goooboooobgon
O 17520 20110 85-112

The “yuima” package: an R framework for
simulation and inference of stochastic
differential equations

Stefano Maria Iacus
Department of Economics, Business and Statistics
University of Milan
Via Conservatorio 7, 20124 Milan, Italy

Abstract

The Yuima Project is an open source and collaborative effort of
several mathematicians and statisticians aimed at developing the R
package named “yuima” for simulation and inference of stochastic dif-
ferential equations.

In the yuima package stochastic differential equations can be of
very abstract type, e.g. uni or multidimensional, driven by Wiener
process of fractional Brownian motion with general Hurst parameter,
with or without jumps specified as Lévy noise. Lévy processes can be
specified via compound Poisson description, by the specification of the
Lévy measure or via increments and stable laws.

The yuima package is intended to offer the basic infrastructure on
which complex models and inference procedures can be built on. In par-
ticular, the basic set of functions includes the following: i) simulation
schemes for all types of stochastic differential equations (Wiener, fBm,
Lévy); ii) different subsampling schemes including random sampling
with user specified random times distribution, space discretization, tick
times, etc. iii) automatic asymptotic expansion for the approximation
and estimation of functionals of diffusion processes with small noise via
Malliavin calculus, useful in option pricing; iv) efficient quasi-likelihood
inference for diffusion processes and model selection.

86

1 Introduction

The YUIMA Project! is an open source? academic project aimed at develop-
ing the R package named “yuima” for simulation and inference of stochastic
differential equations. The YUIMA Project is mainly developed by mathe-
maticians and statisticians who actively publish in the field of inference and
simulation for stochastic differential equations. The YUIMA Project Core
Team, currently consists of the following people: A. Brouste, M. Fukasawa,
H. Hino, S.M. Iacus, K. Kamatani, H.Masuda, Y. Shimizu, M. Uchida, N.
Yoshida.

The yuima package provides an object-oriented programming environ-
ment for simulation and statistical inference for stochastic processes by R.
The yuima package adopts the S4 system of classes and methods (Chambers,
1998).

Under this framework, the yuima package also supplies various functions
to execute simulation and statistical analysis. Both categories of procedures
may depend each other. Statistical inference often requires a simulation tech-
nique as a subroutine, and a certain simulation method needs to fix a tuning
parameter by applying a statistical methodology. It is especially the case of
stochastic processes because most of expected values involved do not admit an
explicit expression. The yuima package facilitates comprehensive, systematic
approaches to the solution.

Stochastic differential equations are commonly used to model random evo-
lution along continuous or practically continuous time, such as the random
movements of a stock price. Theory of statistical inference for stochastic dif-
ferential equations already has a fairly long history, more than three decades,
but it is still developing quickly new methodologies and expanding the area.
The formulas produced by the theory are usually very sophisticated, which
makes it difficult for standard users not necessarily familiar with this field to
enjoy utilities. For example, the asymptotic expansion method for computing
option prices (i.e., expectation of an irregular functional of a stochastic pro-
cess) provides precise approximation values instantaneously, taking advantage
of the analytic approach, but the formula has a long expression like more than
one page!

The yuima package delivers up-to-date methods as a package onto the desk
of the user working with simulation and/or statistics for stochastic differential
equations.

Sampled data from a continuous-time process features the time stamps as
well as the positions of the object. It is requiring a new theory of estimation.

1The Project has been funded up to 2010 by the Japan Science Technology (JST) Basic
Research Programs PRESTO, Grants-in-Aid for Scientific Research No. 19340021.

2All code in the yuima package is subject to the GNU General Public License, Version
2, see http://www.gnu.org/licenses/gpl-2.0.html.

The yuima framework can apply multi-dimensional time stamps of tick data
and provides diverse functions handling such kind data to support statistical
analysis.

Although we assume that the reader of this paper has a basic knowledge
of the R language, most of the examples are easy to be understood by anyone.

2 The yuima package

The package yuima depends on some other packages, like zoo, which can be
installed separately. The package zoo is used internally to store time series
data. This dependence may change in the future adopting a more flexible
class for internal storage of time series.

2.1 How to obtain the package

The yuima package is hosted on R-Forge and the web page of the Project is
http://r-forge.r-project.org/projects/yuima. The R-Forge page con-
tains the latest development version, and stable version of the package as also
available through CRAN. Development versions of the package are not sup-
posed to be stable or functional, thus the occasional user should consider to
install the stable version first. The package can be installed from R-Forge using
install.packages(”yuima”, repos = "http : //R—Forge.R—project.org’)
and for the CRAN version, via install.packages(”yuima”).

2.2 The main object and classes

Before discussing the methods for simulation and inference for stochastic pro-
cesses solutions to stochastic differential equations, here we discuss the main
classes in the package. As mentioned there are different classes of object de-
fined in the yuima package and the main class is called the yuima-class and
it is composed of several slots. Figure 1 represents the different classes and
their slots. The different slots do not need to be all present at the same time.
For example, in case one wants to simulate a stochastic process, only the slots
model and sampling should be present, while the slot data will be filled by
the simulator. We now discuss in details the different object separately.

