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Abstract. A genetic methodfor a systematic construction ofnon-associative
algebras is presented A concept of Mendel algebm is introduced and it is
proved that a certain class of Jordan algebras andflexible algebras can be
found in Mendel algebras and that a classification theory of non-associative
algebras based on the Mendel algebras is given from a point of view in
genetics.

Introduction
In this paper we introduce a method of genetics to non-associative algebras and

generate them by use ofthe mathematical formulations ofMendel’s law
systematically and classify them based on these laws. By these observations we can
conclude that the theory of genetics will be important for the theory ofnon-
associative algebras.
We introduce a concept ofMendel algebras following the Mendel’s separation law
in genetics. We call the linear space $M$ with generators $S_{1},S_{2},\ldots,S_{n}$ Mendel algebra,
when generators satisfy the following commutation relations and the distributive
law:

$S_{i}*S_{/}= \frac{1}{2}\{S_{i}+S_{j}\}$

At first we notice that the algebra is non-associative. We want to find non-
associative algebras including the flexible algebras and Jordan algebras in Mendel
algebras. These algebras satisfy the following commutation relations: For any pair of
elements $\forall_{X^{\forall}Y}$ ofthe algebra we have the following relations respectively:

flexible algebra: $(XY)X=X(XY)$

Jordan algebra: $(((XY)Y)X)=(M)(IK)$
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The main results ofthis paper can be stated as follows:
(1)$Mendel$ algebra is flexible algebra and Jordan algebra(Theorem I and II).
(2)$A$ family of flexible algebras and Jordan algeberas can be generated by
mathematical formulation ofMendel’s laws:Separation law, mating law and
independent law(Theorem III).
(3) We can give a classification ofnon-associative algebras by use ofthe shift
invariance condition in Mendel algebras. We can discuss these commutation
relations in terms of,,shift invariant elements“ of an algebra. Then we can show that
the shift invariant algebras on Mendel algebra automatically derive a family ofnon-
associative algebras including flexible algebras and Jordan algebras

1. Mendel’s laws
In this section we recall some basic facts on Mendel’s law([4]). In 1860, Mendel

has discovered the mndamental laws in genetics, which are called Mendel’s laws.
They constitute three laws: (l)Separation law, (2) Mating law(3) Independent law:
We describe the laws with figures and we omit its description.
(1) Separation law

$-$ $-$ Mendel’s
separation law

$-m–$ –:.
-,.

(2) Mating law

$*$

(3) Independent law

Mating process
$[\overline{\underline{\chi}_{\perp}}|$ es $X_{2}$ $\ovalbox{\tt\small REJECT}$ $[ \prod X$ $\blacksquare$

$\sim.\Gamma 1-.-\cdot$ mating

$|x_{1}\ovalbox{\tt\small REJECT}$ $\lceil\underline{\overline{X}}_{2}\ovalbox{\tt\small REJECT}$ $[$lllilSEi
(Each element is commutative)

Mendel’s
independent aw

$|\neg x$ $\blacksquare$

$\backslash \gamma\nearrow\backslash$

$|\neg a$ $\blacksquare$

$\ulcorner|$

$0_{mw_{\ovalbox{\tt\small REJECT}}} \sim\ovalbox{\tt\small REJECT}:\sim\varpi\bigwedge_{w_{-}\overline{-m}}$

$a_{b^{k}}^{1}i\mathscr{D}^{t}.u^{A}\ovalbox{\tt\small REJECT}_{\dot{i}}^{a}\cup^{a}$
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2. Mendel algebra and its basic facts
In this section we introduce a concept ofMendel algebra which is motivated by the

Mendel’s separation law([5]):

(Mendel algebra)

Definition
Let $A(=R[S_{1},S_{2},\ldots,S.])$ be an algebra. Introducing the product by

$[xf^{X}\ovalbox{\tt\small REJECT}_{l^{l}}^{Y}$

$arrow\Omega_{\backslash }$

$\{X^{*}Y=\sum_{i.j=l}^{n}\alpha_{t}\beta_{j}S_{i}^{*}S_{j}(X=\sum_{i=1}^{n}\alpha_{i}S_{j},Y=\sum_{i=1}^{n}\beta_{i}S_{i})S_{i}*S_{j}=\frac{1}{2}\{S_{i}+S_{j}\}$

$X_{1}^{*}Y_{1}= \frac{1}{2}(X_{1}+Y_{1})$

we have an algebra $M^{(n)}(R)$ which is called n-dimensional Mendel algebra.

