long
times ago, and the answer is complete now for prime 3-manifolds. In Sections 2, 3 and 4,
we will present those answers as well as how those answers are developed.

To end this section, we present the picture of 3-manifold which will be used to present
the answers. All terminologies not defined are standard, see [He|, [Sc] and [IR].

The picture of 3-manifolds: Each closed orientable 3-manifold N has a unique
prime decomposition N;#.....# Ny, the prime factors are unique up to the order and up
to homeomorphisms. Each closed orientable prime 3-manifold N has a unique geometric
decomposit/ig& such that each geometric piece supports one of the following eight geome-
tries: H®, PSL(2, R), H? x E*, Sol, Nil, E®, S% and S? x E' (where H", E™ and S™ are
n-dimensional hyperbolic space, Euclidean space and sphere respectively), for details see
[Th] and [Sc]. Moreover each geometric piece of N with non-trivial geometric decomposi-
tion supports either H3-geometry or H? x E'-geometry, hence each 3-manifold supporting
one of the remaining six geometry is closed. Furthermore each 3-manifold supporting ge-
ometries of either H? x El, or E3, or §% x E' is covered by a trivial circle bundle, and
each 3-manifold supporting geometries of either Sol, or Nil, or E® is covered by a torus
bundle. Call prime closed orientable 3-manifold N a non-trivial graph manifold if N has
non-trivial geometric decomposition but contains no hyperbolic piece.
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Foundation of China and Ph.D. grant No. 5171042-055 of the Ministry of Education of
China. _

2. ABout D(M, N)

This section is based on [DeW2] and [DeSW].
The answer of Question 1.1 is the following

Theorem 2.1. Let N be a closed orientable 3-manifold. Then there is a closed orientable
3-manifold M such that |D(M, N)| = oo if and only if |D(R)| = oo for each prime factor
R of N.



In the following we will make a brief recall of the development of Theorem 2.1.

The development of Theorem 2.1: It is a common sense for many people that
|D(N)| = oo for 3-manifold N which is either a product of a surface and the circle, or N
is covered by the 3-sphere. The first significant result in this direction is due to Milnor
and Thurston in the later 1970’s. By using the minimum integer number of 3-simplices
to build N [MT, Theorem 2], they proved

Theorem 2.2. For each given hyperbolic 3-manifold N, |D(M, N)| < oo for any M.

Gromov [G] introduced the simplicial volume || N|| for a manifold N, which is approxi-
mately the minimum real number of 3-simplices to build N. Gromov and Thurston proved
that || V| is proportional to the hyperbolic volume of N in the case of N is a hyperbolic 3-
manifold, and then Soma proved || V|| is proportional to the sum of the hyperbolic volume
of the hyperbolic pieces in the geometric decomposition of N (see [G], [Th], [So]). || * ||
respects the mapping degrees, i.e. for any map f: M — N then ||[M|| > |deg(f)| - || N]|-
Then it is deduced that

Theorem 2.3. Suppose N is a closed orientable 3-manifold. If a prime factor of N has
a hyperbolic piece in its geometric decomposition, then |D(M, N)| < co for any M.

Brooks and Goldman [BG1] [BG2] introduced the Seifert volume SV (x) for closed
orientable 3-manifolds which also respects the mapping degrees and is non-zero for each

3-manifold supporting the F§Z(2, R) geometry. Then it is deduced that
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Theorem 2.4. Suppose N is a closed orientable 3-manifold. If a prime factor of N

supports 155'73(2, R) geometry. Then |[D(M, N)| < co for any M.

Both Theorems 2.3 and 2.4 were already known in the early 1980’s. The following result
is known no later than early 1990’s (see [Wal] for example).

Theorem 2.5. Suppose N is a closed orientable 3-manifold. Then |D(N)| = oo if and
only if either N is covered by a torus bundle or a trivial circle bundle, or each prime
factor of N is covered by S® or S? x E*.

After Theorems 2.3, 2.4 and 2.5, the remaining unknown cases for Question 1.1 are:
either a prime factor of N is a non-trivial graph manifold; or N is a non-prime 3-manifold,
ar;d |D(R)| = oo for each prime factor R of N, but some R is not covered by either S* or
S? x E.

In 2009 it is proved in [DeW2] that each closed orientable non-trivial graph manifold N
has a finite covering N with positive Seifert volume (it is still unknown weather S V(N) >0
implies SV (N) > 0 for a finite cover N — N)), and therefore it is deduced that

Theorem 2.6. Let N be closed orientable non-trivial graph manifold. Then |D(M,N)| <
oo for any closed orientable 3-manifold M.