2.3 The yuima.model class

In yuima three main classes of stochastic differential equations can be easily
specified. All multidimensional and eventually as parametric models.

e diffusions dX; = a(t, X;)dt + b(t, X;)dW;, where W, is a standard Brow-
nian motion;

87

88

e fractional Gaussian noise, with H the Hurst parameter

dXt = a(t, Xt)dt + b(t, Xt)dW/tH,

e diffusions with jumps and Lévy processes solution to

dX; = a(X;)dt + b(X;)dW, + /c(Xt-, z)u(dt, dz)

|z|>1

+ / c(Xi—, 2){u(dt,dz) — v(dz)dt}.

0<|z|<1

The yuima.model class contains informations about the stochastic differ-
ential equation of interest. The constructor setModel is used to give a mathe-
matical description of the stochastic differential equation. All functions in the
package are assumed to get as much information as possible from the model
instead of replicating the same code everywhere. If there are missing pieces
of information, we may change or extend the description of the model.

An object of yuima.model contains several slots listed below. To see inside
its structure, we use the R command str.

drift is an R expression which contains the drift specification.

diffusion is itself a list of 1 slot which describes the diffusion coefficient
relative to first noise.

parameter which is a short name for “parameters” which is a list of
objects.

all contains the names of all the parameters found in the diffusion and
drift coefficient.

common contains the names of the parameters in common between the
drift and diffusion coefficients.

diffusion contains the parameters belonging to the diffusion coeffi-
cient.

drift contains the parameters belonging to the drift coefficient.

solve.variable contains a vector of variable names, each element cor-
responds to the name of the solution variable (left-hand-side) of each
equation in the model, in the corresponding order.

state.variable and time.variable, by default, are assumed to be z
and t but the user can freely choose them. The yuima.model function
assumes that the user either use default names for state.variable and
time.variable variables or specify his own names. All the rest of the
symbols are considered parameters and distributed accordingly in the
parameter slot.

noise.number indicates the number of sources of noise.

equation.number represents the number of equations, i.e. the number
of one dimensional stochastic differential equations.

dimension reports the dimensions of the parameter space. It is a list of
the same length of parameter with the same names.

In order to show how general is the approach in the yuima package we
present some examples.

2.3.1 Diffusion processes

Assume that we want to describe the following stochastic differential equation

1

X, = —3X,dt + ——
dX; 32X +1+X§

dW;

This is done in yuima specifying the drift and diffusion coefficients as plain
mathematical expressions

R> mod1l <- setModel(drift = "-3*x",

+

diffusion = "1/(1+x°2)")

At this point, the package fills the proper slots of the yuima object

R> str(modi)

Formal class 'yuima.model' [package "yuima"] with 16 slots

..@
..@

@666

P66

drift : expression((-3 * x))
diffusion :List of 1
.$: expression(1/(1 + x°2))
hurst : num 0.5
jump.coeff : expression()
measure : list()
measure.type : chr(0)
parameter :Formal class 'model.parameter' [package "yuima"] with 6 slots
. ..@ all : chr(0)

..Q@ common : chr(0)

..@ diffusion: chr(0)

..@ drift : chr(0)

..@ jump : chr(0)

@ measure : chr(0)

state.variable : chr "x"
jump.variable : chr(0)
time.variable : chr "t"
noise.number : num 1

89

90

..Q equation.number: int 1

..@ dimension : int [1:6 000000
..Q solve.variable : chr "x"

..@ xinit : num O

..Q J.flag : logi FALSE

And it is possible to see that the jump coefficient is void and the Hurst
parameter is set to 0.5, because this corresponds to the standard Brownian
motion. Now, with mod1 in hands, it is very easy to simulate a trajectory of
the process as follows

R> set.seed(123)
R> X <- simulate(mod1)

R> plot(X)
e
(=]
g
o
N
x o
N
g
t
I 1 1 1 1
0.0 0.2 04 0.6 0.8 1.0

t

The simulate function fills in addition the two slots data and sampling of
the yuima object.

R> str(X, vec.len = 2)

Formal class 'yuima' [package "yuima"] with 5 slots
..Q@ data :Formal class 'yuima.data' [package "yuima"] with 2 slots
..@ original.data: ts [1:101, 1] O -0.056 ...
..= attr(x, "dimnames")=List of 2
..$: NULL
..$: chr "Series 1"
. ..— attr(*, "tsp")= num [1:3] 0 1 100
. ..@ zoo.data :List of 1
.. ..$ Series 1:8A¥zooregaAZ series from 0 to 1
Data num (1:101] 0 -0.056 ...
Index: num (1:101] 0 0.01 0.02 0.03 0.04 ...
Frequency: 100

..Q model :Formal class 'yuima.model' [package "yuima"] with 16 slots
..@ drift : expression((-3 * x))
..0 diffusion :List of 1
.. ..$: expression(1/(1 + x°2))
..Q bhurst : num 0.5
..Q jump.coeff : expression()
..Q measure : list()
..0 measure.type : chr(0)
. ..Q parameter :Formal class 'model.parameter' [package "yuima") with 6 slots
..0 all : chr(0)
. ..@ common : chr(0)
. ..Q diffusion: chr(0)
..@ drift : chr(0)

..Q@ jump : chr(0)

..@ measure : chr(0)

