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GAUSS’ VARIATIONAL PROBLEM AND THE NAVIER-STOKES EQUATIONS.

SN & (EWAFRR KPR et HEayag Jeedn)

ABSTRACT.  The “two-constants” theory introduced first by Laplace in 1805 still forms the basis of
current theory describing isotropic, linear clasticity, describing the capillarity. By using “two-constants”
theory, the Navier-Stokes equations are formulated. These equations with the two coefficients in the
ratio 1 : 3 originated from Poisson [16] in 1831. Moreover, these equations contained both a linear and
a nonlinear term developed earlier in Navier’s equations [20) in 1827. Still earlier, the nonlinear term
was introduced by Euler [7} in 1752-5.

We show the process of formulation of calculus of variations using the two functions characterized
from the attraction and repulsion, and his criticism to Laplace imaging the Gaussian function as the
rapidly decreasing function by Gauss in 1830. And we introduce a contribution to the hydromechanics,
because he was a comtenporary of the epock of formulation of the Navier-Stokes equations, which are
our main theme in our paper.

Particularly, from the viewpoint of mathematics, several important topics such as integral theory in
§4.6 and §4.11 which are his selling points. We show his unique RDF and reduction of integral from
sextuplex to quadruplex, in the sections §4.2, §4.5 and §4.6. In and after §4.7, we show his calculus of
variations in the capillarity against the RDF and calculation of it by Laplace.

Finally, to the question of capillarity, to be solved by variational equation described in §4.7, we sketch
his answers deduced from the previous work of theory in curved surface [7), to the height and angle in
question in §4.15 and §4.16.

1. INTRODUCTION

! In 1805, Laplace introduced the “two-constants” theory, so-called because of the prominence of
two constants in his theory, in regard to capillary action with constants denoted by H and K. 2 (cf.
Table 1, 2). Thereafter, contributing investigators in formulating NS equations, i.e. equations describing
equilibrium or capillary situations, have presented various pairs of constants. The original two-constant
theory is commonly accepted as describing isotropic, linear elasticity. [5, p.121]. However, the persistence
of just two constants in later developments is to be particularly noted. We believe that Poisson was one
of few who were aware of this aspect when he introduced Laplace’s deductions when, in 1831, he states,
“they incorporate the two special constants of which I mentioned just a while ago, - --.” [27, p.4].

Next, another topic discussed in the final section is the rapidly decreasing functions [RDFs} which
were kerneled in the “two-constants® and which provided the common, mathematical interpretation of
fluid properties among the then progenitors, in particular by Gauss, a contemporary of the progenitors of
the N'S equations, who contributed to the formulation of fluid mechanics in the development of Laplace ’
s capillarity.

Finally, we uncover reasons for the practice in naming these fundamental equations of fluid motion
"N S equations”. In Table 6, we present a chronology outlining this practice. The last entry from 1934
by Prandtl [27] grouped the equations containing three terms:

1) the nonlinear term

2) the Laplacian term multiplied by v

3) the gradient term of divergence multiplied by %, which takes its rise in the fluid equation by Poisson,
and used the nomenclature ”the Navier-Stokes equations” for this set of equations.

Date: 2010/10/30.

In §4, the free translation from Latin of Gauss to English is of ours. Throughout this paper, in citation of bibliographical
sources, by surrounding our own paragraph or sentences of commentaries between ({) and (f) (({) is used only when not
following to next section, ) and by =" or =*, we detail the statement by Gauss, because we would like to discriminate
and to avoid confusion from the descriptions by original authors. The mark : = mean transformation of the statements in
brevity by ours. And all the frames surrounding the statements are inserted for important remark by ours.

201 capillary action, Laplace[12, V.4, Supplement p.2] acknowledges Clailaut[4, p.22], and Clailaut cites Maupertuis[15).
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These equations with the two coefficients in the ratio 1 : 3 originated from Poisson (16} in 1831.
Moreover, these equations contained both a linear and a nonlinear term developed earlier in Navier’s
equations [20] in 1827. Still earlier, the nonlinear term was introduced by Euler [7] in 1752-5. cf. Table
2.

2. A UNIVERSAL METHOD FOR THE TWO-CONSTANTS THEORY

In this section, we propose a universal method to describe the kinetic equations that arise in isotropic,
linear elasticity. This method is outlined as follows:
e The partial differential equations describing waves in elastic solids or flows in elastic fluids are
expressed by using one constant or a pair of constants C; and C3 such that:

C d%*u i
for elastic solids: Froie (C1Th + CoT) =,
for elastic fluids: Z—l: - (O Ty +CeT3) +--- =1,

where 73, T3, - are the terms depending on tensor quantities constituting our equations.

e The two coefficients C; and Cy associated with the tensor terms are the two constants of the
theory, definitions of which depend on the contributing author. For example, ¢ and E were
introduced by Navier, R and G by Cauchy, k£ and K in elastic and (K + k)a and _(!(_-;_k)g in fluid
by Poisson, £ and § by Saint-Venant, and 1 and & by Stokes. Since Poisson, the ratio of two
coefficient in fluid was fixed by 3. Moreover, C; and C; can be expressed in the following form:

C1 = Lr1g151, Sy = [[gs— Cs, - Cy = CsLrigy = ¥ Lrig,
Cz = Lrzg252, Sz = f[ga— C4, Cz = CaLrags = & Lrags.

Here £ corresponds to either Zg" as argued for by Poisson or f0°° as argued for by Navier.
A heated debate had developed between the two over this point. It is a matter of personnel
preference as to how the two constants should be expressed.

3. THE RAPIDLY DECREASING FUNCTIONS KERNELED IN THE “TWO-CONSTANTS"

In Table 1, we show the form of g; and g3, which are kernel functions and with which the progenitors
of the fluid equation developed their formulae. Here we refer to these functions as rapidly decreasing
functions (RDFs). * While formulating the equilibrium equations, we obtain the competing theories of
“two-constants” in capillary action between Laplace and Gauss.

In 1830, after Laplace’s death, Gauss [8] started publishing his studies on capillarity following his
famous paper on curved surfaces {7]. In the paper, Gauss criticized Laplace’s calculations of 1805-7 in
which the “two-constants” in his calculation of capillary action were introduced. At about this time,
Gauss had studied what became to be called Gaussian function or Gaussian curve and using this as his
RDF Gauss criticised Laplace’s example function e~*/ as the equivalent function of ¢(f). Here, ¢(f)
is the RDF, which depends on distance f. In that paper, Gauss [8] pointed out various deficiencies: 1.
Laplace had mentioned only attractive action without considering the repulsive action; 2. Laplace could
not identify the correct example function as the equivalent function of the RDF; and 3. Laplace lacked
any proof from say a geometrical point of view. The following are Gauss’ criticisms to Laplace in the
preface of [§].

o Judging from the second dissertation: < Supplément & la théorie de l’action capil-
laire >, Mr. Laplace investigated a little, not only the complete attraction, but also the
partial one by ¢(f), and tacitly understood incompletely the general attraction; by the
way, if we would refer the latter by him about our sensible modification, it is easy to see
being conspicuous about it. 4

3We show the then family of RDF by using our notation f € RFD, and f is a function kernelized in the two-constants
belonging to the then rapidly decreasing function.