Remark 2.7. Two years before [DeW2|, Theorem 2.6 is proved under the restriction that
M are also graph manifolds [DeW1], by using a standard form of maps between graph
manifolds[Del], and the estimation of the PSL(2,R)-volume for a certain special class of

graph manifolds.
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In 2010 it is proved in [DeSW]

Theorem 2.8. Let N be a given closed oriented 3-manifold N. If |D(R)| = oo for
each prime factor R of N, then there is a closed orientable 3-manifold M such that

|D(M, N)| = oo.
Theorems 2.3 2.4, 2.6 and 2.8 (and Theorem 2.5) imply Theorem 2.1.

Remark 2.9. Theorem 2.8 follows from an explicit result [DeSW, Theorem 2.5, which
provides the concrete M and the infinite set in D(M, N) for the given N. The proof of
Theorem 2.8 is essentially elementary, which does not appear until now mainly due to
three reasons:

(1) |D(N)| may be finite even if |D(R)| = oo for each prime factor R of N; for example
|D(T3)| = o0 but |D(T3#T3)| < oo for 3-dimensional torus 7% [Wal]. Such phenomena
puzzled us to wonder if Theorem 2.8 was always true [Wa2, page 460].

(2) The target concerned in Theorem 2.8 became the only unknown case for Question
1.1 after the work [DeW2)].

(3) The proof of Theorem 2.8 uses the result of D(V) which was just completely deter-
mined for each N recently ([Du], [SWW], [SWWZ]).

3. ABouT D(M)
This section is based on [Wal], [SWW], [SWWZ] and [Du].

3.1. Finer classes for calculate D(N) when D(N) is unbounded. To make this
section to be complete, we allow it to have some light repeat with Section 2. The following
result, which is a re-statement of Theorem 2.5, is known in early 1990’s and answered
Question 1.2 (1).

Theorem 3.1. Suppose M is a geometrizable 3-manifold. Then M admits a self-map of
degree larger than 1 if and only if M is either

(a) covered by a torus bundle over the circle, or

(b) covered by F x S for some compact surface F with x(F) <0, or

(c) each prime factor of M is covered by S or S? x E!.

Hence for any 3-manifold M not listed in (a)-(c) of Theorem 3.1, D(M) is either
{0,1, -1} or {0,1}, which depends on whether M admits a self map of degree —1. To
determine D(M) for geometrizable 3-manifolds listed in (a)-(c) of Theorem 1.0, let’s have
a close look of them.

For short, we often call a 3-manifold supporting Nil geometry a Nil 3-manifold, and
so on. Among Thurston’s eight geometries, six of them belong to the list (a)-(c) in
Theorem 1.0. 3-manifolds in (a) are exactly those supporting either E3, or Sol or Nil
geometries. E® 3-manifolds, Sol 3-manifolds, and some Nil 3-manifolds are torus bundle
or semi-bundles; Nil 3-manifolds which are not torus bundles or semi-bundles are Seifert
fibered spaces having Euclidean orbifolds with three singular points. 3-manifolds in (b)
are exactly those supporting H? x E' geometry; 3-manifolds supporting S® or 52 x E!
geometries form a proper subset of (3). Now we divide all 3-manifolds in the list (a)-(c)
in Theorem 3.1 into the following five classes:

Class 1. M supporting either S or S? x E! geometries;



Class 2. each prime factor of M supporting either S® or 5% x E! geometries, but M is
not in Class 1;

Class 3. torus bundles and torus semi-bundles;

Class 4. Nil 3-manifolds not in Class 3;

Class 5. M supporting H? x E' geometry. We will present D(M) for M in all those
five classes. To do this, we need first to coordinate 3-manifolds in each class, then state
the results of D(M) in term of those coordinates. This is carried in the next subsection.