..@ state.variable : chr "x"
..@ jump.variable : chr(0)
,.@ time.variable : chr "t"
..@ noise.number ¢ num 1
..Q@ equation.number: int 1
..Q@ dimension : int [1:6] 00000 ...
..@ solve.variable : chr "x"
..@ xinit : num O
.@ J.flag : logi FALSE
@ samp11ng :Formal class 'yuima.sampling' (package "yuima"] with 11 slots
.. ..@ Initial : num O
..@ Terminal : num 1
..@n : num 100
..@ delta : num 0.01
..@ grid :List of 1
<« «.8 : num [1:101] 0 0.01 0.02 0.03 0.04 ...
..Q@ random : logi FALSE
..@ regular : logi TRUE
..@ sdelta : num(0)
..@ sgrid : num(0)
..@ oindex : num(0)

. .@ interpolation: chr "pt"
@ CharactGIlSth Formal class 'yuima,characteristic' [package "yuima"] with 2 slots
.@ equation.number: int 1

. ..Q time.scale : num 1
..@ functional :Formal class 'yuima.functional' [package "yuima"] with 4 slots
..@F : NULL
..e f : list()
.0 xinit: num(0)
..Qe : num(0)

2.3.2 Parametric models

When a parametric model like

1
dX, = —6X,dt + 5 dW,

is specified, yuima attempts to distinguish the parameters’ names from the
ones of the state and time variables

R> mod2 <- setModel(drift = "-theta*x",
+ diffusion = "1/(1+x"gamma)")

R> str(mod2)

Formal class 'yuima.model' [package "yuima"] with 16 slots

..@ drift : expression({(-theta * x))

..@ diffusion :List of 1

. ..$: expression(1/(1 + x"gamma))

..Q hurst : num 0.5

..@ jump.coeff : expression()

. .@ measure ¢ list()

..@ measure.type : chr(0)

..®@ parameter :Formal class 'model.parameter' [package "yuima"] with 6 slots
..Q all : chr [1:2] "theta" "gamma"
..@ common : chr(0)

..@ diffusion: chr "gamma"
..@ drift : chr "theta"

92

. ..0 jump : chr(0)

. ..0 measure : chr(0)
..0 state.variable : chr "x"
..Q jump.variable : chr(0)
..Q@ time.variable : chr "t"

..Q noise.number : num 1

..@ equation.number: int 1

..Q@ dimension : int [1:6] 201100
..Q@ solve.variable : chr "x"

..@ xinit : num 0

..@ J.flag : logi FALSE

In order to simulate the parametric model it is necessary to specify the values
of the parameters as the next code shows

R> set.seed(123)

R> X <- simulate(mod2, true.param = list(theta = 1,
+ gamma = 3))

R> plot(X)

0.6

0.2
1

-0.2
1

0.0 0.2 04 0.6 0.8 1.0

2.3.3 Multidimensional processes

Next is an example with two stochastic differential equations driven by three
independent Brownian motions

dX;} = -3X}dt + dW}! + X2dW;3
dX? = —(X} +2Xx2)dt + X} dW} + 3dW?

but this has to be organized into matrix form

1 1 2 dVth
dx?) =\ —x1—2x? X! 3 0 2
dW;

R> sol <- c("x1", "x2")

R> a <- c("-3*x1", "-x1-2%x2")

R> b <= matrix(c("l", "Xl", non’ n3n,

+ "X2", uou), 2, 3)

R> mod3 <- setModel(drift = a, diffusion = b,
+ solve.variable = sol)

Again, this model can be easily simulated

R> set.seed(123)
R> X <- simulate(mod3)
R> plot(X, plot.type = "single", lty = 1:2)

x1

t

But it is also possible to specify more complex models like the following

dX} = XZ| X} awy,
dX2 = g(t)dX?, ,
dX3 = X3(udt + o(pdW} + /1 — p2dW}?))

where g(t) = 0.4 + (0.1 + 0.2t)e™%,

2.3.4 Fractional Gaussian noise

In order to specify a stochastic differential equation driven by fractional Gaus-
sian noise it is necessary to specify the value of the Hurst parameter. For
example, if we want to specify the following model

dY; = 3Y;dt + dWF
we proceed as follows

R> mod4 <- setModel(drift = "3*y",

+ diffusion = 1, hurst = 0.3,

+ solve.var = "y")

R> set.seed(123)

R> X <- simulate(mod4, sampling = setSampling(n = 1000))
R> plot(X)

93

94

0.5

-05 0.0

-1.0

0.0 0.2 0.4 06 08 1.0

t
In this case, the appropriate slot is now filled
R> str(mod4)

Formal class 'yuima.model' [package "yuima") with 16 slots

..Q drift ¢ expression((3 * y))
..Q@ diffusion :List of 1
.. ..$: expression(1)
..@ hurst : num 0.3
..@ jump.coeff : expression()
..® measure : 1ist Q)
..0 measure.type : chr(0)
..Q parameter :Formal class 'model.parameter' [package "yuima"] with 6 slots
..Q all : chr(0)
..0 common : chr(0)
..@ diffusion: chr(0)
..@ drift : chr(0)
..@ jump : chr(0)
.. ..Q measure : chr(0)
@ state.variable : chr "x"
Q@ jump.variable : chr(0)
@ time.variable : chr "t"
..0 noise.number : num 1
..@ equation.number: int 1
@ dimension : int {1:61 000000
@ solve.variable : chr "y"
Q@ xinit : num O
© J.flag : logi FALSE