4N Bowditch, the editor of the complete works of Laplace, cites only the title of Gauss’ paper : [8] but siding with
Laplace with the following comments :
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e He considers exponential e~*/ as an example of equivalent function with p(f), de-
noting the large quantity by i, or % becomes infinitesimal.

But it is not at all necessary to limit the generality by such a large quantity, the
things are more clear than words, we would see easiest, only to investigate if these inte-
grations would be extended, not only infinite but also to an arbitrary sensible distance,
or if anything, occurring wider in the finitely measurable distance in experiment. [8,
p-33]

Here, we can consider these arguments on the RDF's as simple examples of today’s distributions and
hypergeometric functions of Schwarz in 1945, but which were popular in the 1830s, during the time the
NS equations were being discussed in their microscopically-descriptive formulation.

However, Gauss’ criticisms in 1830 naturally drew no rebuttal. We present a sketch of these assertions
on the RDF's in Table 3 in their original, cross-indexed narratives, where, we show the then family of
RDF by using our notation f € RFD, and f is a function kernelized in the two-constants belonging to
the then rapidly decreasing function.

Gauss didn’t mention the following fact, and Bowditch ® also didn’t comment on Gauss’s work in
Laplace’s total works[13] except for only one comment of the name “Gauss” [13, p.686]. ©

In his historical descriptions about the study of capillariy action, we would like to recognize that there
is no counterattack to Gauss, but the correct valuation. Gauss [9] stated his conclusion about Laplace’s
paper “his calulations in the pages, p.44 and the followings it, ” have non effect in vain.”

4. Gauss’ papers of the capillary action

Gauss states common motivations with Laplace about M D ( the microoscopically-descriptive we call
it below ) equations. He states the difficulties of integral [ r2pr.dr, in which he confesses that he also is
included in the person who feels difficulties to calculate the M D integral.

4.1. Criticism to Laplace in Preface of Gauss’ paper.
92

o Since Mr. Laplace, from here, presented conveniently the unique supposition about the inner, molec-
ular activity, moreover, giving up diminution of law for the increasing distance, we have got the first
result in the surface of the fluid figure based on the accurate calculation, and have established the general
equation for the equilibratory figure, not only the pricise capillary phenomenon as described, but also try
to explain the relating problems.

¢ This investigation is discussed getting the consented with and confirmed in everywhere, by the exact
experiment, among the first class of increasing natural philosophers, geometricians, and refrred and crit-
icized by the some authorities from all the directions to the maximum part such as a minor or nonsence.
9 3. (Two RDF functions and two-constants defined by Laplace.)

¢ In the calculation by Mr. Laplace, we have at least a thing, which we can give evidence about it,
and for which we would not absolutely consent with him.

e In the previous commentary : < Théorie de action capillaire >, denoting with ¢f intensity of the

This theory of capillary attraction was first published by La Place in 1806, and in 1807 he gave a
supplement. In neither of these works is the repulsive force of the heat of fluid taken into consideration,
because he supposed it to be unnecessary. But in 1819, he observed that this action could be taken
into account, by supposing the force ¢(f) to represent the difference between the attractive force of the
particles of the fluid A(f), and the repulsive force of the heat R(f) so that the combined action would
be expressed by, o(f) = A(f) - R(f) ; --- [13, p.685]
Maybe this was stated under the covering fire from Gauss’ criticisms of Laplace. Gauss may not have read Laplace’s
works after 1819 in which he had changing his thoughts. As yet we have not been able to investigate this fact.
5The present work is a reprint, in four volumes, of Nathaniel Bowditch’s English translation of volumes I, II, III and
IV of the French-lamguage treatise Traité de Mécanique Céleste by P.S.Laplace. The translation was originally published
in Boston in 1829, 1832, 1834, and 1839, under the French title, “Mécanique Céleste”, which has now been changed to its
English-language form, “Celestial Mechanics.”
SWe refere to Bowditch’s comment number : [9173g] in [13].
"There are 35 pages of calculation between p.44 and p.78 in his Supplement.
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TABLE 1. The expression of the total momentum of molecular actions by Laplace,
Navier, Cauchy, Poisson, Saint-Venant & Stokes. (Remark. 6-8 : capillarity, 9-10 :
equilibrium, else : kinetic equation)

no [name [Problem C11C3|C3 [Cy |LC r1lre qu |_gg remark
Navi [ .
1 88'2‘;16{17] elastic solid e = Jo” dplpt| |fe p : radius
Navier
2 |fuid motion of fluid  |¢ 2 fo”dplet| |f(p) o : radius
1827 [18]
E| & |rdp | F(p)
system
3 |Cauchy of Rl || e [f) | 1) = 20 (r) - 7))
1828 [3] . 5 0
particles
Gl & dr] ¥ () () # ()
Poisson . . d.lfr
4 1829 [25] elastic solid k 2 A
K| 1% Eas| | Y
5 fsc’;sc[);o.] motion of fluid |k | |35 Y& d—'j}# Cs=¢¥%=4%
K i = 5| Ir fr [Csa= é%’i =1
Laplace . . .
6 1806,7 [13] capillary action |H | [27 foodz|z | [¥(2) z : distance
K 2r [y dz (z)
Rewrited by
62l Poisson 1831 [27] HI 70 (o] fer [27, pp.14-15]
K 2202\ [ Cdr| [rd or
Gauss attraction :
7 capillary action —fz.dz = dyz,
1830 [8]
[ fz.dz = ¢z,
repulsion :
—Fr.dz = d®r,
[ Fz.dz = —®z
8 f;;;&[);ﬂ capillary action |H| [Zp? Jo~drirt| |er [27, p.14]
K 2 dr| r® er |[27, p.12]
Navier
9 |fluid equiliblium of fluid|p & Jo7 dplp®|  |£(p) p : radius
1827 (18]
Poisson R .
10 (g3 26] equiliblium of fluidjg | |3 & L |r?R Cs =4 = i
Ll p % 42 ;13' r R |Cy= Zl;%l = é
Saint-Venant . €
11 1843 [31] fluid 3 3
Stokes
i =3
12 1849 [32] fluid 5
Stokes . . .
13 1849 [32] elastic solid A |B A =58

attraction in the distance f, the integrals ®
/ of.df =Ilz, / IIf.fdf = Pz,
x x

8. Laplace states the two-constants (1) in his original paper. Poisson cites these equations with the same H and K.
cf. the entry no.8 in Table 1.
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TABLE 2. The kinetic equations of the hydrodynamics until the “Navier-Stokes equa-
tions” was fixed. (Rem. HD : hydro-dynamics, N under entry-no : non-linear, gr.dv :
grad.div, E : 28 of elastic, F': o and the group of entry 6-14 show F' = 3 in fluid.)

