
Approximate quadratic estimating function for discretely
observed Levy driven SDEs with application to a noise

normality test

九州大学 マスフォァ・インダストリ研究所 増田 弘毅 (Hiroki Masuda)
Institute of Mathematics for Industry, Kyushu University

Abstract
We consider a family of ergodic L\’evy-driven stochastic differential equations observed at high-frequency

discrete sampling points, where we do not suppose a specific form of the driving L\’evy measure, while the
coefficients are known except for finite-dimensional parameters. Our aim is twofold: first, we derive the
first-order asymptotic behavior of an M-estimator based on the approximate quadratic martingale estimat-
ing function; second, as an application of the estimator obtained, we derive consistent and asymptotically
distribution-free test statistics for the normality of the driving L\’evy process, based on the self-normalized
partial sums of the Euler-type residuals. This paper is a slightly revised version of author’s preprint [14].

1 Introduction
In this paper we are concemed with the univariate Stochastic Differential Equation (SDE)

$\{\begin{array}{l}dX_{t}=a(X_{t}, \alpha)dt+b(X_{t-}, \beta)dZ_{t},X_{0}=x_{0}\end{array}$ (1)

where $a$ and $b$ are $\mathbb{R}$-valued functions, which are known except for the finite-dimensional parameters $\alpha$ and $\beta$ ,
respectively, and $Z$ is a univariate L\’evy process. The L\’evy driven SDE (1) can be regarded as an extended-
noise version of the diffusion process, for which $Z$ is a standard Wiener process. Suppose that we have a
discrete-time sample

$(X_{t_{0}}, X_{t_{1}}, \ldots, X_{t_{n}})$

with regular sampling points $t_{i}=t_{i}^{n}=ih_{n}$ , where $h_{n}arrow 0$ and $nh_{n}arrow\infty$ as $narrow\infty$ . Our main objective is
twofold.

1. First, based on the available data we want to estimate the unknown parameter $\theta$ $:=(\alpha, \beta)$ under the
ergodicity. It is common knowledge that the exact likelihood estimation is infeasible in general, since
most often we cannot write down the transition density in an explicit form while its existence is easy to
verify. Nevertheless, for the diffusion case the issue has been solved under some appropriate conditions,
and there exist several explicit contrast functions. See Kessler [5] and Yoshida [25, 26] as well as the
references therein: in order to derive an explicit contrast function, they employed a discretized version of
the continuous-observation likelihood process, or a local-Gauss approximation of the transition density.
In this case, it is well known in the literature that the quasi-likelihood type contrast function, for which
only conditional mean and variances of data increments do matter, lead to an asymptotically efficient
estimator.
On the other hand, the issue has not been addressed enough in the presence of (possibly infinite-variation)
jumps. Among many possibilities, in this paper we focus on the (Gaussian) quasi-likelihood type contrast
function. Differem from the diffusion case, it does not produce asymptotically efficient estimator in the
presence of jumps. Nevertheless, it has at least two important advantages: the contrast function to be
optimized is explicit; and estimation procedure is robust to modelling L\’evy measure, which we actually
do not need to specify.
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2. Second, as an application of the estimator thus obtained, we consider testing whether or not $Z$ is Gaus-
sian. Under the nontriviality of $Z$ , this can be stated as follows:

$\mathcal{H}0$ : $Z$ is a standard Wiener process.
$\mathcal{H}_{1}$ : Not $\mathcal{H}_{0}$ .

The altemative $\mathcal{H}_{1}$ just means that $v(\mathbb{R}\backslash \{0\})\in(0, \infty]$; the Gaussian part of $Z$ may or may not be null
under $\mathcal{H}_{1}$ . We are concemed here with formulation of a Jarque-Bera-type test for a discretely observed
Markov process defined as a solution process to a stochastic differential equation. Our focus is put rather
on seemingly diffusion-like process, than on diffusion plus rare and large jumps. Pure-jump $L6vy$ process
with many small jumps may be approximated in distribution by a Wiener process. Nevertheless, our test
statistics can simply and successfully detect the non-Gaussianity under high frequency sampling.

