On Positive Solutions of Nonlinear Elliptic Equations with Hardy Term

Soohyun Bae

Hanbat National University, Daejeon 305-719, Republic of Korea

Abstract

We consider the elliptic equation $\Delta u + \mu/|x|^2 + |x|^l u^p = 0$ in $\mathbb{R}^n \setminus \{0\}$. We explain the existence and the asymptotic behavior of regular and singular solutions with respect to μ and l.

Key Words: nonlinear elliptic equation; Hardy term; positive solution; singular solution; fast decay; slow decay; asymptotically self-similar solution; Delaunay-Fowler-type solution; separation.

1. Introduction

We study positive solutions of the elliptic equation with Hardy term

$$\Delta u + \frac{\mu}{|x|^2} u + |x|^l u^p = 0 \quad \text{in} \quad \mathbb{R}^n \setminus \{0\}, \tag{1.1}$$

where $\mu < (\frac{n-2}{2})^2$ and p > 1. Set

$$\nu = \nu_{\pm} := \frac{n - 2 \pm \sqrt{(n - 2)^2 - 4\mu}}{2},$$

the solutions of the quadratic equation, $\nu(n-2-\nu)=\mu$.

Assume that $l > \nu_{-}(p-1) - 2$. If $|x|^{l}$ is replaced by $\tilde{K}(|x|)$, then the condition corresponds to the integrability

$$\int_0 s^{1-(p-1)\nu_-} \tilde{K}(s) ds < \infty,$$

which is necessary to have local radial solutions satisfying $u(r) = O(r^{-\nu_-})$ at 0 where r = |x|. We call this type regular solution.

Let

$$L^{p-1} = m(n-2-m).$$

where $m = \frac{2+l}{p-1}$. When $L^{p-1} > 0$, we set $L = [m(n-2-m)]^{\frac{1}{p-1}}$.

Note that (i) $m > \nu_-$ (see the condition of l); (ii) if $m \leq \frac{n-2}{2}$ (or $p \geq \frac{n+2+2l}{n-2}$), then $L^{p-1} > \mu$.

2. Nonexistence

We observe the nonexistence in terms of parameter μ .

Theorem 2.1. If $\mu \geq L^{p-1}$, then (1.1) has no positive solution.

In particular, $\mu \geq \left(\frac{n-2}{2}\right)^2 =: \bar{\mu}$, the Hardy constant. $L^{p-1} = \bar{\mu}$ when $p = \frac{n+2+2l}{n-2}$. Hence, for any p > 1, the nonexistence holds if

- n=1 and $\mu \geq \frac{1}{4}$;
- n = 2 and $\mu > 0$.

Now, we consider the nonexistence of regular radial solutions.

Theorem 2.2. If $\mu < L^{p-1}$ and p(n-2) < n+2+2l, then (1.1) has no regular radial solution.

The second condition is restated for n = 1, 2 as follows:

- n = 1 and p > -2l 3 (or $l > -\frac{1}{2}(p-1) 2$);
- n = 2 and l > -2;
- $n \ge 3$ and $p < \frac{n+2+2l}{n-2}$.

By the radial symmetry of regular solutions, we conclude that

Theorem 2.3. If $0 \le \mu < L^{p-1}$ and p(n-2) < n+2+2l with $l \le 0$, then (1.1) has no regular solution.

It is natural question to ask whether (1.1) has nonradial solution for all $\mu < 0$. In [8], Jin, Li and Xu gave a partial answer: If l = 0, $\mu < -\frac{n-2}{4}$ and $p = \frac{n+2}{n-2}$, then (1.1) has nonradial solutions. However, it is still open for $-\frac{n-2}{4} \le \mu < 0$.

3. Regular solution

Now, we consider the existence of solutions of the equation

$$u'' + \frac{n-1}{r}u' + \frac{\mu}{r^2}u + r^l u^p = 0, \quad \lim_{r \to 0} r^{\nu_-} u(r) = \alpha > 0.$$
 (3.1)

When $l > \nu_{-}(p-1) - 2$, (3.1) has a unique local solution $u_{\alpha} \in \mathbf{C}^{2}(0, \delta)$ for $\delta > 0$ small.