We notice that the Mendel algebra is non-associative and commutative algebra. In
fact we can give a simple example:

$((S_{i}^{*}S_{j})^{*}S_{k})= \frac{1}{4}(S_{i}+s_{j}+2S_{k})$ , $((S_{j}^{*}(S_{j}^{*}S_{k}))= \frac{1}{4}(2S_{i}+s_{j}+S_{k})$

(Basic properties)
We state some basic properties on Mendel algebras:
(1) Hardy-Weinberg law([4]):
We have the following equality:

$( \sum_{i\underline{-}\iota}^{n}q_{i}S_{j})^{2}=\sum_{=1}^{n}q_{i}S_{i}(\sum_{i=1}^{n}q_{i}=1)$

(2)$Mendel$ algebra with defects([4]):
In order to treat mutations of genetics in the realistic manner, we have to introduce a
concept of defects in Mendelian genetics. It is called ofhomo type, when
$S_{i}^{*}S_{j}=0(^{\text{ョ}}i^{\text{ョ}}j,i\neq j)$ . It is called ofhetero type, when $S_{i}^{2}=0(^{\text{ョ}}i)$ .
(3)Gametic algebra([5])
We can generalize a concept ofMendel algebra to gametic algebra. Let $R_{m}[x_{0},x_{1},..,x_{n}]$

be the space ofhomogenous polynomials with $n+1$ variables of degree $m$ . Choosing
$f,g\in R_{m}[x_{0},x_{1},..,x_{n}]$ and define the product of $f$ and $g$ by

$f^{*}g= \frac{m!\partial^{m}}{2m!\partial x_{0}^{m}}(R)$ ,

we obtain the gametic algebra of degree $m$ . In the case of degree 1, it becomes the
Mendel algebra([5]).
(4)$Tensor$ product of Mendel algebras
We can defme the tensor product $M_{1}\otimes M_{2}$ oftwo Mendel algebras $M_{1},M_{2}$ as follows:
Putting $M_{1}=R[S_{1},S_{2},..,S_{n}],$ $M_{2}=R[S‘ 1,2 S^{\dagger},..,S ‘ m]$ , we define

$M_{1}\otimes M_{2}=R[S_{i}\otimes S_{j}^{t}:i=1,2,..,n,j=1,2,..,m]$ ,
where we defme the product by
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$(S_{i}\otimes S_{j}^{\dagger})^{*}\wedge(S_{k}\otimes S’, )=(s_{j}*s_{k})\otimes(s_{J^{*}}’\prime s_{l})$ .
Then we have the following proposition:
Proposition(Independent law)
We have the following separation law:
(1) $(S_{j}\otimes S_{j}’)^{*}(S_{k}\wedge\otimes S_{l}^{t})=1/2^{2}(S_{j}\otimes S_{j}’+S_{i}\otimes S_{l}^{t}+S_{k}\otimes S_{j}’+S_{k}\otimes S_{l}’)$

(2)Putting $X= \sum_{=1}a_{j}S_{i},Y=\sum_{J^{--1}}^{m}\beta_{j}S_{j}$ and $U= \sum_{=}|\alpha_{j}^{t}S_{i},V=\sum_{j_{-}^{-1}}^{\pi}\beta_{j}^{t}S_{j}’$ , we have

$X \otimes Y=\sum_{-,-1}^{n}\sum_{j--1}^{m}a_{j}\beta_{j}S_{l}\otimes S_{j}’,$ $U \otimes V=\sum_{=1}2_{=1}\alpha_{k}\beta_{l}^{t}S_{k}\otimes S_{l}^{\uparrow}$ . Then we have

$(X \otimes Y)^{*}(U\otimes V)=\sum_{\Leftrightarrow 1}\sum_{\overline{-}1}\sum_{-}^{m}-|\sum_{j\overline{-}1}^{m}a_{j}a_{k}’\beta_{/}\beta_{l}(S_{i}\otimes S_{j}+S_{j}\otimes S_{l}^{\dagger}+S_{i}\otimes S_{j}+S_{k}\otimes S’)$

Remark. We have considered the vector space $M^{(n)}(R)$ over $R$ . From biological
point ofview, it seems to be not namral. In this paper we consider mathemtics which
is motivated by genetics. If you want to treat it in a biological manner regolously, we
may consider the vector space over finite field $F$ , for example, $F=\{0,1,2,..,N\}$

where $N$ is the total set of life things, or DNA.