2.3.5 Lévy processes

Jump processes can be specified in different ways in mathematics and hence
in ynima package. Let Z; be a Compound Poisson Process (i.e. jumps follow
some distribution, like the Gaussian law). Then it is possible to consider the
following SDE which involves jumps

dXt = a(Xt)dt + b(Xt)th + dZt

In the next example we consider a compound Poisson process with intensity
A = 10 with Gaussian jumps. This model can be specified in setModel us-
ing the argument measure.type="CP" A simple Ornstein-Uhlembeck process
with Gaussian jumps

(i)(i = —‘BJXk(it'F 011‘@@ + 22

is specified as

R> mod5 <- setModel(drift = c("~theta*x"),

+ diffusion = "sigma", jump.coeff = "1",

+ measure = list(intensity = "10",

+ df = list("dnorm(z, 0, 1)")),

+ measure.type = "CP", solve.variable = "x")

R> set.seed(123)
R> X <- simulate(mod5, true.p = list(theta = 1,

+ sigma = 3), sampling = setSampling(n = 1000))
R> plot(X)
010 0|2 0.|4 OIG 0|8 1 I0

Another possibility is to specify the Lévy measure. Without going into
too much details, here is an example of specification of a simple Ornstein-
Uhlembeck process with IG (Inverse Gaussian) Lévy measure

dXt = —xdt + dZt

95

R> mod6 <- setModel(drift = "-x",
+ xinit = 1, jump.coeff = "1",
+ measure.type = "code", measure = list(df = "rIG(z, 1, 0.1)"))

R> set.seed(123)

R> X <- simulate(mod6, sampling = setSampling(Terminal = 10,
+ n = 10000))

R> plot(X)

96

2.3.6 Generic models

In general, the yuima package allows to specify a large family of models

solutions to
dXt = a(Xt)dt -+ b(Xt)th + C(Xt)dZt

using the following interface

R> setModel(drift, diffusion, hurst = 0.5,

+ jump.coeff, measure, measure.type,

+ state.variable = "x", jump.variable = "z",
+ time.variable = "t", solve.variable,

+ xinit)

The yuima package implements many multivariate Random Numbers Gener-
ators (RNG) which are needed to simulate Lévy paths including rIG (Inverse
Gaussian), rNIG (Normal Inverse Gaussian), rbgamma (Bilateral Gamma),
rngamma (Gamma) and rstable (Stable Laws). Other user-defined RNG can

be used freely.

3 Asymptotic expansion

The yuima package can handle asymptotic expansion of functionals of d-
dimensional diffusion process

dX? = a(XE,e)dt + b(XE,e)dW,, €€ (0,1]

with W, and r-dimensional Wiener process, i.e. W, = (W},...,W/). The
functional is expressed in the following abstract form

r T
Fx) =% / falXE, AW + F(XE,e), Wo=t
a=0

A typical example of application is the case of Asian option pricing. For
example, in the Black & Scholes model

dX; = puX;dt + e X;dW,
the price of the option is of the form
1 T
o e (& [1500 1c0) .
T Jy
Thus the functional of interest is

1 T
FE(Xf)=T/0 Xedt, r=1

97

with

folz,€) = =, fi(z,e) =0, F(z,e)=0

S8

in
T T
F(x) =Y / fal X2, A)AWS + F(XE, €)
a=0Y0

So, the call option price requires the composition of a smooth functional

1 T

Fe(X[) = —/ X;dt, r=1
T Jo

with the irregular function
max(z — K, 0)

Monte Carlo methods require a huge number of simulations to get the desired
accuracy of the calculation of the price, while asymptotic expansion of F¢ pro-
vides very accurate approximations. The yuima package provides functions
to construct the functional F*, and automatic asymptotic expansion based on
Malliavin calculus starting from a yuima object. Next is an example

R> diff.matrix <- matrix(c("x*e"),

+ 1, 1)

R> model <- setModel(drift = c("x"),

+ diffusion = diff.matrix)

R> T <-1

R> xinit <- 1

R> K <- 1

R> f <- list(expression(x/T), expression(0))
R> F <- 0

R> e <~ 0.3

R> yuima <- setYuima(model = model,

+ sampling = setSampling(Terminal = T,
+ n = 1000))

R> yuima <- setFunctional (yuima, f = f,

+ F = F, xinit = xinit, e = e)

this time the setFunctional command fills the appropriate slots
R> str(yuima@functional)

Formal class 'yuima.functional' [package "yuima"] with 4 slots

..@F : num O

..@ £ :List of 2
..$: expression(x/T)
..$: expression(0)

..0 xinit: num 1
..Q@ e : num 0.3

Then, it is as easy as

R> FO <- FO(yuima)
R> FO

(1] 1.717423
R> max(FO - K, 0)
(1] 0.7174228

to obtain the zero order approximation of the value of the functional. We can
go up to the first order approximation adding one term to the expansion

R> rho <- expression(0)
R> get_ge <- function(x, epsilon,

+ K, Fo) {

+ tmp <- (FO - K) + (epsilon *

+ x)

+ tmp[(epsilon * x) < (K - FO)] <- 0
+ return(tmp) ‘
+ }

R> epsilon <- e
R> g <- function(x) {

+ tmp <- (FO - K) + (epsilon *

+ x)