Theorem 3.1. Let $\mu < L^{p-1}$ and $p(n-2) \ge n+2+2l$. Then, (3.1) has one-parameter family of regular solutions.

In particular, we are interested in the critical case.

• For n=1, assume $m^2+m+\mu<0$ and $1< p\leq -2l-3<-2\nu_-(p-1)+4$. The critical problem is

$$u'' + \frac{\mu}{r^2}u + \frac{1}{r^{\frac{p+3}{2}}}u^p = 0, \quad \lim_{r \to 0} r^{\nu_-}u(r) = \alpha > 0;$$

• For n=2, assume $m^2 + \mu < 0$ and $l \le -2$. The critical problem is

$$u'' + \frac{1}{r}u' + \frac{\mu}{r^2}u + \frac{1}{r^2}u^p = 0$$
, $\lim_{r \to 0} r^{-\sqrt{-\mu}}u(r) = \alpha > 0$;

• For $n \geq 3$, assume $\mu < L^{p-1}$ and $p \geq \frac{n+2+2l}{n-2}$.

The asymptotic behavior of solutions has two types: the first is fast decay for the critical case; the second is slow decay for the supercritical case.

Theorem 3.2. Let $\mu < L^{p-1}$ and $p(n-2) \ge n+2+2l$.

If p(n-2)=n+2+2l, then $\lim_{r\to\infty}r^{\nu_+}u_{\alpha}=c>0$ and for $n\geq 3$ and for some $\epsilon>0$

$$\bar{u}_{\epsilon}(x) = \frac{[\frac{2(n+l)(\bar{\mu}-\mu)\epsilon}{\sqrt{\bar{\mu}}}]^{\sqrt{\bar{\mu}}/(2+l)}}{|x|^{\sqrt{\bar{\mu}}-\sqrt{\bar{\mu}}-\mu}(\epsilon+|x|^{\frac{(2+l)\sqrt{\bar{\mu}-\bar{\mu}}}{\sqrt{\bar{\mu}}}})^{(n-2)/(2+l)}}$$

are the solutions. If p(n-2) > n+2+2l, then

$$\lim_{r \to \infty} r^m u_{\alpha} = \mathbf{L} := \left(L^{p-1} - \mu \right)^{\frac{1}{p-1}}.$$

4. Singular solution

Now, we look for solutions which are not regular. We call this type singular solutions.

Theorem 4.1. Let $\mu < L^{p-1}$ and $p(n-2) \ge n+2+2l$.

If $p(n-2) = \frac{n+2+2l}{n-2}$, then there are two types: the first has the self-similar singularity, $r^{-m}\mathbf{L}$; the second is Delaunay-Fowler type:

$$0 < d_1 := \min r^m u_s(r) < \mathbf{L} < d_2 := \max r^m u_s(r)$$

$$< D := \left[\frac{(n+l)(n-2)}{4} - \frac{n+l}{n-2} \mu \right]^{\frac{n-2}{2(l+2)}},$$

and $r^m u_s(r)$ is periodic in $t = \log r$.

If p(n-2) > n+2+2l: $r^{-m}\mathbf{L}$ is the unique singular radial solution.

If $l \leq -2$, then each problem for p > 1 is a supercritical case. Hence, for l = -2, L = -2 $(-\mu)^{\frac{1}{p-1}}$ is the unique singular radial solution while for $\nu_-(p-1)-2 < l < -2$, $r^{-m}\mathbf{L}$ is the unique singular radial solution.

5. Separation

We consider separation of solutions.

Theorem 5.1. If $L^{p-1} > \mu \ge L^{p-1} - \frac{a^2}{4(p-1)}$ with a = n-2-2m, then any two solutions of (3.1) do not intersect.

We analyze the assumption and explain the cases.