3.2. Main Results. Class 1. According to [Or] or [Sc], the fundamental group of a 3-
manifold supporting S3-geometry is among the following eight types: Zy,, Dy, , T3, O,
Ly, Té. 32D, 50 and Zp, x m(N), where N is a 3-manifold supporting S°-geometry,
m1(IV) belongs to the previous seven ones, and |71(N)| is coprime to m. The cyclic group
Zy is realized by lens space L(p, q), each group in the remaining types is realized by a
unique 3-manifold supporting S3-geometry. Note also the sub-indices of those seven types
groups are exactly their orders, and the order of the groups in the last type is m|m;(N)].
There are only two closed orientable 3-manifolds supporting S? x E! geometry: S? x S?

and RP3#RP3 .
Theorem 3.2. (1) D(M) for M supporting S®-geometry are listed below:

m1(M) D(M)

Zy {K*|keZ}+pZ

D;. {h?*|h€Z;2t horh=norh=0}+4nZ
T3, {0,1,16} + 247

Oz {0,1,25) + 48Z

Ity {0,1,49} + 120Z

. { {K?. (32 —39) |3t k,q>p>0}+8-3Z (2]|q)
8.39

{k?- (3% 391y |34 k,q> p>0}+8-39Z (21 ¢q)
: {F[1- @) [1 -2 D) ik p ez,
n'!.29 qZ p>0}+’n/2qZ
= N he DN
Jcz | d=h+m@IZ, ke DN)
d=k*4+mZ, keZ

Zm X 7I'1(N)

(2) D(S? x S') = D(RP*#RP%) = Z.

Class 2. We assume that each 3-manifold P supporting S3-geometry has the canonical
orientation induced from the canonical orientation on S®. When we change the orientation
of P, the new oriented 3-manifold is denoted by P. Moreover, lens space L(p,q) is
orientation reversed homeomorphic to L(p,p — ¢), so we can write all the lens spaces
connected summands as L(p, q). Now we can decompose each 3-manifold in Class 2 as

M = (mS8? x S")#(mi Pi#na P)# - - - #(m Podtn, Py)
#(L(pl') Q1,1)# e #L(p17 ql,"‘l))# te #(L(pt1 qt,l)# e #L(ph Qt,rt)),
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where all the P, are 3-manifolds with finite fundamental group different from lens spaces,
all the P; are different from each other, and all the positive integer p; are different from
each other. Define

Diso(M) = {deg(f) | f: M — M, f induces an isomorphism on m(M)}.

Theorem 3.3. (1) D(M) = Digo(miPi#niP) (- - - (N Diso(ms Ps#ns P) N
Diso(L(plv Q1,1)# s #L(Pl, QI,rlg n(P)n Diso(L.(;)ta Qt;lé)# v #L(Pt, Qt,n));
. is0 iym n,
(2) Diso(mPH#nPFP) = Diso(P)U(=Diso(P)) if m =n;
(3) Diso(L(p, q1)# - - - #L(p,qn)) = H'(C).

The notions H and C in Theorem 3.3 (3) is defined as below:

Let U, = {all units in ring Z,}, U? = {a® | a € U,}, which is a subgroup of U,. We
consider the quotient U,/U? = {a1, - ,am}, every a; corresponds with a coset A; of Uz.
For the structure of U, see [IR] page 44. Define H to be the natural projection from
{n € Z| ged(n,p) = 1} to U,/U2.

Define A, = {L(p,q:) | ¢ € As} (with repetition allowed). In U,/UZ, define B, =
{a, | #A, =1} for l = 1,2,--, there are only finitely many [ such that B; # 0. Let
Ci = {a € Up,/U? | aia € By, Ya; € B} if B # 0 and C; = U,,/U,f otherwise. Define
C=Nz2C

Class 3. To simplify notions, for a diffeomorphism ¢ on torus 7', we also use ¢ to
present its isotopy class and its induced 2 by 2 matrix on 7;(T’) for a given basis.

A torus bundle is My = T x I/(z,1) ~ (¢(z),0) where ¢ is a diffeomorphism of the
torus 7" and [ is the interval [0, 1]. Then the coordinates of My is given as below:

(1) M, admits E® geometry, ¢ conjugates to a matrix of finite order n, where n €
{1,2,3,4,6};

(2) M4 admits Nil geometry, ¢ conjugates to £ ( (1) 711 ), where n # 0;

(3) M, admits Sol geometry, ¢ conjugates to < (cl Z ), where |a+d| > 2,ad —bc=1.

A torus semi-bundle Ny = N |J4 N is obtained by gluing two copies of N along their
torus boundary ON via a diffeomorphism ¢, where N is the twisted /-bundle over the
Klein bottle. We have the double covering p: S* x §* x I =+ N = S' x S x I /7, where
T is an involution such that 7(z,y,2) = (z + 7, —y,1 — 2).