In the light of prior literatures, when we apply a parametric diffusion model to high-frequency data, we
blindly utilize the optimal rate $\sqrt{n}$ of the diffusion parameter, faster than the optimal rate $\sqrt{nh_{n}}$ of the dnift
parameter. It is well known that the (approximate) quadratic estimating function leads to the optimal rates in
case of diffusions. However, this is not the case if $Z$ admits any nontrivial jump part, even if $Z$ is ”distri-
butionally” close to a standard Wiener process, such as the normal inverse Gaussian L\’evy process such that
$\mathcal{L}(Z_{1})=NIG(\alpha, 0, \delta, 0)$ with large $\alpha$ and $\delta$ . One should pay attention to this hazardous nature in practice.
This point justifies performing a normality test for Z.

This paper is organized as follows. Section 2 describe our target model and assumptions. In Section 3, we
provide the asymptotic behavior of the Gaussian-reference quasi-likelihood estimator, which can be seen as the
estimator based on an approximate quadratic martingale estimating function. As an application of the result of
Section 3, in Section 4 we presents our noise normality test: an earlier attempts in this direction has been made
by Lee and Masuda [10] (see also Kulperger and Yu [81 and Yu [28] in the context of time series analysis).

2 L\’evy-driven SDE with ergodic property
Let $(\Omega, \mathcal{F}, (\mathcal{F}_{t})_{t\in R+}, P)$ be a complete filtered probability space endowed with a nontrivial centered $L6vy$

process $Z=(Z_{t})_{t\in R+}$ admitting an $L6vy$-It\^o decomposition

$Z_{t}= \sigma w_{t}+\int_{0}^{t}\int z\tilde{\mu}(ds, dz)$, (2)

where $\sigma\geq 0,$ $w$ is a univariate standard Wiener process, and $\tilde{\mu}(ds, dz)=\mu(ds, dz)-dsv(dz)$ with a
Poisson random measure on $\mathbb{R}\backslash \{0\}$ having L\’evy measure $v$ (we refer to the monograph Sato [17] for a detailed
description of L\’evy processes). On this space, we consider a solution $X=(X_{t})_{t\in R+}$ to the SDE (1), where
$\alpha\in\Theta_{\alpha}\subset \mathbb{R}^{p_{\alpha}}$ and $\beta\in\Theta_{\beta}\subset \mathbb{R}^{p_{\beta}}$ , with $\Theta_{\alpha}$ and $\Theta_{\beta}$ being convex domains. We write $\Theta=\Theta_{\alpha}\cross\Theta\rho$ for
the parameter space of $\theta=(\alpha, \beta)$ , and denote by $p$ $:=p_{\alpha}+p\rho$ the dimension of the all unknown parameters
involved. The initial variable $X_{0}$ is $\mathcal{F}_{0}$ -measurable and independent of $Z$ , and the coefficients $a$ : $\mathbb{R}\cross\Theta_{\alpha}arrow \mathbb{R}$

and $b$ : $\mathbb{R}\cross\Theta_{\beta}arrow \mathbb{R}$ are known measurable functions. We denote by $\theta_{0}=(\alpha_{0}, \beta_{0})\in\Theta$ the true value
of $\theta$ , supposed to exist. We observe $X$ at time points $t_{i}^{n}=ih_{n}$ , so that available data is $X_{0},$ $X_{h_{n}},$

$\ldots,$
$X_{nh_{n}}$ .

Throughout this paper we work under the ”rapidly increasing experimental design”:

$h_{n}arrow 0$ , $T_{n}$ $:=nh_{n}arrow\infty$ , $nh_{n}^{2}arrow 0$ . (3)

Here and in what follows asymptotics are taken for $narrow\infty$ unless otherwise mentioned.
Our underlying statistical model is the parametric family $(P_{\theta})_{\theta\in\Theta}$ , where $P_{\theta}$ stands for the image measure

of $X$ associated with $\theta\in\Theta$ . For simplicity, we abbreviate $P_{\theta_{O}}$ as $P_{0}$ .
We use the following notation.