[no|name/prob [the kinetic equations A lgrdvlE [F
Bl (X jE =& +u ok rum
1
(1752-55) y—lip _dvdv o dv,dv du 4 dv y dw _ g
N [[6, p.127] hdy = a u‘i’“",}‘ b = tata =0
fluid ~ Rl =@ tug tvg ted,
0d%z _ a3 42 d2z d%y PLd
N . Edjgx-—i 3_‘:,1_a§'+d_g§+3;r'§+zdbda+2—ﬁ_dgza 3
avier 2
2 |(1827)[17] @y (GGF=¢ %*+33'5¥+Z_c@+2:“&;b+2_:gfb , e e |1
2 2 2 2 2
elastic solid TeE (T B3 r2EE v2 5t
where 11 is density of the solid, g is acceleration of gravity.
1dp — x4 o(3d7y ; d'y &7 9 d% o dfw) _du_du , _du ,_du ..
. Tz o H
A -l 5 A O - v I s e e A
Nﬂ'd[ ] ody — +¢€ ?4' g—y§+z_;:'+ d:d:y_'_ ay—d;)—ﬁ—a'u-ﬁ"ﬂ—a';'w, € 3
ui 1dp _ d d d d d dw _ d d d .
p=Zre(GHGH IRy g ) - - - s
Cauchy w92 52 o2 52 o2 FY)

(1828)]3] (L+(;)%§+(R+H)ﬁ§+((3+l)52§ +2R3—§—z2y+2Q31£221+X=.8_é, i
a|oystem (R+Q) 53+ M+ HYSF+(P+ DS +2P 24 +2REE +YV =52, g+ oR G0
of particles o? 3 o2 B a2 82 =
i clastic Q+C) g2 +(P+H)TE+ (N+D5E +2025 +2P2 2 + 2 =54, 1

: G=H=1I, L=M=N, P=Q=R, L=3R
and fluid ! ! !
Poisson d 2(d? 2 d? 2 42 142 142 o g2
(1831)(26] IX_E“"’ (#’Lﬁda"’v’”*EdéﬂJ’E@“g%ﬁ):??*‘ 2 |,a
: : d 2(d 2.d 2d 1d 1d _Igd e? l2a2 |1
5 |clastic solid (Y ~ & +a? (48 + 3400 + 34w + 10y 1 143) = Ndy, 5 1% |z
in general Z_d’w +a2 d2w+2 d2y +gd’v +ld2w+1d2w)=gd2w
equations L i dz? T 3dzdz T Bdyde T 3dz? ' 3 dy? p dz3’
¥} 2 2
pBE-X)+ B ok +k)(Lh+ L8+ Ly +%(K+k)%(§§+j—;+,,—‘;')=0,
D dj a%y 42 a2 d (d d: dw\
Poisson P(ﬁ%—Y)+3§+a(K+k)(E;2‘g+d—y:;+E§)+%(K+k)ﬁ(a—“§+——;-+33‘;’)—0,
d; ) )
(1831)[26] lp(%—Z)+ag+a(K+k)(z—;e+%ﬁ+g;‘;)+g(f<+k)£(d—;+d—;+%—)=o,
6 |fluid in (X - L8y =22 + oy + 4 4+ Ty, s |5 3
X 4
general 2 2 4 ]
equations p(y_fl_tg')zi_:’+ﬁ(g_mg+s_gg+;_zg’
2 o d2 2
PZ - %)= 4B 4 ALY + SF +
= d 8’ d =
— wmmsw:p-a—chﬂ—i;——éi, B=a(K+k)
aint- Venant
7 |(1843)[31]  |His equations are not in his paper [31], however we are available for it by his tensor. e |5 3
fluid
D d Pu  d%u , &2 d (du  dv_ dw) _
Stokes B =X+ E-u(fH+ G S) - (R+ 8+ ) -0
Dy d d d d d (du o dv_ dw) _
8 |Useoyis2] J12)s B -+ ou(Es e G 68) - 44 (E+ &+ ) =0 Lo |8 3
ui Duw d d d d d (du o dv_ aw) _
o D+ 2 -um(GE+ GF - TF) - 4R (B E+ ) =0
3 Y3 Y]
Mascwel IP%%+;-’§—CM§—,¥+Z—‘¥+Z—,‘%+%£;(%+§—E+2—':) =X,
1865-66) du , d a2y | g dv  1d (du_ dv d = _pM c
d =
HD ot O+ GE+ SR AL (B g+ o] -z
d 5 10 (0u_ 0v_ owY] —
Kirchhoff | [ A% + 35 ~ O [Au+ 35 (32 + 52+ 52) = ux, Ldsygu 9uy0u g
10/(1876)[10] |qudp + 2 - Ck[Av+1Z (S + 5 +52)]=uy, pdt 70T Oy N0 TR oy |4 3
HD i 5 Lo ls b 3 where, CK=5€-”
pEL 4+ L2 - CilAz+ 1 2+ 5+ 52)| =pZ,
dt T Bz 39z\6z T 3y z
11 gag)g;)lﬁz)] %%§=—%+uvzu—uﬂ—vz—;, gy dv g ,
N HD %%ﬁ=-i—f+uvzv—ui‘i—vg—: ’ z Ty T
5u , B 10 (ou_ ou_ Bw)| —
Boltzmann . p%+35“RA“+§E(£+—:+—%) = pX,
B
1zgg95)[1] (221)5 pg%+5§—7zau+§3%(gg+g_;+g_';) = pY, R |2 3
o+ mlou 12 (4 4 B)] =02
Prandtl
1
N3 (1905)(28]  |p(§F +v-UV) + V(V +p) = kVZ, DIV V=0 &
HD
Prandtl o .l o — 13 o (8 3 3 82 a2 a2
14| oaayige |5 TuBETUS ruB =X s R (BB B)H(S¥ T 5) | L | &
Np FOR INCOMPRESSIBLE, IT IS SIMPLIFIED DIV w =0, S% =g -:;GRAD p+vAw 3
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TABLE 3. Cross-indexed differences on the RDFs f € RFD ( Remark. 1,5,6 : on capillarity)

1 2 3 4

Name/Problem/ f(r)
no(Bibl. (Year read) Laplace Poisson Navie at
- Year published/ r=0

f(r)
at
r =00

Laplace L,: ﬁ T
capillary action : [13] Ly :force attractive only and 0
1806-07 f~c, feRDF

ey

P, — Ny:
Poisson frab(=a
elastic : [22],(1828)-28; P; — N2 : not by
[25],1829;[26],(1829)-31 integral but by
fluid : [26],(1829)-31 N sum because
disputi[ng]origin:) Refer to Laplace’s f € RFD k, K k=-K=0 0
[22),1828 at once.

(with Navier : P3; o N3:k=¢
[23],1828;(24],1828) of Navier

Py — Ny:f € RFD

)m

N

Ny - Py :f:e"‘”

Navier Nz — P : not by sum but
elastic:[17],(1821)-27 by integral as Laplace does
fluid:[18],(1822)-27 N3 — Py [réf(r))° #0,
(with Poisson : Refer to Laplace’s integral ce#k

[?],1828; [19],1829; Ng— Py:7r4f(r) forr =0,
(20),1829; [21],1829 f € RFD

with Arago(21},1829) but only in r = o0,

f(r) ~20asr—0

€ in elastic
e, E in fluid #0

w

Cauchy elastic & fluid 0
:[3]

Gauss G1 — L, :Laplace’s deduction is
capillary action : [8] |conspicuous.

