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On Positive Solutions of Nonlinear Elliptic Equations with
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Abstract

We consider the elliptic equation Au + p/|z|? + |z|'u? = 0 in R"\{0}. We explain the existence
and the asymptotic behavior of regular and singular solutions with respect to p and I.
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1. Introduction

We study positive solutions of the elliptic equation with Hardy term

Au + E’“‘Fu +lz/'w? =0 in R™\ {0}, (1.1)

where p < (%52)2 and p > 1. Set

n—2x+/(n—2)2%—-4u
vy = ) ,

the solutions of the quadratic equation, v(n — 2 —v) = u.
Assume that [ > v_(p — 1) — 2. If ||’ is replaced by K(|z|), then the condition corre-
sponds to the integrability

/sl_(”_l)”*ﬁ'(s)ds < o0,
0

which is necessary to have local radial solutions satisfying u(r) = O(r~¥-) at 0 where
r = |z|. We call this type regular solution.
Let

P l=mn-2-m).

1
where m = %. When LP~! > 0, we set L = [m(n — 2 —m)|#1.

Note that (i) 7 > v_ (see the condition of ); (i) if m < 252 (or p > “t232) then
L1 > p.
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2. Nonexistence

We observe the nonexistence in terms of parameter p.

Theorem 2.1. If u > LP™!, then (1.1) has no positive solution.

In particular, u > ("—5—‘2)2 =: i, the Hardy constant. LP~! = i when p = 23242
Hence, for any p > 1, the nonexistence holds if

en=1and > %;

en=2and x>0.

Now, we consider the nonexistence of regular radial solutions.

Theorem 2.2. If p < LP7! and'p(n —2) < n+ 2+ 21, then (1.1) has no regular radial
solution.
The second condition is restated for n = 1,2 as follows:
en=1landp>-20-3(orl>—3(p-1)—2);
en=2and!> -2
en>3andp< %_Jg‘”
By the radial symmetry of regular solutions, we conclude that

Theorem 2.3. If0 < u < LP~! and p(n —2) < n+ 2+ 2l with | <0, then (1.1) has no
regular solution.

It is natural question to ask whether (1.1) has nonradial solution for all u < 0. In [8], Jin,

Li and Xu gave a partial answer: If | =0, u < —1‘-2‘—2 and p = %ﬁ—g, then (1.1) has nonradial

solutions. However, it is still open for -—"—;2 <pu<0.

3. Regular solution
Now, we consider the existence of solutions of the equation

-1
L %u +rluP =0, limr’-u(r) =a>0. (3.1)
T T r—0

When [ > v_(p — 1) — 2, (3.1) has a unique local solution u, € C2%(0,4) for § > 0 small.

Theorem 3.1. Let u < LP7! and p(n —2) > n+ 2+ 2l. Then, (3.1) has one-parameter
family of regular. solutions.

In particular, we are interested in the critical case.

eForn=1assume m>+m+pu<0and1 <p< —-21—-3 < —2v_(p—1)+4. The
critical problem is

1
u + Eu ot —mu? =0, limr"-u(r) =a>0;
r2 r—0

72
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e For n =2, assume m? + u < 0 and [ € —2. The critical problem is

1 1
W+ v+ Byt SuP =0, lim rV Ry (r) = a >0
r 2 r2 r—0

e For n > 3, assume yu < LP~1 and p > n—i‘g:;—u

The asymptotic behavior of solutions has two types: the first is fast decay for the critical
case; the second is slow decay for the supercritical case.

Theorem 3.2. Let p < LP7! and p(n —2) > n+ 2+ 2l.
If p(n ~2) =n+ 2+ 2, then limy_ 0o 7"+ Ug = ¢ > 0 and for n > 3 and for some ¢ >0

[2(71'*‘1)\/(11}—#)6 |VE/(2+])

— B
C+)viE—p
Vi

Ue(z) =

,x,ﬁ—ﬁ:ﬁ(e + |z| )(n-2)/(2+l)

are the solutions. If p(n — 2) > n + 2+ 2I, then

lim r™u, = L= (IP7 - u)ﬁ

T—0o0

4. Singular solution

Now, we look for solutions which are not regular. We call this type singular solutions.