$eC$ denotes a positive generic constant, which may vary from line to line.. $\Delta_{i}X:=X_{t_{i}^{n}}-X_{t_{i-1}^{n}}$ .. $f_{i-1}(v)$ $:=f(X_{t_{i-1}}, v)$ for a variable $v\in V$ and a measurable function $f$ on $\mathbb{R}\cross V$ .
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. $arrow p$ and $arrow^{d}$ denotes the convergence in $P_{0}$ probability and the convergence in law under $P_{0}$ , respec-
tively.

We impose the following regularity conditions on the coefficients.
Assumption 2.1. Either one of the following two holds true.

1. (Bounded smooth coefficients plus uniformly nondegenerate $b(x,$ $\beta)$ ). $a\in C^{\infty,2}(\mathbb{R}\cross\Theta_{\alpha})$ and $b\in C^{\infty,2}(\mathbb{R}\cross\Theta_{\beta})$ .. $\sup_{(x,\theta)\in \mathbb{R}x\Theta}\{|\partial_{x}^{j}\partial_{\alpha}^{k}a(x, \alpha)|\vee|\partial_{x}^{j}\partial_{\beta}^{k}b(x, \beta)|\}<\infty$for each $j\in \mathbb{Z}_{+}and$ $k\in\{0,1,2\}$ .. $\inf_{(x,\beta)\in \mathbb{R}\cross\Theta_{\beta}}|b(x, \beta)|>0$.

2. (Globally Lipschitz smooth coefficients plus nondegenerate $b(x,$ $\beta)$ ). $a\in C^{\infty,2}(\mathbb{R}\cross\Theta_{\alpha})$ and $b\in C^{\infty,2}(\mathbb{R}\cross\Theta_{\beta})$ .. $\sup_{(x,\theta)\in \mathbb{R}\cross\Theta}\{|\partial_{x}a(x, \alpha)|\vee|\partial_{x}b(x, \beta)|\}<\infty$ .. $\sup_{(x,\theta)\in Rx\Theta}\{|\partial_{x}^{j}\partial_{\alpha}^{k}a(x, \alpha)|\vee|\partial_{x}^{j}\partial_{\beta}^{k}b(x, \beta)|\}\leq C(1+|x|)^{C}$ for each $j\underline{>}2$ and $k\in\{0,1,2\}$ .. $\sup_{(x,\beta)\in \mathbb{R}x\Theta_{\beta}}|b(x, \beta)|^{-1}\leq C(1+|x|)^{C}$ .

Under Assumption 2.1, the SDE (1) admits a unique strong solution without reference to the concrete
stmcture of $Z$ ; see, e.g., Protter [15] for details. The reason why we separate the cases 1 and 2 in Assumption
2.1 is related to validity of the (conditional-) moment estimates we repeatedly need in the proofs. In prior
literatures conceming estimation of discretely observed SDEs, it is most often assumed that $\sup_{t}E[|X_{t}|^{q}]<\infty$

for every $q>0$ (see, among others, Kessler [5], Masuda [11], Shimizu and Yoshida [18], Srensen [19]).
Specifically, this is required since it is also supposed that the coefficients together with their partial derivatives
are of (at most) polynomial growth uniformly in both of state variable and parameters, while in most cases the
positive-order derivatives are uniformly bounded. The $L^{p}$ -boundedness of $X$ often mles out some important
classes of $X$ , such as Langevin diffusions with heavy-tailed invaniant density $g$ , described by

$dX_{t}=( \frac{1}{2}b^{2}(X_{t})\partial\log g(X_{t})+b(X_{t})\partial b(X_{t}))dt+b(X_{t})dw_{t}$ , (4)

with $b$ bein$g$ bounded; in this case $X$ may exhibits a kind of long-range dependence in the sense that the mixing
(absolutely-regular) rate is at most subexponential or polynomial (see, e.g., Roberts and Tweedie [16, Theorem
2.4], Stramer and Tweedie [20, Theorem 3.1 $(i)$], and Veretennikov [22, 23] $)$ . A little bit surprisingly, this point
does not seem to have been specified in the literature. Therefore, we incorporate it as the first one ofAssumption
2.1; in case of the second one of Assumption 2.1, we will additionally assume $\sup_{t}E[|X_{t}|^{q}]<\infty$ for every
$q>0$ . Clearly, minimal $q$ depends on the growth orders of $a$ and $b$ as well as of their partial derivatives, and
on the tail of $v$ . Here we do not specify this intermediate case for the sake of simplicity.