+ tmp[(epsilon * x) < (K - FO)] <- 0
+ tmp

+ }

R> asymp <- asymptotic_term(yuima,

+ block = 10, rho, g)

and the final value is

R> asymp$d0 + e * asymp$di

(1] 0.7158789

4 Quasi Maximum Likelihood estimation
Consider the multidimensional diffusion process

dXt = b(eg, Xt)dt + 0'(91, Xt)dVVt

98

99

where W, is an r-dimensional standard Wiener process independent of the
initial value Xy = zo. Quasi-MLE assumes the following approximation of
the true log-likelihood for multidimensional diffusions

n

fn(Xn, 9) = —% Z {log det(zi_l(aﬂ) + 11;21-—11 (01)[AXZ - Apbi1 (02)]®2} (4.1)

i=1

where 8 = (91,62), AX,, = Xt,: _Xti—17 22(61) = 2(01, Xti), b;(492) = b(ez, Xt,r);
Y = 0% 4%2 = ATA and A~! the inverse of A, A[B]®*2 = BTAB. Then,
Yoshida (1992), the QML estimator of 8 is

6, = arg mein 2,(X,,0)
As an example, we consider the simple model

dX, = —8,X,dt + 6,dW, (4.2)

with ; = 0.3 and 6, = 0.1

R> ymodel <- setModel(drift = "-x*theta2",

+ diffusion = "thetal", time.variable = "t",
+ state.variable = "x", solve.variable = "x")
R> n <- 1000

R> ysamp <- setSampling(Terminal = (n)"~(1/3),

+ n =n)

R> yuima <- setYuima(model = ymodel,

+ sampling = ysamp)

R> set.seed(123)

R> yuima <- simulate(yuima, xinit = 1,

+ true.parameter = list(thetal = 0.3,
+ theta2 = 0.1))

With the simulated path we can use the function qmle to estimate the pa-
rameters as follows

R> mlel <- gmle(yuima, start = list(thetal = 0.8,
.05,

+ theta2 = 0.7), lower = list(thetal =
+ theta2 = 0.05), upper = list(thetal = 0.5,
+ theta2 = 0.5), method = "L-BFGS-B")

and the estimated coefficients are as follows

R> coef(mlel)

thetal theta?2
0.3015202 0.1029822

100

R> summary(mlel)

Maximum likelihood estimation

Call:

gnle(yuima = yuima, start = list(thetal = 0.8, theta2 = 0.7),
method = "L-BFGS-B", lower = list(thetal = 0.05, theta2 = 0.05),
upper = list(thetal = 0.5, theta2 = 0.5))

Coefficients:

Estimate Std. Error
thetal 0.3015202 0.006879348
theta2 0.1029822 0.114539931

-2 log L: -4192.279

5 Adaptive Bayes estimation

Consider again the diffusion process solution to
dXt = b(Xt,Gz)dt-f- O'(Xt,el)dm, (51)

and the quasi likelihood defined in (4.1).

The adaptive Bayes type estimator is defined as follows. First we choose
an initial arbitrary value 65 € ©; and pretend 6, is the unknown parameter
to make the Bayesian type estimator 6, as

6= / bt 01,0061 [618, (01,) (01}, (5.2)
[SH &,

where 7, is a prior density on ©;. According to the asymptotic theory, if m;
is positive on ©;, any function can be used. For estimation of 6, we use 6,
to reform the quasi-likelihood function. That is, the Bayes type estimator for
6, is defined by

. . -1 .
b= | /8 b, (Br,02))m2(602)d65) RECRCN SIS
2 2

where 7 is a prior density on ©,. In this way, we obtain the adaptive Bayes
type estimator 8 = (;,6,) for 8 = (64,0,). '

Adaptive Bayes estimation is developed in yuima via the method adaBayes.
Consider again the model (4.2) with the same values for the parameters, i.e.
6; = 0.3 and 6, = 0.1 In order to perform Bayesian estimation, we need to
prepare the prior densities for the parameters. For simplicity we use uniform
distributions in [0, 1]

101

R> prior <- list(theta2 = list(measure.type = "code",
+ df = "dunif(z,0,1)"), thetal = list(measure.type = "code",
+ df = "dunif(z,0,1)"))

Then we call adaBayes as follows

R> param.init <- list(theta2 = 0.5,

+ thetal = 0.5)
R> bayesl <- adaBayes(yuima, start = param.init,
+ prior = prior, method = "nomcmc")

and we can compare the adaptive Bayes estimates with the QMLE estimates

R> bayesl@coef

thetal theta?2
0.2996045 0.1629653

R> coef(mlel)

thetal theta?2
0.3015202 0.1029822

The argument method="nomcmc" in adaBayes performs numerical integration,
otherwise MCMC method is used.

6 Asynchronous covariance estimation

Suppose that two It6 processes are observed only at discrete times in a non-
synchronous manner. We are interested in estimating the covariance of the
two processes accurately in such a situation. This type of problem arises
typically in high-frequency financial time series.

Let T € (0,00) be a terminal time for possible observations. We consider
a two dimensional It process (X!, X?) satisfying the stochastic differential
equations

dX! = pldt+oldw}, te|0,7)
X, =

for I = 1,2. Here W' denote standard Wiener processes with a progressively
measurable correlation process d(Wi, W,); = pidt, pt and o! are progres-
sively measurable processes, and z} are initial random variables independent
of (W', W?). Diffusion type processes are in the scope but this model can
express more sophisticated stochastic structures. -

102

The process X' is supposed to be observed at over the increasing sequence
of times T% (i € Zyo) starting at 0, up to time T. Thus, the observables are
(T"%, X'%) with T < T. Each T" may be a stopping time, so possibly de-
pends on the history of (X!, X?) as well as the precedent stopping times. Two
sequences of stopping times T'* and T?7 are nonsynchronous, and irregularly
spaced, in general. In particular, cce can apply to estimation of the quadratic
variation of a single stochastic process sampled regularly/irregularly.