3. Mendel algebra is flexible algebra
In this section we treat flexible algebras ffom our point of view. We begin with the
definition([6]):

Definition
(1)$An$ algebra $A$ is called flexible algebra, ifthe following commutation relation is
satisfied:

$\forall X,\forall Y\in A=(XY)X=X(IK)$

At first we give a simple flexible algebra. We choose an algebra with the following
product table:

$e_{1}$ $=$ $(e_{1}e_{1})e_{2}\neq e_{1}(e_{1}e_{2})$

$e_{2}$

Proposition
The algebra is a flexible algebra, but not an associative algebra.

Proof
Putting $X= \sum\alpha_{i}e_{i}$ , $Y=\sum\beta_{i}e_{j}$ , we check the condition: $(XY)X=X(IX)$ . Since

$XY=I\chi=2x_{1}y_{1}e_{1}+(x_{1}y_{2}+x_{2}y_{1})e_{2}$ . Hence we have $(XY)X=2x_{1}^{2}y_{1}e_{1}+x_{1}x_{2}y_{t}e_{2}$ and
(X(ICY) $=2x_{1}^{2}y_{1}e_{1}+x_{1}x_{2}y_{1}e_{2}$ which proves the assertion.

Next we proceed to flexible algebras generated by Mendel algebras.

Theorem I
Mendel algebra $M^{(n)}(n\geq 2)$ is a flexible algebra, but not an associative algebra.
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Proof Putting $X= \sum\alpha_{i}S_{l},Y=\sum\beta_{j}S_{i}$ , we see
$((XY)X)= \sum\alpha_{;}\beta_{j}\alpha_{k}(S_{j}^{*}S_{j})^{*}S_{k}$ , and $(X( IK))=\sum a_{l}\beta_{/}\alpha_{k}S_{j}^{*}(S_{j}^{*}S_{k})$ .

Hence to prove the assertion, it is enough to prove the following equality:
$\sum\alpha_{j}\beta_{j}\alpha_{k}(S_{j}^{*}S_{j})^{*}S_{k}=\sum a_{i}\beta_{j}\alpha_{k}S^{*}(S_{/}^{*}S_{k})$ .

For this we decompose the both sides in the following manner:
$\sum\alpha_{j}\beta_{j}\alpha_{k}(S_{i}^{*}S_{j})^{*}S_{k}=\sum_{i\overline{-}k}a_{l}\beta_{j}\alpha_{k}(S_{i}^{*}S_{j})^{*}S_{k}+\sum_{i\neq k}\alpha_{l}\beta_{j}a_{k}(S_{l}^{*}S_{j})^{*}S_{k}$

$\sum\alpha_{i}\beta_{j}\alpha_{k}S_{l}^{*}(S_{j}^{*}S_{k})=\sum_{i=k}a_{i}\beta_{\dot{j}}a_{k}S_{j}^{*}(s_{j}*s_{k})+\sum_{i\neq k}\alpha_{i}\beta_{j}a_{k}S_{j}^{*}(S_{j}^{*}S_{k})$

Since $((S_{i}^{*}S_{j})^{*}S_{i})=((S_{l}^{*}(S_{j}^{*}S_{i}))$ , the first term ofthe both sides are identical. The
second terms ofthe both sides can be written as follows:

$\sum_{\neq k}\alpha_{l}\beta_{j}\alpha_{l}(S_{j}^{*}S_{j})^{*}S_{i}=\sum_{i\neq k}\alpha_{j}\beta_{j}\alpha_{k}\{(S_{i}^{*}S_{j})^{*}S_{k}+(S_{k}^{*}S_{j})^{*}S_{l}\}$

$\sum_{j\neq i}a_{i}\beta_{J}a_{k}S_{i}^{*}(s_{j}*s_{k})=\sum_{i\neq k}\alpha_{i}\beta_{j}\alpha_{k}\{S_{i}^{*}(s_{j}*s_{k})+s_{k}*(s_{j}*s_{f})\}$

By use ofthe commutativity ofMendel algebra, we see the both sides are identical.
Hence we have proved the assertion.