(to Laplace [8],1830 G2 — La:no necessary to limit i of
to Bessel[9],1830) ¢~ to be very large.

Poisson
capillary action :
[27],1831,

o

Same K and H with Laplace 0

(to Gauss[27])

; The integral of two values : ?
00 00
27r/ Vfdf =K, 27r/ Uf.fdf =H, 1)
0 0

where denoting by = the % of the circumference of the circle with radius = 1.
¢ In a word, the < indoles > of the function ¢ f reserves ineffective, as long as this f were insensible for
all sensible value.
9 4. (Criticism to Laplace by Gauss.)

e However, something similar to simple carelessness form the basis, such that he discusses about the
form than about the relating action with it.
e Judging from the second dissertation : < Supplément a la théorie de Vaction capillaire >, Mr. Laplace
investigated a little, not only the complete attraction, but also the partial one by ¢f, and tacitly un-
derstood incompletely the general attraction ; by the way, if we would refer the latter by him about our
sensible modification, it is easy to see being conspicuous about it.
o He considers exponential e~*/ as an example of equivalent function with ¢ f, denoting the large quantity
by i, namely } becomes infinitesimal.  But it is not at all necessary to limit the generality by such a
large quantity, the things are more clear than words, we would see easiest, only to investigate if these
integrations would be extended, not only infinite but also to an arbitrary sensible distance, or if anything,
occurring wider in the finitely measurable distance in experiment. °

9Poisson rewrite these equations to the equivalent with Laplace. cf. the entry no.6-2 in Table 1.
1c'({}) ‘We show his Latin original as follows :
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4.2. Three capitals of force and two RFDs : ¢ and &.
We consider the force reducing to three capitals.

o [. Gravity.

e II. The attractive force, which itself corresponds to the points m, m’,m”,.... The intensity of
attraction of function is propotional with the distance if this function, the < characteristic >
denoted by f in mass and supposed that the attraction is uniformly concentrated in the point.

e III. The forces, m,m/,m”, ... are attractive to the infinitesimal fixed points. For these forces,
with the similar way, we will designate the < characteristic F > such that the inverse-directional
distance is used, and with M, M’, M”,..., which are treated as a fixed point in one case, or a
mass in the other case, which are supposed in these concentrate.

We get Y Pdp of the previous article as follows :

—gdz
- m'f(m, m')d(m, ml) _ m"f(m, m”)d(m, mll) - 'm'"f(m, m'")d(m, mlll) —_ .
- MF(m, M)d(m, M) — M'F(m, M")d(m,M') — M"F(m, M")d(m,M") — ... (2)

where, the difference d(m,m’), d(m,m”) etc. are partial, relative to the only motion of the force of m.
We denote :

p such that : — fz.dz = dpr, /fx.d:r: = —ypz, 3)

& such that : — Fz.dr = d®z, /Fa:.dz = -0z 4)

where, poo = 0, and in case of ot = [ fz.dz = —pt.

(§)Gauss didn’t describle explicitly about 0. By the way, this method without taking of “two-
constants” by Gauss corresponds to other’s style by such as Laplace, Poisson, Navier and so on. Poisson
(27, p.8] considers this method as one of Gauss’ characteristic, however Poisson chose his own method
like Laplace. cf. the entry no.8 in Table 1.(1))

The function Q is expressed by the following sequence :

m

1 1 1
0= Zm{—gz + §m'<p(m, m’) + Em"cp('m,m") +3m o(m,m")y + ...

+M®(m, M) + M'®(m, M’) + M"®(m, M") + - -

where, < characteristic ¥ > represents the expression of sum, in which m/, m”, m", ... follow permuting
after m.

4.3. The sum of force : ).
For brevity, we express :

Q= —gc/zds + %cz // ds.ds’.p(ds, ds’) + r‘C/f ds.dS.®(ds, dS) (5)

where, 5,5’ are specially denoted spaces ( satisfied with the mobile material ), however with the duplex
integration!!, integrate twice with the element to resolve it.

Sed ne opus quidem est, generalitatem tantopere limitare, quum is, qui rem potius quam verba
intuetur, facillime videat, sufficere, si intergrationes illae non in infinitum, sed tantummode usque ad
distantiam sensibilem arbitrariam, aut si mavis ad distantiam finitam dimensionibus in experimentis
occurrentibus maiorem extendantur. [8, p.33]

11, below, Gauss uses “duplex” not only as both P and U, but also as two triangles.
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(4) Here the integral (5) contains sextuplex integral when using both (3) and (4). Moreover, Poisson
comments §2 consisted of three terms. 12

4.4. Transformation of the expression and the definition of s, S, ¢, ®.
We take the transformation as follows :

o of the second and third terms to two cases of the paticular problem, where, propotition of the
dual spaces whatever, single element of the first space with second element, we combine and
product from the third factor, put from the element volume of the first space and the volume
element of the second space, and the function data of the mutual distance, and then we can sum
up to the last,

e the second term to the same way, where the both space is the same,

o the third to it, where all of a side of space is from the other side of space,

then, the problem is solved. The two different cases are completed, namely

o when one side of space is part of the other side of space,

o or when each side has the common part with the other part.

Althought, moreover, the first case is sufficient to institute us, or we can easy return the rest to the other
side, when the work evaluate, the problem in itself complete by accepting the gerneral sign.

In this problem, we denote the spaces by s and S, the function on distance denoted with the <
characteristic ¢ > , as the same as in the application to the second located term S and s of (5), and to
the third located term, we may replace & with . The integration is given as follows :

/ / ds.dS.o(ds, dS) | (6)

We would like to show that the spacial elements, depending on the three variables, which imply that
the sextuplez integral are to be reduced to the quadruplez integral. ({) Here the integral (6) contains triple
integral when using either (3) or (4), then (5) contains sextuplex integral.

4.5. Reduced integral from sextuplex to quadruplex.

Our integral (I) neglecting the insensible factors : = — [76'p.dr + [n#p.dr’. Clearly this is not
important, either the parts 7 and 7’ or to the surface T to ¢ is rather important. The value of the
sextuplex integral : (6) becomes

// ds.dS.p(ds, dS) = 4noyp0 — 7760 + wT'60 — w/dr.ﬂ'p + / dr'.¢'p "
({4) Just this transfomation is boastful reductional method of integral from the sextuplex to quadruplex.