The parameter of interest is the quadratic covariation between X! and
X2

T
9= (X', X = /0 ololp,dt. (6.1)

The target variable 0 is random in general.
It can be estimated with the nonsynchronous covariance estimator (Hayashi-

Yoshida estimator)

Un == Z (X7111,.'—X11111,i_1)(X72-v2,j —X'12"2-J'-1)1{(T1""1,T1"']n(Ter‘l,Tzvj];é(D}'
4,5:TVi<T, T2 LT

(6.2)
That is, the product of any pair of increments (X1, — X7.,-1) and (X3,; —
X22,-1) will make a contribution to the sum only when the respective ob-
servation intervals (T%"!, T%] and (727!, T29] are overlapping with each
other. It is known that U, is consist and has asymptotically mixed normal
distribution as n — oo if the maximum length between two consecutive ob-
serving times tends to 0. See Hayashi and Yoshida (2005, 2008a, 2006, 2008b)
for details.

6.1 Example: data generation and estimation by yuima
package
We will demonstrate how to apply cce function to nonsynchronous high-
frequency data by simulation. As an example, consider a two dimensional
stochastic process (X}, X?) satisfying the stochastic differential equation
dth = O'LgdBtl,

dth = Ug,tdBf. (6.3)

Here B} and B? denote two standard Wiener processes, however they are
correlated as

B! = W}, (6.4)

t t
B = [pawis [T=gEwW2, (6.5)
0 0

103

where W and W? are independent Wiener processes, and p, is the correlation
function between B} and B?. We consider 0,4,/ = 1,2 and p; of the following
form in this example:

01t = V1+t7

b

02,t = VvV 1 + tz,
1

Pt=ﬁ-

To simulate the stochastic process (X}, X?2), we first build the model by
setModel as before. It should be noted that the method of generating non-
synchronous data can be replaced by a simpler one but we will take a general
approach here to demonstrate a usage of the yuima comprehensive package
for simulation and estimation of stochastic processes.

R> diff.coef.1 <- function(t, x1 = 0,

+ x2 = 0) sqrt(1 + t)

R> diff.coef.2 <- function(t, x1 = 0,

+ x2 = 0) sqrt(1 + t°2)

R> cor.rho <- function(t, x1 = O,

+ x2 = 0) sqrt(1/2)

R> diff.coef.matrix <- matrix(c("diff.coef.1(t,x1,x2)",

+ "diff.coef.2(t,x1,x2) * cor.rho(t,x1,x2)",

+ "r, "diff.coef.2(t,x1,x2) * sqrt(i-cor.rho(t,x1,x2)°2)"),
+ 2, 2)

R> cor.mod <- setModel (drift = c("",

+ "w), diffusion = diff.coef.matrix,

+ solve.variable = c("x1", "x2"))

The parameter we want to estimate is the quadratic covariation between
X1 and Xz:

T
0 = (X1, Xo)r =/ 01,02, p¢dt. (6.6)
0
Later, we will compare estimated values with the true value of 8 given by

R> CC.theta <- function(T, sigmal,

+ sigma2, rho) {

+ tmp <- function(t) return(sigmal(t) *
+ sigma2(t) * rho(t))

+ integrate(tmp, 0, T)

+ }

For the sampling scheme, we will consider the independent Poisson sampling.
That is, each configuration of the sampling times T%* is realized as the Pois-
son random measure with intensity np;, and the two random measures are

independent each other as well as the stochastic processes. Then it is known
from today’s lecture that

nY*(U, —) = N(0,c), (6.7)
as n — 00, where

2 2 T 2 (2 2 2)/T)
c= + — 010 dt+ | —+—= - 0110 4.
Qﬁ m)A(lJ%) P1 o D2 pLtps A (MZ%)

(6.8)

R> set.seed(123)

R> Terminal <- 1

R> n <- 1000

R> theta <- CC.theta(T = Terminal,

+ sigmal = diff.coef.1, sigma2 = diff.coef.2,
+ rho = cor.rho)$value

R> cat(sprintf("theta=)5.3f\n", theta))

theta=1.000

so in our case 6 = 1.

R> yuima.samp <- setSampling(Terminal = Terminal,
+ n =n)

R> yuima <- setYuima(model = cor.mod,

+ sampling = yuima.samp)

R> X <- simulate(yuima)

cce takes the sample and returns an estimate of the quadratic covariation.
For example, for the complete data

R> cce(X)

$covmat

[,1] [,2]
[1,] 1.491938 1.086078
[2,] 1.086078 1.474730

$cormat

[,1] (,2]
[1,] 1.0000000 0.7321992
[2,] 0.7321992 1.0000000

and we now apply random sampling

104

R> p1 <- 0.2
R> p2 <- 0.3

105

R> newsamp <- setSampling(random = list(rdist = c(function(x) rexp(x,

+ rate = pl * n/Terminal), function(x) rexp(x,
+ rate = pl * n/Terminal))))

R> Y <- subsampling(X, sampling = newsamp)

R> cce(Y)

$covmat

[,1] [,2]
(1,1 1.397269 1.070313
[2,] 1.070313 1.338464

$cormat

[,1] [,2]
[1,] 1.0000000 0.7826494
[2,] 0.7826494 1.0000000

Now we calculate the asymptotic variance of the estimator using (6.8)