4. Mendel algebra is Jordan algebra
In this section we make a Jordan algebra Rom our point of view. We begin with the
definition([3], [6]):

Definition
An algebra $J$ is called Jordan algebra ifthe following commutation relation holds
for $\forall X,\forall Y\in J$ ;

$(((XY)Y)X)=((XY)(IK))$.
When it is commutative, it is called Jordan algebra simply. Otherwise it is called non-
commutative Jordan algebra.

At first we give a simple non-commutative Jordan algebra.
Proposition
The algebra with the following product table is a (non-commutative) Jordan algebra

$=$ $(e_{2}e_{1})e_{2}\neq e_{2}(e_{1}e_{2})$

Proof
The proof is a direct calculation. Putting $X= \sum x_{l}e_{l},Y=\sum y_{j}e_{j}$ , we have

$(\lambda X)=(\chi_{1}^{2}+x_{2}^{2})e_{1}$ , and (IX) $=(x_{\iota \mathcal{Y}_{1}}+x_{2}y_{2})e_{1}+(x_{2}y_{1}+x_{1}y_{2})e_{2}$

From $(\ovalbox{\tt\small REJECT})Y=(x_{1}^{2}\dagger x_{2}^{2})(y_{1}e_{1}+y_{2}e_{2})$ , we have
$((XY)Y)X=(x_{1}^{2}+x_{2}^{2})\{(x_{1}y_{1}+x_{2}y_{2})e_{1}+(x_{2}y_{1}-x_{1}y_{2})e_{2})\}$ .

On the other side we have
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$((XYX1X)=(x_{1}^{2}+x_{2}^{2})\{(x_{1}y_{1}+x_{2}y_{2})e_{1}+(x_{2}y_{1}-x_{1}y_{2})e_{2})\}$ .
Hence we have the assertion.
Next we proceed to the realization of Jordan algebra by use of the Mendelian algebra
$M^{(n)}$ We can prove the following:

Theorem II
Mendel algebra $M^{tn)}(n\geq 2)$ is a Jordan algebra,but not an associative algebra.

Proof: Pumng $X= \sum\alpha,S_{j},Y=\sum\beta,S_{j}$ , we have
$((( M)Y)X)=\sum\alpha_{i}\alpha_{j}\beta_{k}\alpha_{l}((S_{i} ’ S_{j})^{*}S_{k})^{*}S_{l}$,

$((XY \chi IX))=\sum\alpha_{l}\alpha_{j}\beta_{k}a_{l}(S_{i}^{*}S_{j})^{*}(S_{k}^{*}S_{l})$,

Hence to prove the assertion, it is enoug to prove the following equality:
$\sum\alpha_{l}\alpha_{j}\beta_{k}\alpha,((s, *s_{j})^{*}S_{i})^{*}S,$ $= \sum a_{i}a_{j}\beta_{A}\alpha_{l}(S_{f}^{*}S_{j})^{*}(s_{k}*s_{l})$ .

For this we decompose the both sides in the following manner:
$\sum a_{j}a_{j}\beta_{k}a,((S^{*}S_{j})^{*}S_{k})^{*}S,$ $= \sum_{\overline{-}j=l}\alpha_{j}\beta_{J}a_{k}(s_{j}*s_{j})^{*}S_{k}+\sum’\alpha_{f}a_{j}\beta_{k}\alpha,(s_{f}*s_{j})^{*}(s_{A}*s_{l})$