(i)
$$l > -2$$
 and $n \le 10 + 4l$:

For given $p>\frac{n+2+2l}{n-2}$, there exist $\mu_-(n,p,l)<\mu_+(n,p,l)<\bar{\mu}$ such that separation happens for $0 < \mu_- \le \mu < \mu_+$. Observe that

$$\lim_{p \to \frac{n+2+2l}{n-2}} \mu_{\pm} = \bar{\mu}, \qquad \lim_{p \to \infty} \mu_{\pm} = 0.$$

For given $0 < \mu < \bar{\mu}$, there exist $p_+ > p_- > \frac{n+2+2l}{n-2}$ such that separation happens for $p_- \le p < p_+ = \frac{l+2}{\mu} + 1$. Moreover, p_{\pm} is decreasing in $(0, \bar{\mu})$.

(ii)
$$l > -2$$
 and $n > 10 + 4l$

(ii) l > -2 and n > 10 + 4l: $\mu_{-} \ge -\frac{(2n+l-2)(n-10-4l)^2}{108(l+2)} = \mu_{*}$ for $p \ge \frac{n+2+2l}{n-2}$. $\mu_{-} = \mu_{*}$ only when $p = \frac{n+2+2l}{n-10-4l} = p_{*}(m = \frac{n-10-4l}{6})$. Note that $\mu_{*} = -\frac{(n-1)(n-10)^2}{108}$ when $p = \frac{n+2}{n-10}$ and l = 0. In other words, for given $0 < \mu < \bar{\mu}$, there exist $p_+ > p_- > \frac{n+2+2l}{n-2}$ such that separation happens for $p_{-} \le p < p_{+} = \frac{l+2}{\nu_{-}} + 1$, while for $\mu = 0$, $p \ge p_{c}$ and for $\mu_{*} \le \mu < 0$, $p_{-} \le p \le p_{+}$. p_{-} is decreasing in μ , and p_+ is decreasing only in $(0,\bar{\mu})$. $p_-(0)=p_c$ and p_+ is increasing in $[\mu_*,0), p_+(0)=\infty.$

$$\lim_{\mu \to \bar{\mu}} p_{\pm} = \frac{n+2+2l}{n-2}, \qquad \lim_{\mu \to \mu_*} p_{\pm} = p_*.$$

(iii)
$$l = -2$$
:

$$0 > \mu \ge -\frac{\bar{\mu}}{p-1}$$
 and $1 .$

(iv)
$$\sigma(p-1) - 2 < l < -2$$
:

$$\mu_- < \mu < \mu_+$$
 and

$$\lim_{p\to 1}\mu_{\pm}=-\infty,\qquad \lim_{p\to \infty}\mu_{\pm}=\infty.$$

For given $-\infty < \mu < 0$, $\frac{l+2}{\mu} + 1 = p_{-} .$

(v)
$$n = 1$$
 and $l < -2$:

$$\mu_{-} \le \mu < \mu_{+} \le \bar{\mu} = \frac{1}{4}$$
 and

$$\lim_{p\to 1}\mu_{\pm}=-\infty,\qquad \lim_{p\to \infty}\mu_{\pm}=\infty.$$

For given $-\infty < \mu < \frac{1}{4}, \frac{l+2}{\nu_-} + 1 = p_- < p \le p_+$.

$$\lim_{\mu \to \bar{\mu}} p_{\pm} = -2l - 3, \qquad \lim_{\mu \to -\infty} p_{\pm} = 1.$$

(vi)
$$n = 2$$
 and $l < -2$:

$$\mu_- \leq \mu < \mu_+$$
 and

$$\lim_{p\to 1}\mu_{\pm}=-\infty,\qquad \lim_{p\to \infty}\mu_{\pm}=\infty.$$

For given $-\infty < \mu < 0$, $\frac{l+2}{\nu_-} + 1 = p_- .$

Theorem 5.2. Let $p > \frac{n+2+2l}{n-2}$. Assume $\bar{\mu} \ge p\mathbf{L}^{p-1} + \mu (= pL^{p-1} - (p-1)\mu)$. Then, every radial regular steady state u satisfies

$$|x|^2 u(x)^{p-1} \le \mathbf{L}^{p-1} (= L^{p-1} - \mu)$$

and the operator $-\Delta - \frac{\mu}{|x|^2} - pu^{p-1}$ has no negative spectrum and u is linearly stable.