R> var.c <- function(T, pl, p2, sigmal,

+ sigma2, rho) {

+ tmp_integrandl <- function(t) (sigmal(t) *
+ sigma2(t)) "2

+ il <- integrate(tmp_integrandi,

+ 0, T)

+ tmp_integrand2 <- function(t) (sigmal(t) *
+ sigma2(t) * rho(t))"2

+ i2 <- integrate(tmp_integrand2,

+ 0, T)

+ 2 % (1/p1 + 1/p2) * il$value +

+ 2 * (1/p1 + 1/p2 - 1/(p1 +

+ p2)) * i2%value

+ }

R> vc <- var.c(T = Terminal, p1, p2,

+ diff.coef.1, diff.coef.2, cor.rho)

R> sqgrt(vc/n)
(1] 0.2188988

7 Change point analysis

Consider a multidimensional stochastic differential equation of the form

dY;‘, = btdt + O(Xh g)dm, te [07T]a

106

where W, a r-dimensional Wiener process and b; and X; are multidimensional
processes and o is the diffusion coefficient (volatility) matrix. When Y = X
the problem is a diffusion model. The process b; may have jumps but should
not explode and it is treated as a nuisance in this model. The change-point
problem for the volatility is formalized as follows

y=d Yot [byds + J5 a(Xs,G*)dW for t € [0,7*)
7 Y. + f b ds-i—f (Xs,05)dW, for t € [7*,T).

The change point 7* instant is unknown and is to be estimated, along with 8}
and 63, from the observations sampled from the path of (X,Y’). The yuima
implements the quasi-maximum likelihood approach as in Iacus and Yoshida
(2009) described in the following. Let A;Y =Y;, — Y;,_, and define

(nt/T) n
a(t;01,6;) = Z Gi)+ Y. GiB), (7.1)
i=[nt/T]+1
with
Gi(8) = logdet S(X,,_,,0) + A} (AY)S(X;,_,,0) H(AY). (7.2)

Suppose that there exists an estimator 6, for each 6, k = 1,2. In case 6y are
known, we define 6y just as 6 = 5. The change point estimator of 7* is

Fo= in ®,(t:6,8,).
T argtg[lolg] n(t; 61, 62)

7.1 Example of Volatility Change-Point Estimation

Consider the 2-dimensional stochastic differential equation

A} _(1-XP g, [0 XE 0% " AW}
dx?) =\ 3- X2 0-X2 6, X2 dW?
X; =10, X2=1.0,

with change point instant at time 7 = 0.4. Some code is needed to simulate
such a process. First we define the model

R> diff.matrix <- matrix(c("thetal.1x*xx1",
+ "Oxx2", "O%x1", "thetal.2*x2"),

+ 2, 2)

R> drift.c <- c("1-x1", "3-x2")

R> drift.matrix <- matrix(drift.c,

+ 2, 1)

R> ymodel <- setModel (drift = drift.matrix,

+ diffusion = diff.matrix, time.variable = "t",
+ state.variable = c("x1", "x2"),

+ solve.variable = c("x1", "x2"))

and then simulate two trajectories. One up to the change point 7 = 4 with
parameters 6; ; = 0.1 and 6, ; = 0.2, and a second trajectory with parameters
611 = 0.6 and 6,5, = 0.6. For the second trajectory, the initial value is set to
the last value of the first trajectory.

R>
R>
R>
R>
R>
R>
-+
R>
+
R>
+
R>
R>
R>
R>
R>
+
+
R>
+
R>
+
R>
R>
+
R>
+

n <- 1000
set.seed(123)

tl1 <- list(thetal.l = 0.
t2 <- list(thetal.l1 = 0.
tau <- 0.4

1, thetal.2 = 0.2)
6, thetal.2 = 0.6)

ysampl <- setSampling(n = tau *
n, Initial = 0, delta = 0.01)
yuimal <- setYuima(model = ymodel,

sampling = ysampl)
yuimal <- simulate(yuimal, xinit = c(1,
1), true.parameter = t1)
x1 <- yuimal@data®@zoo.data[[1]]
x1 <- as.numeric(x1[length(x1)])
X2 <- yuimal@data®@zoo.data[[2]]
x2 <- as.numeric(x2[length(x2)])
ysamp2 <- setSampling(Initial = n *
tau * 0.01, n = n * (1 - tau),
delta = 0.01)
yuima2 <- setYuima(model = ymodel,
sampling = ysamp2)
yuima2 <- simulate(yuima2, xinit = c(x1,
x2), true.parameter = t2)
yuima <- yuimal
yuima@data@zoo.data[1]] <- c(yuimal@data@zoo.data[[1]],
yuima2@data@zoo.data[[1]][-1])
yuima@data@zoo.data[[2]] <- c(yuimal@data@zoo.datal[[2]],
yuima2@data®@zoo.data[[2]][-1])

The composed trajectory appears as follows

R>

plot(yuima)

107

108

x1
15
1

]

705

x2

3

5
T T T O

1

-
-

Just as an example, we test the ability of the change point estimator to identify
7 when for given true values of the parameters 6, ; and 6,

R> t.est <- CPoint(yuima, paraml = t1,
+ param2 = t2, plot = TRUE)
R> t.est$tau

[1] 3.99

A two stage change point estimation approach is available as explained in
Iacus and Yoshida (2009).