$\sum a,\alpha_{j}\beta_{k}\alpha_{k}(S^{*}(S_{j}^{*}S_{k}))$ “ $s_{l}= \sum_{l=k*l}a_{i}a,\beta_{k}a_{l}(S_{l} " S_{j})^{*}(S_{k} ‘ S_{l})+\sum’\alpha_{j}a_{j}\beta_{k}\alpha_{l}(S_{l} " S_{j})^{*}(S_{k}^{*}S_{l})$ ,

where the second sum is remained sum. Since $((S_{i}*s_{l})^{*}S_{k})^{*}S_{j}=((S_{j}*s_{j})^{*}(s_{k}*s_{i}))$ ,

the first term ofthe both sides are identical. Next we decompose the remained sum
into two parts: $\Sigma’=\Sigma_{1}’+\Sigma_{2}’$ ;The first sum is taken for the case oftwo ofthe
indices $(i,j,l)$ are identical and the remained sum is taken for three different indices.
The second terms of the both sides can be written as follows:

$\sum_{2}^{1}a_{i}a_{j}\beta_{k}a,((S_{j}^{*}S_{j})^{*}S_{k})^{*}S_{l}=\sum_{\sigma}a_{\sigma(i)}a_{\sigma(j)}\beta_{k}\alpha_{\sigma(l)}\{(s_{\sigma(i)}*s_{\sigma(j)})^{*}S_{i}^{*}S_{\sigma(l)}\}$

$\sum_{2}’\alpha_{i}\alpha_{j}\beta_{k}\alpha_{l}(s_{f}*s_{j})^{*}(s_{k}*s_{l})=\sum_{\sigma}\alpha_{\sigma(i)}\alpha_{\sigma(j)}\beta_{k}a_{\sigma(l)}\{(s_{\sigma(i)}*s_{\sigma(j)})^{*}(s_{k}*s_{\sigma(l)})\}$ ,
where the sum is taken through the permutations ofthree words. By use of
$(^{****})(((S_{i}^{*}S_{1})^{*}S_{k})*S_{l})= \frac{1}{8}(S_{j}+S_{j}+2S_{k}+4S_{l}),((S_{l}^{*}S_{j})^{*}(S_{k}*S_{l}))=\frac{1}{4}(S_{l}+S_{j}+S_{k}+S_{l})$ ,

we see the botth sides are identical. In a completely analogous manner, we have the
first equality for $\Sigma_{1}’$ . Hence we have proved the assertion.

5. Genetic generations of non-associative algebras
In this section we introduce genetic constructions ofnon-associative algebras ffom a

given non-associative algebra following Mendel’s laws in Section 1. By this method,
we can generate a class ofnon-associative algebras including flexible and Jordan
algebras systematically.
(1) Separation law
At first we notice that we can introduce a Mendel algebra $M(A)$ ffom a given
(associative) algebra $\Lambda$ which is finitely generated: $\Lambda=R[e_{1},e_{2},..,e_{n}]$ . We see that
$x\in A$ has the following form: $x= \sum\alpha_{i_{1}i_{2}\ldots i_{\hslash}}\Omega_{i_{1}f_{2}..j_{\hslash}}(\Omega_{i_{1}i_{2}\ldots i_{n}}=e_{1}^{i_{1}}e_{2}^{i_{2}}\ldots e_{n}^{i_{n}})$. Then we can
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define the Mendel algebra by the following product mle with a distributive law:
$\Omega_{i_{1}i_{2}\ldots i_{n}^{*}}\Omega_{i_{1}i_{2}..j_{n}}=\frac{1}{2}(\Omega_{i_{1}i_{2}\ldots i_{n}}+\Omega_{i_{1}i_{2}\ldots i_{n}})$

Then we can prove the following proposition:
Proposition
Mendel algebra $M(A)$ ofan algebra $A$ is a Mendel algebra which is generated by the
linear bas$is$ of $A$ .
(2)$Mating$ law
We make the following definition:
Definition
For an algebra $A$ , putting

$X \circ Y=\frac{1}{2}(XY+XY)$ for $X,Y\in A$ ,

we have an algebra which is called the specialization algebra of $A$

Then we can prove the following Proposition:
Proposition
(1)$The$ specialization ofMendel algebra is the original Mendel algebra.
(2) The specialization of a flexible algebra is a flexible algebra.
(3) The specialization ofa commutative Jordan algebra is a Jordan algebra..
Proof of (1). If follows ffom the definition.
Proof of (2). Let $A$ be a flexible algebra. For elements $X,Y\in A$ , we have