4.6. Method of reduction of [[ ds.dS.¢(ds,dS) from sextuplex to quadruplex.
o Therefore, we can assume the primitive function ', i.e.,

’
21'2/ 91;;11' -t = o'r =/'20:t.dx (8)

r2 z3

e We consider the integral from z = r to an arbitrary, sensible and constant value, denoted by R. Namely
we integrate as follows : 18

" 20zdr Or OR )
h 7 R
12pgisson cites Gauss’ mininum denoted by §2 in (5) in his preface of [27] and states :

Dans le cas d’un liquide homogéne et incompressible, il réduit d’abord cette quantité & une intégrale
quadruple ; et en considérant spécialment le cas ol les forces appliquées au liquide sont la pesanteur
et l'attraction mutual de ses molécules, dont la sphere d’activité est insensible, il réduit de nouvesu la
quantité dont il s’agit, qui est ensuit composée de trois termes, savoir,

(1) le produit du poids du liquide et de 'ordonnée verticale de son centre du gravité,

(2) Paire de sa surface libre multipliée par une constante'? qui ne dépend que de la matiére du liquide,

(3) et l'aire des parois fixes contre lesquelles il s’appuie, multipliée par une seconde constante!4 de la

matiere du liquidc et de celle de la partie solide du systéme.
[27, pp.7-8]

15poisson recognizes this Gauss’ achievement in [27].
16({}) This function is rapidly decreasing function. Here, 6r, # R mean 6(r), 68(R) and are assumed as 6(r) > 6(R).
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Clearly this integral is smaller than this [ 2Z¢% with the interval, this is = % — 28, Moeover, it is

smaller than g’;. Otherwise, by infinite integral, it become as follows :

20zdzx Oz /dez bz vz.dz (10)

23 x2 2 z2? 22

Moreover, from (8), (9) and (10),
9’7‘___/29.7:.(1.1::* [_B_z_/wz.da:] z(_ﬂl_ﬁR)_/Mz* (ﬂt_@_@)_ﬂ (11)
=r r

r2 3 2 2 r2  R2 r2 2 R?

e Integrating with the smaller interval than the integral [ -’%f—“. Moreover, from (11), this is smaller
than %—' ; therefore, the value of %’5 is greater than the right-side expression of (12) 7

o'r or OR or r2.6R
72—=(7—3—-ﬁ)——- = fr=0r- 77 —rr (12)

From (12), the interval of ¢'r : ér and 6r — rz.%% —ryr =*0'r
¢ If we differentiate this expression, by r decreasing infinitely, then we see clearly that we can evaluate this
quantity to be infinitesimal, for example, when g in (7) is the finite quantity. Thus we have concluded
that it is due to 6 = 6. It is clearly considarable that, the formula (7) of previous art.16 ( §4.5 ) turns
into

e —7Ttp and for instance, under the interval ~= [ dr.6'p

e 77’6 and for instance, under the interval = [ dr’.¢/p,
if the difference or the distance is insensible or considerable as null, to count respectively the part of
T, T'orT, 7.

4.7. Variation problem to be solved.

In the application of previous survey to the evolution the second term of the expression  in the art.
3,in the art. 6 denote by S in the art.16 o, 7, 7’ will be use as s, t,0, if ¢ is the total surface of the space
s, in which the fluid is filled. Therefore whenever this space extensional sensible part however insensible
concentration is kept, this sort of gap ( crevice ), the part of the second part of the expression Q of (5) in
the art. 4.3 becomes = 17c?(s¢0 — t60). In static equilibrium it is due to the maximum value, this turns
into —ge [ zds + $c2syg — Lmc?thp + mcCTOy. In an arbitrary fluid, of which the figure is yield oneself
to the space s meaning invariant, of which the expression becomes as follows : [ zds + "—;—gﬂ.t - @Q.T,
and in an equilibrium state which is due to minimum. Here, we denote

7l'090 _ 2 7rC’T90

= = 2 =T U, 13
2g ~ % pe t=T+ (13)

and by W, then

W= /zds + (a® — 26%)T + o%U (14)

4.8. Geometric structure for analysis.

Here, we consider : o the surface, denoted by s, ® a part U, on which all the points is determined by the
coordinate z,y, 2, these three values are the distances to an arbitrary horizontal plane. It is capable to
recognize z is, for example, as the indeterminated function by z, y, for these secondary partial differential
with our conventional method, by omitting a bracket, we show it by %.dx, -%.dy. 18 The structure we
are considering is as follows :

(1) We define the points consisted of an arbitrary and every points on the surface, denoting s with
respect to the rectanglar surface, normal to the exterior direction of s, and in addition, we set

17(4) Multiplying by r2, which is infinitesimal value. Today’s description of (12) is '(r) = 9(r) — %ﬁl - rp(r).
18(44) These descriptions by Gauss mean as follows :

;i:' (dZ)I_d% dz (dZ)y=dz_z d—zd':n_(gi)xl— d2z

=(2) =22 2 45,=(% , Zdz= =
dz dz?’ dy T\ dy?’ dx dz dzz’
y
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an angle by cosine between this normal direction to the axis of rectanglar coordinate z,y and z

with parallel, which we denote by £,7 and (. Thereby it will be :
2, .2, 2 _ dz £ dz 7 N dz\2

E+n"+¢* =1, E——z, @——E’ = 1+(%) +(£ —C—z (15)

(2) The boundary of surface U become linear in itself, as the same as denoted by P, and while the
motion is supposed necessarily, this element dP ( as the same way of dU as the surface ) is treated
as positive only.

(3) The angle by cosine, that directions of the element dP are expressed with the axis of coordinate of
z, y, 2, denoted by X, Y, Z : since we would avoid giving ambiguous sense about the direction,
we define these angles as follows :

e at first, we assume that the normal direction in the element dP to the surface U, and draw
a tangent
e next, looking this line innerward, we draw the second side.
o finally, in the normal direction with respect to the surface, we put the third side in the space
s to the exterior,
and constituting similarly the next system of three rectangles and the coordinate axis z, y, z.
Thus, we see easily the following expressions (cf. Disquisitiones generales circa superficies
curvas ), using the angle by cosine with the direction to the axis of the coordinates =, y, z are
respectively

dz)z_ 1

a B8 v
7°Z - %Y, (°x-¢£%2, €Y -¢°x = XY z |, (16)
€ n° ¢
here, we suppose that £9, 7%, (° are the values of £, 7, ( for the points of the element dP.

(4) where, a, 8, are temporarily used values of ours to correspond to (35). By the way, we see
(16) is the same with the determinant to be mentioned again below (35).

4.9. Variation of a triangle dU of the surface U.
Here we would like to supplement the preliminary. We assume the surface U is the part by an arnitrary
infinitesimal perturbation.

o If we consider sufficiently all the perturbation, for this boundary P always invariant, at any
rate, it maintains, in this vertical surface, we can induce clearly the variation of only the third
coordinate z, this problem is far easy to evalute it ;

e moreover, the maximum problem in general, in the following investigating method, considering
the variable boundary, in which ambiguity and difficulty combine elegantly, bring up perturbation
; how we can show, always from the start of all, three coordinates handle the variation.

We the force as we image it, and anywhere on the surface, in which the coordinates, which are z, y, z,
had substituted in another, these coordinates are z + 6z, y + 0y, z + 6z, where éz, dy, 6z are able to
regard as if these were the indeterminate functions of z,y, if these values stay infinitesimal. Now we
would like to inquire into the variation of singular (indivisual) element, expressed with W and surely the
initial are made of variation of these elements dU.