The next condition is the ergodicity of $X$ .
Assumption 2.2. There exists a unique invariant distribution $\pi_{0}$ (depending on $\theta_{0}$ ) such that we have the law
of large numbers:

$\frac{1}{T_{n}}\int_{0}^{T_{n}}f(X_{t})dtarrow p\int f(x)\pi_{0}(dx)$ (5)

as soon as $f\in L^{1}(\pi_{0})$ .

Several sets of sufficient conditions to verify Assumption 2.2 are available: see, e.g., the references of
Masuda [12] and Kulik [6, Appendix A. 1]. Especially for general diffusions with compound-Poisson jumps
$(i.e., v(\mathbb{R})<\infty)$, quite simple conditions are given by, e.g., Masuda [13].

Finally, we impose moment conditions on the driving L\’evy process $Z$ of the form (2).

Assumption 2.3. There exists an integer $q>(p\vee 8)$ such that $E[|Z_{t}|^{q}]<\infty$ , and $E[Z_{t}^{2}]=t$ for each
$t\in \mathbb{R}+\cdot$

We have imposed the condition $q>(p\vee 8)$ ” just for providing a consistent estimator of the asymptotic
covariance matrix in Theorem 3.4 in a direct manner. This condition might be relaxed by taking a closer look
at the series of estimates in the proofs.
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3 Approximate quadratic martingale estimating function
Here we derive an asymptotic normality result conceming the M-estimator of $\theta$ based on an approximate
quadratic martingale function, which essentially amounts to the local-Gauss transition fitting. How to choose
an estimating function could be a lot of things, possibly depending on specific stmcture of the jump part of the
driving L\’evy process. Nevertheless, as seen in the quasi-likelihood analysis in the time-series literature, the
quadratic type estimating function is expected to possess high versatility, thereby being of“practical‘’ use.

Let $A$ : $\mathbb{R}\cross\Theta_{\alpha}arrow \mathbb{R}^{p_{\alpha}}$ and $B$ : $\mathbb{R}\cross\Theta_{\beta}arrow \mathbb{R}^{p_{\beta}}$ be measurable functions. We define a class of random
functions $Q_{n}$ : $\Thetaarrow \mathbb{R}^{p}$ by

$Q_{n}( \theta)=(\begin{array}{l}Q_{n}^{1}(\theta)Q_{n}^{2}(\theta)\end{array})=\sum_{i=1}^{n}(\begin{array}{l}A_{i-1}(\theta)(\Delta_{i}X-h_{n}a_{i-1}(\alpha))B_{i-1}(\theta)\{(\Delta_{i}X-h_{n}a_{i-1}(\alpha))^{2}-h_{n}b_{i-1}(\beta)^{2}\}\end{array})$ . (6)

We target at estimators $\hat{\theta}_{n}=(\hat{\alpha}_{n},\hat{\beta}_{n})$ of $\theta$ such that $Q_{n}(\hat{\theta}_{n})=0$ (for $n$ large enough). Note that we are in
a semiparametric framework in the sense that we only impose moment structures about the driving process
$Z$ . Needless to say, the estimator treated here cannot be asymptotically efficient in the presence of jumps.
Nevertheless, it has an obvious advantage, robustness to the specification of $Z$ ’s L\’evy measure.