$(X \circ Y)\circ X=\frac{1}{4}\{(XY)X+(lK)X+X(XY)+X($ ICY $)\}$

$X \circ(Y\circ X)=\frac{1}{4}\{(X(XY)+X(IX)+$ (IX)$X+X(lX)\}$

Hence comparing the both sides and using the commutation relation, we have the
assertion.
Proof of (3). $(((X\circ X)\circ Y)\circ X)$

$= \frac{1}{4}\{((Y(\ovalbox{\tt\small REJECT}))X+X((Y(XY))\}+\frac{1}{4}\{((XY)Y)X+X((XY)Y))\}$

$((X\circ X)\circ(Y\circ X)$;
$= \frac{1}{4}\{(M)(IK)+(XY)(AX)\}+-\{(\ovalbox{\tt\small REJECT})(XY)+(XY)(XY)\}4$

By use of the commutativity and the commutation relation, we have the assertion.

(3)Independent law
We make the following definition:

Definition
For algebras $A,A’$ , putting $X\otimes Y’$ for $X\in A,Y’\in A^{t}$ , we have an algebra which is called
the tensor product of $A$ and $A’$ .
Then we can prove the following Proposition:
Proposition
(1)$The$ tensor product ofMendel algebras is a Mendel algebra.
(2)$The$ tensor product of flexible algebras is a flexible algebra.
(3)$The$ tensor product ofJordan algebras is a Jordan algebra.

15



Proof of (1). It follows ffom the definition.
Proof of (2). Let $A,A’$ be flexible algebras. For $\hat{X}=X\otimes X’,\hat{Y}=Y\otimes Y’$ , we define
$\hat{X}\cdot\hat{Y}=(X\otimes X’)\cdot(Y\otimes Y’)=(XY)\otimes(X’ Y’)$ . Then we have
$(X \hat{Y})\cdot\hat{X}=\{(X\otimes X’)\cdot(Y\otimes Y’)\}\cdot\hat{X}=\{(XY)\otimes(X’Y‘)\}$ $X\otimes X’=(XY)X\otimes(X‘ Y’)X’$

$\hat{X}\cdot(\hat{Y}\cdot\hat{X})=X\cdot\{(Y\otimes Y’)\cdot(X\otimes X’)\}=X\otimes X\cdot\{(XY)\otimes(X’Y‘)\}=X(1X)\otimes(X’(Y‘ X’)$

Hence we have the assertion.
Proof of (3). Let $A,A’$ be Jordan algebras. For $\hat{X}=X\otimes X^{t},\hat{Y}=Y\otimes Y$” we define
$\hat{X}\cdot\hat{Y}=(X\otimes X^{1})\cdot(Y\otimes Y’)=(XY)\otimes(\lambda^{\eta}Y’)$ . Then we have
$((\hat{\chi}.\hat{\chi})\cdot\hat{Y})\cdot\hat{X}=\{\{(x\otimes\chi^{1})\cdot(x\otimes x^{1})\}\cdot(Y\otimes Y’)\}\}\cdot x\otimes x’$

$=\{\{(XY)\otimes(X^{t}X’)\}\cdot Y\otimes Y‘\}$ $X\otimes X=\{(XY)Y\otimes(X’X’)Y’\}\cdot\{X\otimes X\}$

$=((XY)Y)X\otimes((X^{\dagger}X’)Y^{1})X$

$(\hat{X}\cdot\hat{X})\cdot(\hat{Y}\cdot\hat{X})=\{(X\otimes X)\cdot(X\otimes X’)\}\cdot\{(Y\otimes Y’)\cdot(X\otimes X‘)\}$

$=\{(M)\otimes(X‘ X’)\}\cdot\{(1\mathcal{X})\otimes(Y’X‘)\}=\{(XY)(IZ^{r})\otimes(X’ X’ XY’X’)\}$

Hence we have the assertion.
Summarizing the results above mentioned, we have the following Theorem:

Theorem III
When we call the three processes above mensioned in one word genetic generation
method, we can prove the following results:
(1)$We$ can generate Mendel algebras by the genetic generation method.
(2) Flexible algebra is generated by the genetic generation method.
(3) Jordan algebra is generated by the genetic generation method.