Denote by lp and I, on N be the images of the second S* factor and first S! factor
on S x S x {1}. A canonical coordinate is an orientation of [y and I, hence there are
four choices of canonical coordinate on AN. Once canonical coordinates on each ON are

chosen, ¢ is identified with an element ( (cl Z ) of GLy(Z) given by ¢ (lp,leo)= (lo, o)
a b

c d )
With suitable choice of canonical coordinates of 0N, N, has coordinates as below:

10 01
o 3 — :
(1) N, admits E°® geometry, ¢ = ( 0 1 ) or ( 10 ),

. . 10 01 1 2
(2)N¢adm1tlelgeometry,¢=(z 1),<1 z>0r<0 1),wherez;éO;



(3) Ny admits Sol geometry, ¢ = ( Z 2 ), where abed # 0,ad — be = 1.

Theorem 3.4. D(My) is in the table below for torus bundle My, where §(3) = 6(6) =
1,5(4) =

M¢ ¢ D(M¢)

E3 | finite order k = 1,2 Z

E° | finite order k = 3,4,6 | {(kt + 1)(p* — 6(k)pq + ¢°)[ t,p,q € Z}

Nil i(i O)Méo (2| 1ez)

Sol (‘c" b) la+d| > 2 {p?+ &2 prez,
either &, =0T ¢ 7, or PU=A)I ¢ 7}

(2) D(Ny) is listed in the table below for toms semz-bundle Ny, where §(a,d) = 3&7&%7'

N, ¢ D(Ny)

S :

ES ((1) é) (2A+1]lez)

Nil (i ?),z;ﬁo (2 1ez)

Nil (‘1) Qor(é 1) 2 £0 (@2 +1? ez}

Sol ( o ! ) Jabed # 0,ad —be =1 | {(20 + 1)?| L € Z}, if 6(a, d) is even or
(@U+1)? 1 € Z} UJ{(@+1)2 - 5(a, d)

| 1€ 2}, if 5(a,d) is odd

To coordinate 3-manifolds in Class 4 and Class 5, we first recall the well known coor-
dinates of Seifert fibered spaces.

Suppose an oriented 3-manifold M’ is a circle bundle with a given section F', where F'
is a compact surface with boundary components ¢y, ..., ¢, with n > 0. On each boundary
component of M’ orient ¢; and the circle fiber h; so that the product of their orientations
match with the induced orientation of M’ (call such pairs {(c;, h:)} a section-fiber coor-
dinate system). Now attach n solid tori S; to the n boundary tori of M’ such that the
meridian of S; is identified with slope r; = cf‘"hf" where o; > 0, (o, 5;) = 1. Denote the
resulting manifold by M (Zg; %, o ,g;) which has the Seifert fiber structure extended
from the circle bundle structure of M’, where g is the genus of the section F' of M, with
the sign + if F is orientable and — if F' is nonorientable, here ’genus’ of nononentable
surfaces means the number of RP? connected summands. Call e(M) = 37 & o € Q the
Euler number of the Seifert fiberation.

Class 4. If a Nil manifold M is not a torus bundle or torus semi-bundle, then M
has one of the following Seifert fibreing structures: M(0; g‘, 32, 2), M(0; 31, 332, 3) or
M(0;8, 8 B where e(M) € Q — {0}.

129 40 4
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Theorem 3.5. For 3-manifold M in Class 4, we have
(1) D(M(0; 8,22 B3)) = (12|l =m? + mn+n% =1 mod 6,m,n € Z},

127376
(2) D(M(0; %, %, %"‘-)) ={Pll=m?*+mn+n*l=1 mod 3,m,ne€Z};
(8) D(M(0; 2,82 B3)) = {i2Jl =m? + n%,l =1 mod 4,m,n € Z}.

Class 5. All manifolds supporting H? x E! geometry are Seifert fibered spaces M such
that e(M) = 0 and the Euler characteristic of the orbifold x(Ou) < 0.
Suppose M = (g; %‘—;i,--- -’3"—’"1, cow B ,%"—“), where all the integers o; > 1 are

different from each other, and Y7\, > ﬂ—;l =0.

For each a; and each a € U,,, define 6,(a;) = #{Bi; | pi(Bi;) = a} (with repetition
allowed), p; is the natural projection from {n | gcd(n, ;) = 1} to U,,. Define Bi(a;) =
{a| 0.(e;) =1} for l = 1,2,---, there are only finitely many ! such that B;(a;) # 0. Let
Ci(os) = {b € U, | ab € By(as), VYa € B(ci)} if Bi(cu) # 0 and Ci(c;) = U,, otherwise.
Finally define C(a;) = (2, Ci(ai), and C(a) = p; (Claw)).