Remark 3.1. The estimatingfunction $Q_{n}(\theta)$ stemsfrom the leading-term approximation ofthe genuine quadratic
estimatingfunction

$Q_{n}^{*}( \theta)=\sum_{i=1}^{n}(B_{i-1}(\theta)\{(x_{t_{i}}^{A_{i-1}(\theta)(X_{t_{i}}-E_{\theta}^{i-1}[X_{t_{i}}])}-E_{\theta}^{i-1}[X_{t_{i}}])^{2}-E_{\theta}^{\iota-1}[(X_{t_{i}}-E_{\theta}^{i-1}[X_{t_{i}}])^{2}]\})$ ,

where $E_{\theta}^{i-1}[\cdot]$ $:=E_{\theta}[\cdot|\mathcal{F}_{t_{i-1}}]$ . This can be explicit if for example, $a(x, \alpha)$ is linear in $x$ . We here do not
pay special attention to this case, however, it is obvious from the proof of Theorem 3.4 below that asymptotic
behavior ofthe M-estimator associated with $Q_{n}^{*}(\theta)$ can be obtained under appropriate conditions in a manner
similar to the case of $Q_{n}(\theta)$ . $S\emptyset rensen[19]$ studied general approximate martingale function for diffusion
processes, including the efficiency result in Kessler $f5$].

We introduce some additional assumptions.

Assumption 3.2. Either one of thefollowing holds true.

1. We have Assumptions 2.1.1, 2.2, and 2.3. Additionally,. $A(x, \cdot)\in C^{2}(\Theta)andB(x, \cdot)\in C^{2}(\Theta)for$ every $x\in \mathbb{R}$,. $\sup_{(x,\theta)\in R\cross\Theta}\{|\partial_{\theta}^{k}A(x, \theta)|\vee|\partial_{\theta}^{k}B(x, \theta)|\}<\infty$for $k\in\{0,1,2\}$ .

2. We have Assumptions 2.I.2, 2.2, and 2.3. Additionally,. $A(x, \cdot)\in C^{2}(\Theta)$ and $B(x, \cdot)\in C^{2}(\Theta)$for every $x\in \mathbb{R}$ ,. $\sup_{\theta\in\Theta}\{|\partial_{\theta}^{k}A(x, \theta)|\vee|\partial_{\theta}^{k}B(x, \theta)|\}\leq C(1+|x|)^{C}$ for each $k\in\{0,1,2\}$ ,. $\sup_{t\in lR+}E_{0}[|X_{t}|^{q}]<\infty$ for every $q>0$ .

Typically, the last condition in Assumption 3.2.2 follows from a kind of Foster-Lyapunov criteria, which is
usually easy to verify: see Masuda [12, 13] for details.

We write $\pi_{0}(f(\cdot, \theta))=\int f(x, \theta)\pi_{0}(dx)$ for a function on $\mathbb{R}\cross\Theta$ , and often abbreviate $\pi_{0}(f(\cdot, \theta_{0}))$ to
$\pi_{0}(f)$ . We now impose the identifiability condition:

Assumption 3.3. The matrices $\pi_{0}(A\partial_{\alpha}^{T}a)$ and $\pi_{0}(B\partial_{\beta}^{T}b^{2})$ are nonsingular, and the identity

$|\pi_{0}(A(\cdot, \theta)\{a(\cdot, \alpha_{0})-a(\cdot, \alpha)\})|+|\pi_{0}(B(\cdot, \theta)\{b^{2}(\cdot, \beta_{0})-b^{2}(\cdot, \beta)\})|=0$

holds true iff $\theta=\theta_{0}$ .
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From now on, we write
$v_{k}= \int z^{k}v(dz)$

for $k\geq 3,$ $k\in \mathbb{N}$ ; of course, $v_{k}$ is nothing but the $k$ th cumulant of $\mathcal{L}(Z_{1})$ , hence we have $v_{3}=E[Z_{1}^{3}]$ and
$v_{4}=E[Z_{1}^{4}]-3$ under Assumption 2.3. Under the aforementioned assumptions, the following $p\cross p$ symmetric
matrices are well-defined:

$V_{0}’=$ diag $(V_{11},2V_{22})$ , $V_{0}’’=(\begin{array}{ll}V_{11} v_{3}V_{12}Sym v_{4}V_{22}\end{array})$ ,

where

$V_{11}=\{\pi_{0}(A\partial_{\alpha}^{T}a)^{T}\}^{-1}\pi_{0}(A^{\otimes 2}b^{2})\pi_{0}(A\partial_{\alpha}^{T}a)^{-1}$ ,

$V_{12}=\{\pi_{0}(A\partial_{\alpha}^{T}a)^{T}\}^{-1}\pi_{0}(AB^{T}b^{3})\pi_{0}(B\partial_{\beta}^{T}b^{2})^{-1}$,

$V_{22}=\{\pi_{0}(B\partial_{\beta}^{T}b^{2})^{T}\}^{-1}\pi_{0}(B^{\otimes 2}b^{4})\pi_{0}(B\partial_{\beta}^{T}b^{2})^{-1}$ .

For a function $f(x, \theta)$ on $\mathbb{R}\cross\Theta$ , we write

$\hat{S}_{n}(f)=\frac{1}{n}\sum_{i=1}^{n}f(X_{t_{i-1}},\hat{\theta}_{n})$ .

Here is the main claim of this section.

Theorem 3.4. Suppose Assumptions 2.3, 3.2, and 3.3. Then, there exists a $\sigma(X_{t_{i}^{n}} : i\leq n)$ -measurable
$\mathbb{R}^{p}$ -valued sequence $\hat{\theta}_{n}$ such that $P_{0}[Q_{n}(\hat{\theta}_{n})=0]arrow 1$ , and any such sequencefulfils $\hat{\theta}_{n}arrow p\theta_{0}$ . Moreover:

if $v(\mathbb{R})=0$ , then $(\sqrt{T_{n}}(\hat{\alpha}_{n}-\alpha_{0}), \sqrt{n}(\hat{\beta}_{n}-\beta_{0}))arrow^{d}\mathcal{N}_{p}(0, V_{0}’)$; (7)

$\iota fv(\mathbb{R})>0$ , then $\sqrt{T_{n}}(\hat{\theta}_{n}-\theta_{0})arrow^{d}\mathcal{N}_{p}(0, V_{0}’’)$ . (8)

Consistent estimators of the asymptotic variances can be given through through the following: in case of (7),

$\hat{V}_{11,n}=\{\hat{S}_{n}(A\partial_{\alpha}^{T}a)^{T}\}^{-1}\hat{S}_{n}(A^{\otimes 2}b^{2})\hat{S}_{n}(A\partial_{\alpha}^{T}a)^{-1}$

$\hat{V}_{22,n}=\{\hat{S}_{n}(B\partial_{\beta}^{T}b^{2})^{T}\}^{-1}\hat{S}_{n}(B^{\otimes 2}b^{4})\hat{S}_{n}(A\partial_{\alpha}^{T}a)^{-1}$ ;

and in case of (8), $\hat{V}_{11,n}$ is the same as above, while

$v_{3} \overline{V_{12,n}}=\{\hat{S}_{n}(A\partial_{\alpha}^{T}a)^{T}\}^{-1}(\frac{1}{T_{n}}\sum_{i=1}^{n}AB^{T}(X_{t_{i-1}},\hat{\theta}_{n})\{\Delta_{i}X-h_{n}a_{i-1}(\hat{\alpha}_{n})\}^{3})\hat{S}_{n}(B\partial_{\beta}^{T}b^{2})^{-1}$,

$v_{4} \overline{V_{22,n}}=\{\hat{S}_{n}(B\partial_{\beta}^{T}b^{2})^{T}\}^{-1}(\frac{1}{T_{n}}\sum_{i=1}^{n}B^{\otimes 2}(X_{t_{i-1}},\hat{\theta}_{n})\{\Delta_{i}X-h_{n}a_{i-1}(\hat{\alpha}_{n})\}^{4})\hat{S}_{n}(B\partial_{\beta}^{T}b^{2})^{-1}$.