6. Classifications of non-associative algebras based on Mendel
algebras
In this section we shall obtain flexible algebra and Jordan algebra ffom the shift

invariant conditions. Here shift implies that the change ofthe neighboring brackets in
an acceptable manner in the sense of formal language and shifit invariance implies the
elements give the same elements by the shifts ofbrackets. We give two examples of
shift operations.

$XY$ $X$ $X$ $Y$ $X$ $X$ $X$ $Y$ $X$ $X$ $X$ $Y$

flexible algbera Jordan algbera

Based on this fact, we can get a group ofnon-associative algebras which are related to
Mendel algebras.

Proposition(Shift invariance of flexible algebra)
We assume the following shift invariant elements: $X^{*}(Y^{*}Z)=(X^{*}Y)^{*}Z$ for
$\forall X,\forall Y,\forall Z\in M(A)$ . Then we have $X^{*}=Z^{*}$ . Hence we have a flexible algebra.

Proof Putting $X= \sum\alpha_{i}S_{i},Y=\sum\beta_{i}S_{i},Z=\sum\gamma_{l}S_{j}$ we consider the shift invariant
condition: $X^{*}(Y^{*}Z)=(X^{*}Y)^{*}Z$ . Restricting special element, we consider
$((S^{*}S_{j})^{*}S_{k})=((S_{j}^{*}(S_{j}^{*}S_{k}))$ . Then we see $S_{j}=S_{k}$ . we have
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$((XY)X)= \sum\alpha_{j}\beta_{j}\alpha_{k}\delta_{ik}(S_{!}^{*}S_{j})^{*}S_{k}$, and $(X( I\chi))=\sum\alpha_{f}\beta_{j}\alpha_{k}\delta_{ik}S_{j}^{*}(S_{j}^{*}S_{k})$, Hence we
obtain $X^{*}(Y^{*}X)=(X^{*}Y)^{*}X$

Proposition(Shift invariance of Jordan algebra)
We assume that $((X^{*}Y)^{*}Z)^{*}W=(X^{*}Y)^{*}(Z^{*}W)$ . Then we have $X=Y=W$ .
Hence we have a Jordan algebra.
$Proof:From$

$(^{****})(((S_{i}^{*}S_{j})^{*}S_{k})*S_{l})= \frac{1}{8}(S_{i}+s_{j}+2S_{k}+4S,),((s_{j}*s_{j})^{*}(s_{k}*S_{l}))=\frac{1}{4}(S, +S_{j}+S_{k}+S_{l})$

and $(((s_{j}*s_{j})^{*}s_{i})*s_{l})=((s_{i}*s_{j})^{*}(s_{k}*s,))$ , we have $S_{j}=S_{l}=S_{l}$ . Hence putting
$X= \sum\alpha_{j}S_{l},Y=\sum\beta_{i}S_{l}$ , we have the commutation relation of a Jordan algebra.

Hence we see that the shift invariance condition chooses a class ofnon-associative
algebras in Mendel algebras. Therefore we may expect to list up non-associative
algebras connected to Mendel algebras using the shift invariance of elements in the
following table:
(The table of possible commutation relations)
(1)$The$ terms of shift invariant conditions of degree 3
$((XY)Z),$ $(x(\iota z))$

(2) The terms of shift invariant conditions of degree 4
$(((XY)Z)W),$ $((X(YZ))W),$ $((XY)(ZW)),$ $(X((Y(Z\dagger V)),$ $(X((IZ)W))$

(3) The terms of shift invariant conditions of degree 5
$(((XY)Z)W)U,$ $(X(1Z))W)U,$ $(X((IZ)W))U,$ $(X(Y(ZW)))U$, $(X(Y(Z(WU))),$ $X(Y((ZW)U))$

$X((Y(ZW))U),$ $X(((\ddagger Z))W)U),$ $((XY)(ZW))U,$ $((XY)Z)(WU)$, $(XY)(Z(WU)),$ $X((YZ)(WU))$

Examples of calculations of shift invariant elements tell us that the commutation
relations of flexible algebra and Jordan algebra are basic and that we can get the
algebras with commutation relations which are generated by those of flexible algebras
and Jordan algebras.
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