Theorem 3.6. D(M(g; 22, P .. fos .. fuma)) — (V0 C(ay).

3.3. A brief comment of the topic and organization of the paper. Theorem 3.1
was appeared in [Wal]. The proof of the "only if” part in Theorem 3.1 is based on
the results on simplicial volume developed by Gromov, Thurston and Soma (see [So]),
and various classical results by others on 3-manifold topology and group theory ([He],
[SW], [R]). The proof of ”if” part in Theorem 3.1 is a sequence elementary constructions,
which were essentially known before, for example see [HL] and [KM] for (3). That graph
manifolds admit no self-maps of degrees > 1 also follows from a recent work [De2].

The table in Theorem 3.2 is quoted from [Du], which generalizes the earlier work
[HKWZ], which is presented as below.

Proposition 3.7. For 3-manifold M supporting S° geometry,
Diso(M) = {k? + l|m1(M)|, where k and |m,(M)| are co-prime}.

The topic of mapping degrees between (and to) 3-manifolds covered by S has been
discussed for long time and has much relation with other topics (see [Wa2] for details).
We just mention several papers: in very old papers [Rh] and [Ol], the degrees of maps
between any given pairs of lens spaces are obtained by using equivalent maps between
spheres; in [HWZ], D(M, L(p, q)) can be computed for any 3-manifold M; and in a recent
one [MP], an algorithm (or formula) is given for the degrees of maps between given pairs
of 3-manifolds covered by S3 in term of their Seifert invariants.

Theorem 3.4 is proved in [SWW].

Theorem 3.3, Theorem 3.5 and Theorem 3.6 are proved in [SWWZ).

3.4. Some examples of computation.

Example 3.8. Let M; = (P#P)# (L(7,1) # L(7,2) # 2L(7,3)) and M, =
(2P#P)#(L(7,1)#L(7,2)4L(7,3)), where P is the Poincare homology three sphere. Ap-
ply Theorem 3.3 we have

D(M;) = {840n+i | n € Z, i =1,71,121,169, 191, 239, 241, 289, 311, 359, 361,



409, 431,479,481, 529, 551, 599, 601, 649, 671, 719, 769, 839. }

D(My) = {840n+i | n € Z, i = 1,121,169, 289, 361, 529.}
Example 3.9. By Theorem 3.4, for the torus bundle My, ¢ = ( ? } ) , among the first

20 integers > 0, exactly 1,4,5,9,11,16,19,20 € D(M,).

Example 3.10. For Nil 3-manifold M = M(0; 621, ﬁ;, %3)
DIM)={Pll=m?+mn+n*l=1 mod6,m,nc Z}.

The numbers in D(M) smaller than 10000 are exactly 1,49,169,361,625,961,1369, 1849,
2401,3721, 4489, 5329, 6241, 8291, 9409.

—£), apply Theorem 3.6

Example 3.11. For H? x E! manifold M = M(2 ,
}=(35n+i|nez, i=

we have D(M) = {5n+1|ne€Z}({mn+i|n¢€
1,11, 16}.

Ncnh-‘

4. REALIZATION OF SELF-MAP OF DEGREE *1 BY A HOMEOMORPHISMS

This section is based on [Sun].

Given a closed orientable n-manifold M, it is natural to ask, whether all the degree £1
self-maps on M can be homotopic to homeomorphisms. Without specific description, all
the manifolds below are closed and orientable.

If the property stated above holds for M, we say M has property H. In particular,
if all the degree 1 (—1) self-maps on M can be homotopic to homeomorphisms, we say
M has property 1H (—1H). M has property H if and only if M has both property
1H and property —1H. We can observe that, if M admits an orientation-reversing self-
homeomorphism, then M has property 1H if and only if M has property —1H. So we
mostly only concern property 1H.

Below we would like to determine which prime 3-manifolds, which are the basic part of
3-manifolds, has property H.

It is known that each degree *1 self-map map f on M induces an isomorphism f, :
7(1(M) — 7T1(M).

Hyperbolic 3-manifolds and Haken manifolds have property H by the celebrated Mostow
rigidity theorem [M] and Waldhausen’s theorem on Haken manifolds(see 13.6 of [He]).