The diffusion case (7) is well known and formally not new, and we know the optimal choices of $A$ and
$B$ leading to the asymptotic efficiency of the corresponding $\hat{\theta}_{n}$ . Nevertheless, the author could not find any
literature that specify the claim under possibly heavy-tailed $X$ , which may occur under Assumption 2.1.1;
indeed, this point does seem to have been ignored so far.

The non-null $\mu$ case (8) is new, but the asymptotic efficiency of $\hat{\theta}_{n}$ is no longer valid. The efficiency issue
is left as an importam (and quite intricate) open problem.

Remark 3.5. We can provide, at leastformally, a similar result also in case where $nh^{r}arrow 0,$ $r\geq 2,$ $r\in \mathbb{N}$, by
using higher-order It\^o-Taylor expansions for the conditional mean and variance. However, we then inevitably
need to know moment structure oforder $k\geq 3$ about the Levy measure $v$ . This implies that our estimating pro-
cedure loses the merit ofthe robustness to modelling the essentially “infnite-dimensional” nuisance parameter
$v$ . Furthermore, even ifwe could know the moment structure, the resulting estimatingfunction then looks much
more complicated and its optimization becomes harder, thereby diminishing its usefulness in practice. See also
Remark 5.4.
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Remark 3.6. Let $v_{3}=0$ and $p_{\alpha}=p_{\beta}=1$ . Then, in view ofSchwarz’s inequality, it is easy to see that

$A(x, \theta)=\frac{\partial_{\alpha}a(x,\alpha)}{b(x,\beta)^{2}}$ and $B(x, \theta)=\frac{\partial_{\beta}[b(x,\alpha)^{2}]}{b(x,\beta)^{4}}$

is an asymptotically optimal choice: interestingly, this optimal choice is the same as in the diffusion case.

Remark 3.7. We could also deduce a $mighty_{\wedge}convergence’$
’ resultfor multivariate $X$ , meaning that in addition

to the weak convergence of the normalized $\theta_{n}$ we could also have their $L^{q}(P_{0})$ -boundedness. This will be
reported elsewhere.

4 Normality test for the driving noise
In the previous section, we have seen that the approximate quadratic estimating function (6) can be used re-
gardless of the presence ofjumps. However, within our underlying model (1) with $Z$ unknown, we beforehand
do not know which of a diffusion or a process with jumps is more appropriate to given data. This underlines
the importance of testing normality of $Z$ .

In this section, we are concemed with testing the normality of $Z$ against presence of any nontrivial jump
component:

$\mathcal{H}_{0}$ : $Z$ is a standard Wiener process.
$\mathcal{H}_{1}$ : Not $\mathcal{H}_{0}$ .

Since we presuppose that $Z$ is nontrivial, the altemative hypothesis specifically means that $v(\mathbb{R})\in(O, \infty]$ . The
Gaussian component of $Z$ may or may not degenerate under $\mathcal{H}_{1}$ .

For convenience, we remark the prototype of the Jarque-Bera test for normality. Let $\xi_{1},$ $\xi_{2},$
$\ldots$ be a se-

quence of i.i. $d$ . random variables, and for $k\geq$ let

$\hat{z}_{n}^{(k)}:=\frac{n^{-1}\sum_{i=1}^{n}(\xi_{i}-\overline{\xi}_{n})^{k}}{\{n^{-1}\sum_{i=1}^{n}(\xi_{i}-\overline{\xi}_{n})^{2}\}^{k/2}}$,

where $\overline{\xi}_{n}$ $:=n^{-1} \sum_{i=1}^{n}\xi_{i}$ . Then the Jarque-Bera statistics

$\mathcal{J}_{n};=n[\frac{(\sqrt{n}\hat{z}_{n}^{(3)})^{2}}{6}+\frac{\{\sqrt{n}(\hat{z}_{n}^{(4)}-3)\}^{2}}{24}]$

weakly tends to $\chi^{2}(2)$ as soon as the law of $\xi_{1}$ is normal, providing a simple procedure of testing normality.
This test is based on the fact: if $\sqrt{n}(V_{n}-V)arrow^{d}\mathcal{N}_{p}(0, \Sigma)$ for some constants $V\in \mathbb{R}^{p}$ and $\Sigma\in \mathbb{R}^{p}\otimes \mathbb{R}^{P}$ , then
it follows from the continuous mapping theorem that $\Sigma_{n}^{-1}[\{\sqrt{n}(V_{n}-V)\}^{\otimes 2}]arrow^{d}\chi^{2}(p)$ , where $\Sigma_{n}arrow P\Sigma$ .