Now, we assume a triangle consisted of three points : P;, P, P3. ®* We put the element of U by a
triangle dU consisted of these points, of which the coordinates are :

P T Yy 2
Py:  z+dr y+dy z+Fdr+Fdy
Py:  z+dz y+dy z+PEdz+Edy

If we assume dz.d'y — dy.d'z > 0, then the twice area of this triangle is gained by our principle as

follows :
(dz.d'y - dy.d’w)‘/[l + (Z—::)z + (3—2)2] )

(17) becomes {2Ly=ud2) grom (15). ()
e location value by perturbation of P, : z + 6z, y+dy, =z+96z.

19(3) The symbols : Py, Pa, Ps are of ours insted of “the first point”, etc.
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e Location value by perturbation of Ps:

z+dz 6x+d5’”da:+d;fdy (@ +67) + (1 + %2).dz + %2 dy
y+dy : 5y+@2dm+d—“dy , (v + Sy) +gldac+(1+iiﬂ)dq
2+ Edo+ E.dy 5z+d“z dz + %2 .dy (z+82) + (%2 + %) de + (52 +‘“’)dy

o Location value by perturbation of P; :

r+dz 5z + L2 d'x + Uz gy (z +6z) + (1 + 42).d'z + d:S.z 'y,
y+d’ , 5y+md'a‘+d—égud’ , (J+6y)+%‘-’id’r+ 1+-‘%’i)d’y,
d’a‘+ d’y 6z+ déz d':L‘+ do: d/ (z+6z) +(g; + déz) d'x+( d&z) dl

(J) We can also show the matrix only with variation as follows :

oz oy 0z
(1+ 92).de + L2 dy M de+(1+%¥)dy Edz+Dudy
a+ ‘”:).d’x +ordy  Bgr+(1+ éﬂ) dy Edz+Ddy
dz dbz dz | déz
= =22, 202 18
where, FE = e + = iz & + dy (18)

By the way, these principle comes from Lagrange [11, pp.189-236], ?® in which Lagrange states his
méthode des variations®® in hydrostatics. (1)

The duplex triangles 22 including these points, by the same method, for brevity, by denoting the
sum by N, (17) is expressed as follows :

(dz.d'y — dy.d'z)VN

(U) These values : dzd'y — dyd’z, dzd'z — dzd'z and dyd’z — dzd'y are calculated in permutation by
Jacobian |J| of the three determinants extracted from (18) :

+ 4z e 144z diz 1+ 4y 4
. 2 . . T 9 . dy dx
(mvy)' dT&zu 1+@ ’ (:I z)' ' E D ’ (y,z)- D E
(M
We denote temporarily the following sum by N, then
_ déz doy\ _ déz doyq? dsa\ (dz  déz\ dbz(dz _ déz\]?
N = [(1+d_.z‘)(1+@)wdy'ﬁ +[(l+da:)(dy+dy) dy(dz+d:z:)]
déy\ rdz | déz déy rdz  dbz\12
+ [(1+ )(dz+ )—E( +dy)}
= C*+ [D1 + Df| D+ [B} + EZ]E’ —2[DiEs + EuDa), (19)
déz déy déx dby déz  ddy dz déz dz dbz
=(1+— =Y T2 14+ 22T p=—_4 =2 =422
where, C= ( +2)( dy) P e oy Ty & T dz

and Dj, Dy, Ey, E; are the two terms consisting of D and E respectively, and these coefficients are
correspond to the variables of the equation (20) showed in our footnote on the theory of curved surface

3ection 7. De Pequilibre des fluids incompressibles, §2. Ot lon déduit les dois générales de léquibre des fluides
incompressibles de la nature des particules qui les composent. [11, pp.204-236]

21Lagrange[ll p.201]. Today’s mathematical nomenclature is calculus of variations or calcul des variations by The
mathemnatical dictionary ( 4th edition in 2007 ) edited by MSJ, 1954, p.432, (Japanese).

22(1J,) The duplex triangles construct a rectangle made of arbitrary two adjoining triangles.
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by Gauss [7]. 2

Extending (19) with neglecting the second order of 8, for example, d“; ‘5: or (%f—’i)2 etc., and for
brevity, denoting the sum by L, then

)

déxr  dby\?
2 _ + 4+ F) ~14+
e C (1 dx dy) 1+2

5 dé
B (D (E) 2% G) ey
Samely changing z with y in corresponding expression,

(F) +(+ 3 1o (3) g (B) 5%

X

d5:r)d6a: (1 @)@]DE2_2d_zdz(d6z @)
dy

o (1 g &y ) dz a\d &

(M

‘ 3 2 2,2\ %
VN = ([1+ el +(dy)][1+1+(g§)f+(%)2]) (L+1+(:z) +(%))

where, L is gained by extracting only one order terms in the expanded terms from (19) :
() Here, we se¢ the coefficient 2 included in L in (22) come from two triangles.

N
—* 2 2 2
. ¢ +(:i)62 +d(6.;E +(d.z)D2E déz rdz dzdfz dz déy rdz dzdéz _dzdzsdéz dby
= 1r2F )+ () 2% (dy) aat(@) (8 2T 55 (G D
:Cr7 oD2 .E? eDE
o ()} () B (S (S S () ()
= o+ 1+ (%) +(3—:)] (22)
(1) We continue from Gauss. From (22)
dé 2 dz dz (déz  d& dé dz\?2 dzdéz dzdéb
vo= [l @) 285G DS @) ) GR 2D
L1 d d
= 5lv-{+ @)+ @) H 23)

(4) Gauss’ expression is without 2 of the top in the last right-hand side of (23), for L is a triangle. ()
Here we may recall (15), then the followings hold : the ratio of the first triangle to the second and plus
1 becomes,
L . 1st triangle

= —* 2
1+( zy2 4 (4= )2_ 1-*-ant;ria.ngle 1+¢L

Moreover, this is independent of the figure of a triangle dU, then, it turns out,

Ldy * ¢(2LdU (24)

T @@

2In Disquisitiones generales circa superficies curua.s, Gauss deduces the following concluding equation ( cf. [7]) :

dr dr
EG-F%= -2F.—. —+G (20
E(§)? - 2R g T +6(E)’ )
We see (19) resembles one in [7].
N=C?4+G'D®*+E'E?>-2F'DE (21)

If we assume that § = D, 4L = E, E' = E3+Ef, F' = D1Ez2+ E1D2 and G’ = D} + D}, then E’, F’ and G’ correspond
to E, Fand G in [7]
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Expanding L in (24) using (15) and (23), then

dox s 5, o déx  ddy déy 2 déz z
bl = dU[ ( +C)—(dy )é oy (E +<) §C dync]’ (25)

(1) where, we used the followings : (2 (1 + g-;-) = C2+(2% =£24¢2, (2 (1 + é‘%) =(24+(2 ICL; =242

Here, the coefficient of 2 in (23) is unnecesary, since dU is a triangle according to Gauss’ description.