This two theorems cover most cases of irreducible 3-manifolds, including: the mani-
folds with nontrivial JSJ decomposition, hyperbolic manifolds, Seifert manifolds M with
incompressible surface. So the remaining cases are:

Class 1. manifolds supporting S-geometry; o

Class 2. Seifert manifolds supporting Nil or PSL(2,R) geometries with orbifold
S*(p,q,7);

4.1. Main Results. Class 1. According to [Or] or [Sc]|, the fundamental group of a 3-
manifold supporting S3-geometry is among the following eight types: Z,, Dy}, , T, , Ozs,

Iy, Té. g ,D!, 50 and Zpy, x m(N ), where N is a S® 3-manifold, m;(NV) belongs to the
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previous seven ones, and |m;(/N)| is coprime to m. The cyclic group Z, is realized by lens
space L(p, q), each group in the remaining types is realized by a unique S3-manifold.

Theorem 4.1. For M supporting S3-geometry, M has property 1H if and only if M
belongs to one of the following classes:
2) SS’.
i) L(p,q) satisfies one of the following:
a) p=2,4,p7",2p";
b) p=2°(s > 2),4p%, p3'p3’, 205'p5’, ¢° =1 mod p and q # £1;
i) m(M)=Zm x Dy, (m,k) = (1,2%), (91", 2), (1,p3?) or (v, P3);
w) m(M)= D;k+2p'1’1 ;
v) m(M)=T3 or Zy x Ty
vi) m(M) =Tg 0415
vit) m(M) = Ojg or Zy: x Ofg;
viii) m(M) = Ifp or Zyer X Iiy.
Where all the p,, ps are odd prime numbers, e;, e2, k, m are positive integers.

By [HKWZ| and elementary number theory, among all the S3-manifolds, only S® and
lens spaces admit degree —1 self-maps. When considering about property —1H, it is
reasonable to restrict the manifold to be L(p, ).

Proposition 4.2. L(p,q) has property —1H if and only if L(p,q) belongs to one of the
following classes:

i) 4lp or some odd prime factor of p is in 4k + 3 type;

%) ¢> = —1 mod p and p = 2,p5,2p{*, where p, is 4k + 1 type prime number.

Essentially, it is known that the manifolds in Class 2 have property H. However, the
author can’t find a proper reference and he can just copy the proof of Theorem 3.9 of [Sc]
to prove this result.

Theorem 4.3. For Seifert manifolds M supporting Nil or P.STEZ_ZT R) geometries with
orbifold S*(p,q,r), M has property H.

Synthesize from Mostow and Waldhausen’s theorem and Theorem 4.1, 4.3, Proposition
4.2, we get the following consequence:

Theorem 4.4. Suppose M is a prime geometrizable 3-manifold.
1) M has property 1H if and only if M belongs to one of the following classes:
i) M does not support S3-geometry;
it) M is in one of the classes stated in Theorem 4.1
2)M has property -1H if and only if M belongs to one of the following classes:
i) M does not support S3-geometry;
i) M is in one of the classes stated in Proposition 4.2.
3)M has property H if and only if M belongs to one of the following classes:
i) M does not support S3-geometry;
it) M is in one of the classes except i) stated in Theorem 4.1;
iit) L(p,q) satisfies one of the following:
a) p=2,4;
b) p = p$*, 2p5, where p; is 4k + 3 type prime number;



c) p=0p3,2p5, where py is 4k + 1 type prime number and ¢> = —1 mod p;

d) p=2%(s >2),4p7", ¢> =1 mod p, q # £1;

e) p = pipst, 2p5 32, where one of py, py is 4k + 3 type prime number, g* = 1 mod p,
q# *£1.

Indeed the proof of above theorems in [Sun| give much stronger results. For simplicity,
we only explain the situation for 1H.

Let K(M) = {¢ € Out(m(M))| 3f : M — M, f, € ¢, deg(f) = 1}. It is known
K(M) is 1 — 1 corresponds with {degree 1 self-maps f on M }/homotopy.

Let K'(M) = {¢ € Out(m1(M))| ¢ is realized by orientation preserving homeomorph-
ism }, which is a subgroup of K(M). K'(M) is 1 ~ 1 corresponds with MCG" (M), the
orientation preserving subgroup of mapping class group of M.

To determine whether M has property 1H, we need only determine whether K(M) =
K'(M), or whether |K(M)| = |[MCG*(M)|. Define the realization coefficient of M to be

|K(M)]
RO =1k

So M has property 1H if and only if RC(M) = 1. The RC(M) is completely determined

for each 3-manifold support S*-geometry in [Sun].
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