Proof. Suppose the inequality. Then,

$$-pu^{p-1} - \frac{\mu}{|x|^2} \ge (-pL^{p-1} + (p-1)\mu)\frac{1}{|x|^2}$$

and

$$\int |\nabla \phi|^2 - \frac{\mu}{|x|^2} \phi^2 - pu^{p-1} \phi^2 \ge 0$$

for $\phi \in H^1$.

Let $\mathbf{L}^{p-1} = Q(m) - \mu$ and $Q(m) = L^{p-1}$. We observe that

$$Q(m - \partial_t)V - \mu V = V^p,$$

$$V^p - \mathbf{L}^p \ge p\mathbf{L}^{p-1}(V - \mathbf{L}),$$

$$Q(m - \partial_t)V - \mu V - \mathbf{L}^p \ge p(Q(m) - \mu)(V - \mathbf{L}),$$

$$[pQ(m) - Q(m - \partial_t) - (p - 1)\mu]W \le 0,$$

where $W = V - \mathbf{L}$. The characteristic polynomial $\mathbf{P}(\lambda) = pQ(m) - Q(m - \lambda) - (p - 1)\mu$ has two negative roots, λ_1, λ_2 . Let $Y = W' - \lambda_1 W$. $Y' - \lambda_2 Y \leq 0$. Then, $e^{-\lambda_2 t} Y$ is decreasing and zero at $t = -\infty$. Hence, $W' - \lambda_1 W \leq 0$ and W is also zero at $t = -\infty$. Therefore, $W \leq 0$. The product of the two root is $\mathbf{P}(0) = (p-1)(Q(m) - \mu) = (p-1)\mathbf{L}^{p-1} > 0$.

$$\mathbf{P}(m - \frac{n-2}{2}) = pQ(m) - \bar{\mu} - (p-1)\mu \le 0.$$

Hence, $\mathbf{P}(\lambda)$ has two negative roots. \square

Theorem 5.3. Let $p \ge \frac{n+2+2l}{n-2}$. Assume $\bar{\mu} < p\mathbf{L}^{p-1} + \mu$. Then, $-\Delta - \frac{\mu}{|x|^2} - pu^{p-1}$ has a negative eigenvalue.

Note that if $\mu = L^{p-1} - \frac{a^2}{4(p-1)}$, then $\bar{\mu} = pL^{p-1} - (p-1)\mu$.

References

- [1] S. Bae, Classification of positive solutions of semilinear elliptic equations with Hardy term, preprint.
- [2] S. Bae, On the elliptic equation $\Delta u + Ku^p = 0$ in \mathbb{R}^n , preprint.
- [3] S. Bae and T. K. Chang, On a class of semilinear elliptic equations in \mathbb{R}^n , J. Differential Equations 185 (2002), 225–250.

- [4] L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271–297.
- [5] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622.
- [6] W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u + Ku^{(n+2)/(n-2)} = 0$ and related topics, Duke Math. J. **52** (1985), 485–506.
- [7] B. Gidas and J. Spruck, Global and local behavior of positive solutions of non-linear elliptic equations, Comm. Pure Appl. Math. 23 (1981), 525-598.
- [8] Q. Jin, Y. Li and H. Xu, Symmetry and asymmetry: the method of moving spheres, Adv. Differential Equations 13 (2008), 601–640.
- [9] D. D. Joseph and T. S. Lundgren, quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1973), 241–269.
- [10] P. Karageorgis and W. A. Strauss, Instability of steady states for nonlinear wave and heat equations, J. Differential Equations 241 (2007), 184–205.
- [11] Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u + K(x)u^p = 0$ in \mathbb{R}^n , J. Differential Equations 95 (1992), 304-330.
- [12] Y. Li and W.-M. Ni, On conformal scalar curvature equation in \mathbb{R}^n , Duke Math. J. 57 (1988), 895–924.