4.10. Integral expression by decomposing dU into dQ and dU.
From (25), all variation of the surface U is obtained by the following two integrals

/ av [ (n? +¢2) dax —€n (ddy) 54@] = A, (z—differential part) (26)

/ dU gn—+(§2+42)-@ (d‘sz] =B, (y—differential part) (27)

and these are separately treated. We consider as follows :

e at first, we take a plane, normal to the coordinate axis y, and such as, for the value of this y to
be determinated suitably taking the exterior value to the peripheral, and for the last value of y
to be in the surface U ;

¢ next, for this plane, on the peripheral P, we split into two part, or four, or six, etc., for the points
of which by the first coordinate, to be followed by 2%, z’,2”, .- ; namely, as if the indeces are
different each other, we should number suitably by the indicies to these points ;

e then, by the same way, we split the surface with other plane, for this infinite neighbourhood to
be parallel, and to encounter with the point of the second coordinate y + dy ;

e finally, between these planes, we could get the elements of peripheral dP%,dP’,dP”",. -,

then we could see easily the expressed as follows :
dy=-Y%P? = +Y'dP' = —Y"dP" = +Y""dP" etc. (28)

({) where dP* means the various P, not the derivative, and the sign changes superior or inferior, according
to that the line uP* from the center 4 takes interior or exterior of the space S. (f) K, in addition to, we
con51der the infinitely many planes, rectangles to the coordinate axis x, of w}nch the element dz between
z° and 2/, or between 2” and z’”, or etc., it corresponds to the element :

dr.dy

U = (29)

(4) Namely, this correspondence comes from (25)

Jow= [la(r+c) G2 - S - B2eq)+ [av](e2+ ) By - B2y Be

dé dé
= dy [ang[(n+¢*) G- Den- Do) 4o [ay}[(e2+ 7). B - Bogy - L]

(")

Therefore, from here, it is clear for a part of integral by part : A, that corresponds to the part of the
surface depending on between the interval : y, y + dy, to have by the following integral, i.e., substituting
the right hand-side of (29) into A of (26), then A =dy [ da:(ﬂ—g—jc‘—‘i.-‘1{1‘57“c - %’l.% - §d6z), extending from
z =20 to z = z’, next, from z = 2" to z = 2’ etc. In fact, the limit of this integral by part is expressed
as follows :

2+ 2 d§_’2
RSP - L d% df
a=(TEE S £62) dy - dy/(&a: gyt -6 (30)

Here, we construct A using (28) and (29), then
02 | 02 0,,0 2 2 1t
(Tt - £ 50 - £26:0)Y0ap® + (s’ - £ gy — 52/ v'ap!

¢ ¢ ¢’ ¢’
2 ¢n
7'’ + ("2 "_ E" e\ vm g _ [ d€ _ jd_f_
+ ( o 0e by — €z JY"dP" + ete. / ¢dU (d2—— — by—* — 52 =)

24({}) In fact, comparerig the two expressions : (26) with (30) and (27) with (30), then this correspondence deduced.
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or in sum,
2+ 2 d§_’l
USR] _ S W SN 4
Z( —fa Céy—{&z)YdP /(dU(&x < -y 62 z)
This total quantity A is expressed by

) !1’_+C dﬁn
MG _5,%
where, the first integral is extended to all the circumference of P, and the second is extended to all the

surface of U.

4.11. Analytic reduction of 6U to Q and V via A and B.
By calculation from (26) as the same as (27), we get B similarly and immediately

A=/(’72+Cz E"ay eaz)YdP /gdU 6:ru$: —Jy%—éz‘%) (31)

2 2

B =/(%’6$— ézi%-—Cjéy——17524)XdP+/(dU(&rgj —5yd§j_

Here we determine for all the circumference P, we get (Q from the first terms of both (31) and (32),

(%5 & ZC oy — ndz)X + (7?2 2‘(261, - %7'53/ = Edz)Y =Q,

[Xen+ v (i +¢3)]ox - [X (€2 +¢?) + Yen|oy + (XnC - YEQ)52 = (Q

Moreover, for every point of the surface U, we get V from the second terms of both (31) and (32),

+ 620 y) (32)

déa dzz"_+§: dén g & d
“< - ¢ B Lo =
( dy l:r )Cdz + ( dr dy )C5y+ (d:z: + dy)céz =V (33)
That is, we can put
§U = / QdP + / VaU (34)

The first integral is to be extended along all the circumference P, and the second is on all surface U.
(4) This is the what is called Gaussian integral formula in two dimensions.

4.12. Geometric reduction of Q@ and V.
Formula for Q and V notably contradict X¢ + Y7 + Z¢ = 0, Q has always the symmetric form as
follows :

oz 0y oz
Q= (Y¢ - Zn)dz +(ZE - XYy +(Xn-Y&oz =" Q=X Y 2 (35)
£ n ¢
When we see the form of V, we can reduce from the formulae (15)
dt d2
d_z=__§, d_z.=_2, o> =5 (36)
dzr ¢ dy ¢ dy dzr
therefore, S = §.91 4 n98 _ g dn 4 28 for €2 +72 +(2 =1 ded
ereore,-ay——%.a-;l+ndy—c.3£+n35-. oreover, for £ + n* 4+ (* = 1, we can deduce
6% 10Tl 4¢3 =0 (37)
by dividing the both side of hand of (37) with ,
£de __(mdn, doy aTE dﬂ+(n dn oy _ 98¢ & (38)
¢dx ¢dr dz ('dzr  dz dr (' dz
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We may replace the coefficient of {6z in V' of (33), using (36) and (38),

2+ 2
d AT 42 dg ed _ (B0 ) - + S8 (% iy
dy dz dy  dz T Cdx cdy ¢dx dz | dy
d§_[ di +<
Samely for (dy, -5 — % g( 3-5- + 331) Then V of (33) is reduced as follows :
dn
V = (667 + oy + (62) (= + )

4.13. Geometric meaning of -—"'- + d—g inV.

Before going forward, we must 1llustra’ce conveniently the important geometrical expression. Here we
restrict the various direction, we would like to present the following its intuitionally facile method, which
we introduced in Disquisz'tiones generales circa superficies curvas. We consider the following layout of
structure.

o At first, we put the sphere, of which the radius = 1 at the center of an arbitrary surface, we
denote the axis of the coordinates z,y and z by the points (1), (2) and (3),

¢ next, taking exterior domain denoted by s, we number a point denoting by the point (4) toward
the normal direction on surface ;

e then, at an arbitrary point on surface, drawing various rectangle direction toward point of itself,
which we denote by the point (5),

e finally, the variation of itself, we suppose that the quantity /dz2 + dy2 + 622 is always positive,
and we denote the quantity by ée for brevity, then dx = de.cos(1,5), by = be.cos(2,5), bz =
de. cos(3, b),

(4) By the way, for understanding Gauss’ method of description of angle, we can show the same method
by Lagrange in 1788.(1)

Here, we consider the every point on the surface. In this boundary, if we call the periphery P, we
can consider the two directions. ({) (Remark. () is a unique point naming, and (e, ®) means the angle
between two points taking an intermidiate of the origin. ) (1)

e At first, we denote the corresponding point to dP by the point (6),

¢ next, we draw the rectangle direction to the surface, which is the inner normally-directed tan-
gential to the surface, then we denote the point by (7),

e then, by the hypothesis, these points (6), (7) and (4) look toward the same direction , 25 using
above-mentionhed (1), (2) and (3) then (4, 6), (4,7) and (6, 7) make a cube, 26 when we consider
each angle as the rectangle.