8 LASSO model selection

Let X, be a diffusion process solution to
dX; = b(a, X;)dt + o(8, X;)dW;
a=(o,...,0p) €6, CRP, p>1

ﬁ‘:(ﬁl)"')ﬁq),E@qCRq, QZ 1
with b: ©,xR? -5 R?, 0 : ©,xR? — R¢xR™ and W,, t € [0, T}, is a standard

Brownian motion in R™. We assume that the functions b and o are known up
to a and 3. We denote by 8 = (a, 8) € B, x 6, = © the parametric vector
and with 6y = (o, fo) its unknown true value. Let H,(Xn,0) = £,(X,,6)
. from equation (4.1). The quasi-MLE 8, for this model is the solution of the
following problem

6, = (&n,ﬁn)' = arg meianIn(Xn,O)

The adaptive LASSO estimator is defined as the solution to the quadratic
problem under L; constraints

0, = (Gn, Bn) = arg min F(6).

with
~ ae ~ - p q
F(0) = (6 = 0)Hn(Xn, 62)(0 — 6n) + D Anjslasl + D nelBil
7=1 k=1

For more details see De Gregorio and Iacus (2010). The tuning parameters
should be chosen as in Zou (2006) in the following way

’\"J = /\0|6‘n,j|—517 Tk = ’70|Bn,j|‘62 (81)

where &, ; and Bn,k are the unpenalized QML estimator of o; and B respec-
tively, é1,d2 > 0 and usually taken unitary.

8.1 An example of use

The lasso method is implemented in the yuima package. Let us consider the
full CKLS model
dXt = (a + ,BXt)dt + O'X;{th

and let us try to estimate the parameter on the U.S. Interest Rates monthly
data from 06/1964 to 12/1989. We prepare the data, the model and the
constraints for optimization

R> library(Ecdat)

R> data(Irates)

R> rates <- Irates[, "ri"]

R> plot(rates)

R> X <~ window(rates, start = 1964.471,

+ end = 1989.333)

R> mod <- setModel (drift = "alphatbeta*x",
+ diffusion = matrix("sigma*x gamma",
+ 1, 1))

R> yuima <- setYuima(data = setData(X),

+ model = mod)

R> lambdal0 <- list(alpha = 10, beta = 10,
+ sigma = 10, gamma = 10)

R> start <- list(alpha = 1, beta = -0.1,
+ sigma = 0.1, gamma = 1)

R> low <- list(alpha'= -5, beta = -5,

+ sigma = -5, gamma = -5)

R> upp <- list(alpha = 8, beta = 8,

+ sigma = 8, gamma = 8)

and now we apply the lasso function

109

110

R> lassol0 <- lasso(yuima, lambdalo,
+ start = start, lower = low,
+ upper = upp, method = "L-BFGS-B")

From which we see that, instead of the general model
R> round(lasso10$mle, 2)

sigma gamma alpha beta
0.13 1.44 2.08 -0.26

R> round(lassol10$lasso, 2)

sigma gamma alpha beta
0.12 1.50 0.59 0.00

the LASSO method selects the reduced model
dX, = 0.6dt + 0.12X2dW,

Acknowledgements

The author thanks all the members of the Yuima Project Team. All the errors
in this paper are solely of the present author.

References

Chambers, J. M. (1998). Programming with Data: A Guide to the S Language.
Springer-Verlag, New York.

De Gregorio, A. and Iacus, S. M. (2010). Adaptive lasso-type estimation
for ergodic diffusion processes. http: // services. bepress. com/unimi/
statistics/art50/ .

Hayashi, T. and Yoshida, N. (2005). On covariance estimation of non-
synchronously observed diffusion processes. Bernoulli 11, 359-379.

Hayashi, T. and Yoshida, N. (2006). Nonsynchronous covariance estimator
and limit theorem. Institute of Statistical Mathematics Research Mem-
orandum No.1020, 1-40.

Hayashi, T. and Yoshida, N. (2008a). Asymptotic normality of a covariance
estimator for nonsynchronously observed diffusion processes. Annals of the
Institute of Statistical Mathematics 60, 367-406.

Hayashi, T. and Yoshida, N. (2008b). Nonsynchronous covariance estima-
tor and limit theorem ii. Institute of Statistical Mathematics Research
Memorandum No.1067, 1-40.

Iacus, S. and Yoshida, N. (2009). Estimation for the change
point of the wvolatility in .a stochastic differential equation.
http://arziv.org/abs/0906.3108 .

Yoshida, N. (1992). Estimation for diffusion processes from discrete observa-
tion. J. Multivar. Anal. 41, 2, 220-242.

Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Stat.
Assoc. 101, 476, 1418-1429.

111

yuima-class

model

data
sampling
characteristic
functional

112

functional
yuima.functional

model data

wyg%l}l_z\iquel yuima.sampling _Yuima-data

yuima.model yuima.data yuima.functional

yuima.sampling

drift

diffusion
hurst
measure
measure.type
state.variable
parameter
state.variable
jump.variable
time.variable
noise.number

equation.numbe

dimension

solve.variable
xinit
J.flag

Initial
Terminal
n

delta
grid
random
regular
sdelta
sgrid
oindex
interpolation

original.data F
zoo.data f
DR <init
e

characteristic
yuima.characteristic

yuima.characteristic

equation.number

Figure 1: The main classes in the yuima package.