Theorem 4.1. Let p < LP7! and p(n —2) > n+ 2+ 2.
Ifp(n - 2) = %iizzl, then there are two types: the first has the self-similar singularity,
r~™L; the second is Delaunay-Fowler type:

0 < dy :=minr"u,(r) < L < dy := maxr™u,(r)

n+Hn-2) mn+l ;=2
<D:=[ 4 —n—2'u]m

9

and r™us(r) is periodic in t = logr.
If p(n — 2) > n+ 2+ 2l: r~™L is the unique singular radial solution.

If | < —2, then each problem for p > 1 is a supercritical case. Hence, for [ = -2, L =

1
(—p)7-T is the unique singular radial solution while for v_(p — 1) ~2 <l < -2, r"™L is
the unique singular radial solution.
5. Separation
We consider separation of solutions.

Theorem 5.1. If P71 > u> [Pl - R;_if) with a = n — 2 — 2m, then any two solutions
of (8.1) do not intersect.
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We analyze the assumption and explain the cases.

(i){>-2and n < 10+ 4i:
For given p > "—*7;2_-"'-511, there exist p_(n,p,l) < p+(n,p,l) < i such that separation
happens for 0 < p_ < p < py. Observe that

lim = lim = 0.
psn 2_;2 Bt = L, p_‘co#:l:
a2l

For given 0 < p < [, there exist p > p- > %_22’ such that separation happens for
p-<p<py= ‘—VT_—z + 1. Moreover, py is decreasing in (0, iz).

(ii) I > -2 and n > 10 + 4i:

2n+{—2 10-41
po 2 LRG0l for p > MR 4 =y, only when p = 2R =

Ps(m = "——_—lg"—‘“). Note that p. = —L";lll%‘ﬂﬁ when p = = 2 2424 and | = 0. In other

words, for given 0 < u < [, there exist p, > p_ > %22’ such that separation happens for
P- S p<py = H'2-+-1 while for u = 0, p > p. and for pu« < u <0, p- <p < p4. p-

is decreasing in u, and p; is decreasmg only in (0, ). p—(0) = p. and p, is increasing in
144, 0), p+(0) =
n+2+2l .
lim py = ————, lim pi = p,.
B n-—2 TR

(iii) I = —2:
0>/.L2—}—,E‘—1 and1<p5p+=—g+1.
(ivie(p—-1)-2<i< -2
p- < p < p4 and
lim gy = —o0, lim py = .
p—1 p—0o0

Forgiven——oo<,u<0,l;f_—2+1=p_<pSP+-

(vyn=1landl< 2
p-<p<pr <p= and
;I’Lniﬂi=_°°a plggoui=oo

Forgiven —co<pu< 3, 82 +1=p_ <p<py.

lim py = -2[ - 3, lim py =1.
B—Q p——=00
(vijn=2and l < —-2:
p— < p < pt and
lim g3 = —o0, lim puy = o0
p—1 p—o0

For given —oco < p < 0, l+2+1—p <p<ps+.
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Theorem 5.2. Let p > ”—‘7"12_—';% Assume fi > pLP~1 + u(= pLP~! — (p — 1)p). Then, every
radial reqular steady state u satisfies

|zPu(z)P~t TP (= LP7! — p)
and the operator —A — I_;Tf — puP~! has no negative spectrum and u is linearly stable.

Proof. Suppose the inequality. Then,

S N S -1 - _1_
pu o 2 (—pLP™" +(p l)u)mg
and
/ Vo|* — #qﬁz —puP~1¢? > 0
for ¢ € H.

Let LP~! = Q(m) —  and Q(m) = LP~!. We observe that
Q(m —0)V —uv =V?,
VP - 1P > plP"(V - L),
Q(m — 8,)V — pV - L > p(Q(m) — p)(V — L),

[pPQ(m) — Q(m — &) — (p — u]W <0,

where W = V — L. The characteristic polynomial P()\) = pQ(m) — Q(m — ) — (p— 1) has
two negative roots, Ay, As. Let Y = W’/ — M\W. Y/ — AY < 0. Then, e *2!Y is decreasing
and zero at t = —oco. Hence, W/ — MW < 0 and W is also zero at t = —oc. Therefore,
W < 0. The product of the two root is P(0) = (p — 1)(Q(m) — p) = (p = 1)LP~1 > 0.

n—2

P(m - 5

)=pQ(m) -~ (p-1p<O0.

Hence, P()\) has two negative roots. [

Theorem 5.3. Let p > 2242, Assume i < pLP~! + . Then, —A — - puP~! has a
negative eigenvalue.

Note that if p = LP~1 — 4(Taif5’ then i = pLP~! — (p— 1)p.
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