Thus, the equations (16) in the above-mentioned ( §4.8 ) transform into

nZ — (Y = cos(1,7), (X —€Z = cos(2,7), EY —nX = cos(3,7)

The formulae in the previous article take forms as follows :
a .
= = 39
Q de. cos(5,7), = de. cos(4, 5). ( dy) (39)

Here
¢ () expresses the translation of this point along the periphery P, to which a plane of tangential
surface U, taking as normal in the domain, positive to the opposite direction ;
e the factor V is, like cos(4,5) clearly indicates, the translation of this point on the surface U,
taking as positive in the domain of the exterior space s.

Here we may summarize Q and V in 6U = [ QdP + Jvdu by the two methods between analytic and
geometric in Table 4. We may explain by replacing 5 i in V of (39), from the point of view in
geometric meaning. In such case, it turns namely as follows : from (15), taking derivative in both side of
hand of (15)

_2€_3=2§i'dg—: 29_2..(15_; = —_Cd_z 213._;_4(12 C2dgy

dr d¢ " “dy d¢ d¢ " Cdy” d¢

25This image is considered that there are three directions emitting from a common point and making a certain angle
with two directions ( i.e. points.)

26(4, 6),(4,7) and (6, 7) make a plane consisting of a cube respectively.

(40)
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TABLE 4. Comparison of @ and V in 6U = [QdP + [VdU between analytic and
geometric method

nojvaluelanalytic method geometric method
1] |@=(gis- SCay- ndz) X + (b — Loy - £62)Y  |Q = —be.cos(5,7)
V= 6e.cos(4,5).§§§- + %3

= de. cos(4, 5).

2 v |v= (%ﬂ—— dﬁﬁ)@ﬁ+(§‘#)“”+(%+%)caz

dx

1 1
E""E")

and finally we get the following expression after replacing (40) with £ and »

dz dz
_ er278% 2,42
dC—dedz'f'flCddy (41)
% _ e e B2 L W o EE P2 L
L TR U N O Y A A T ATAC
ity - RTE T C[dxz{ +(dy) dz.dy‘dx‘dy+dy2{1+(dx) }]
-3
where, (3 = |1+ (:—;)2 (Z—;)Z] *and R and R’ are the radii of curvature respectively. (42)

27

-4.14. Geometrical method. Deducing the parts of Q.
From (34), (39) and (42)

() oU = / QdP + / VU = - / Se. cos(5, 7).dP + / Se. cos(4, 5).(% + %)du. (43)

Evolving further the variation, for the expression W is explained by the variation of figure of the space
s, we would like to start to argue at first, from the variation of the space s. Recalling that we consider in
§4.9, the prism with the equal sides and oriented to the solid body, then, on this point, we can see that this
prism has the followings : (1) the size of basement : dU, (2) the height : {6z +ndy+(dz = de. cos(4,5),
where de = /622 + 6y2? + 622, o(3) the sign ( + ) of height depends on transpositing triangle, according
to the location of whole solid lying whether in terior or exterior of the space s. Hence, we can get
(II) &8s = [dU.de.cos(4,5). Next, from (II), the variation of f zds (III) follows : (III) 6 f2ds =
[ zdU.ée. cos(4, 5).

As long as the variational quantity 7', we can see that P is the limit point having commonly the
surface T and U, the transpositional point of the circumference P satisfies owing to these condition,
and newly keeps in the surface space S. By the transpositional element dP, as the partial displacement
of the surface T, we get easily +dP.de.sin(5,6). In general, the choice of positive or negative sign
depends on the sign of cos(4,5). We would like to explain it by introducing the new directions such
that : (1) the space S tangential in the surface plane, o(2) the normal-directional line P, and e(3)
the exterior space s, respectively. If denoting the responding direction with the point (8), then by the
transpositioning element dP, we get the surface variation of T, from the definition, as dP.de. cos(5, 8),
namely (IV) 6T = [dP.be.cos(5,8), where, the sign of factor cos(5,8) depends on the conditions of
whether increment or decrement. When we assume that :

e at first, the point (6) were the pole of the maximum circle passing through the two points : (7)
and (8), then the point (5) is the highest point in the circle made by the two points (6) and (8) ;
e next, the points (5). (7) and (8) make a rectanglar triangle, having the rectangle at the point (8)

o then, we can get the expression : cos(5,7) = cos(5,8).cos(7,8), where, the arc (7,8) is the
measure of angle between planes of the two surface spaces : s and S, which are tangential
intersecting with the point P and the plane domain, including null space ;

o finally, we denote the angle making with (7, 8) by ¢, i.e. i = (7, 8) and by 27 —1, the angle between
plane domain, in which the space s is continue.

27(y) cf. Laplace [13, 14] had deduced his same expression with Gauss’ (42). cf. Poiszon {26], p.105.
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Then we can formulate (V) as follows : (V) cos(5, 7) = cos(5, 8). cos .

4.15. Result.1 : deduction of height from the first fundamental theorem.
By the combination of above formulae I, - . -, IV, we get the variational expression of W, where, W is
the value of (14).
1

§W = f dU.de. cos(4. 5). [z + a2(§ + %)] - / dP.Se. cos(5, 8).(c? cos i — a? + 26?)

1 1 1 1
2(L 1y _ - =_o2(L 1)
where, z + o (R + R’) Const. If we set Const = 0, then 2z a (R + R’)
and, z is the height of capillary action, o and 3 are the values defined in (13).

4.16. Result.2 : deduction of angle from the second fundamental theorem.
oW = — /dP.(Se. cos(5, 8).(a® cosi — a? + 262%) = o? /dP.rSe. cos(5, 8).(1 - 2(§)2 — cos 1)

, then

of
BY 1Y

Here, we assume A such that cos 4 = 1~ 2sin®(4) =1 - 25;. If sin
W =qa? /dP.cSe. cos(5, 8).(cos A — cos ),

where, the integral is to be extended along the total line P. Remember that the factor cos(5,8) is
equivalent with sin(5,6), 2 and the sign becomes plus or minus, according to fluid in motion in the
neighbourhood of element dP or moreover, it reachs to the end point of P, or it comes to disappear.

5. Conclusions

(1) The “two-constants” were defined in terms of kernel functions of RDF's, describing the charac-
teristics of dissipation or diffusion within isotropic and homogeneous fluids that were necessary
for the interpretation of the nature of fluid or the formulation of the equations of the fluid me-
chanics including kinetics, equilibrium and capillarity. With their origin perhaps arising in the
work of Laplace in 1805, these sorts of functions are simple examples of today’s distributions and
hypergeometric function of Schwarz proposed in 1945.

(2) Gauss [8] also contributed to develop fundamental conception of RDF or MDNS equations for
fluid mechanics including capillary action, because he formulated the equations with two-functions
instead of two-constants and these were the superior method from other contemporaries with the
progenitors of N'S equations.

(3) According to Bolza (2], Gauss [8] had broken one of the neck of fundamental problems, such as
multiple integral and calculus of variations, however, we must recognaize that even he owed the
latter to its progenitor Lagrange, and calculation of capillarity to its progenitor Laplace.
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