We consistently use the notation introduced in Section 3. Let

$\epsilon_{ni}(\theta):=\frac{\Delta_{i}X-h_{n}a_{i-1}(\alpha)}{b_{i-1}(\beta)\sqrt{h_{n}}}$ (9)

for $i\leq n$ and $\theta\in\Theta$ , and $\hat{\epsilon}_{ni}$
$:=\epsilon_{ni}(\hat{\theta}_{n})$ , where $\hat{\theta}_{n}=(\hat{\alpha}_{n},\hat{\beta}_{n})$ is the estimator introduced in Section 3. Write

$\overline{\hat{\epsilon}}_{n}=n^{-1}\sum_{i=1}^{n}\hat{\epsilon}_{ni},\hat{\Psi}_{n}^{(k)}=n^{-1}\sum_{i=1}^{n}(\hat{\epsilon}_{ni}-\hat{\epsilon}_{n})^{k}-$, and $\Phi_{n}^{(k)}=\hat{\Psi}_{n}^{(k)}(\hat{\Psi}_{n}^{(2)})^{-k/2}$ . Our test statistics is then
defined to be

$\mathcal{T}_{n}=\frac{n}{6}\{\hat{\Phi}_{n}^{(3)}-\frac{3\sqrt{h_{n}}}{n}\sum_{i=1}^{n}\partial_{X}b(X_{t_{i-1}},\hat{\beta}_{n})\}^{2}+\frac{n}{24}(\hat{\Phi}_{n}^{(4)}-3)^{2}$. (10)

Given a value of $\hat{\theta}_{n}$ , it is straightforward to evaluate $\mathcal{T}_{n}$ . This simple test statistics tums out to be asymptotically
distribution-free and consistent.

Theorem 4.1. Suppose that the conditions ofTheorem 3.4 are in force. Then, we have the following:
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. $\mathcal{T}_{n}arrow^{d}\chi^{2}(2)$ under $\mathcal{H}_{0}$ ;. $P_{0}[\mathcal{T}_{n}>K]arrow 1$ for every $K>0$ under $\mathcal{H}_{1}$ .

Here are some remarks on Theorem 4.1.

Remark 4.2. Theorem 4.1 extends Lee and Masuda [10], where we targeted at constant $b(x, \beta)$ . Although the
construction ofour test statistics (the Jarque-Bera methodology) is somewhat analogous, we need to be careful
in handling the dispersion term $b(x, \beta)$ . The test statistics $\mathcal{T}_{n}$ are differentfrom what is proposed in Lee and
Masuda [10]: in the present setting, we have a bias-correction term in the sample-skewness part. We note that
$\mathcal{T}_{n}$ reduces to that ofLee and Masuda $[l0]$ in cases where $b(x, \beta)$ is constant. It is possible to construct $\mathcal{T}_{n}$

based on higher-order self-normalized partial sums of residuals, however, performance of $\mathcal{T}_{n}$ under $\mathcal{H}_{0}$ may
then deteriorate since higher-order sample moments appear in the statistics, while power can be gained due to
resulting bigger variance of $\mathcal{T}_{n}$ .

Remark 4.3. In the proof of Theorem 4.1, we have to specify the behaviors of $\hat{\theta}_{n}$ to some extent under both
$\mathcal{H}_{0}$ and $\mathcal{H}_{1}$ . In our case,$\wedge it$ is crucial that $\hat{\theta}_{n}$ is rate-optimal under $\mathcal{H}_{0}$ and at the same time $\sqrt{T_{n}}$-consistent
under $\mathcal{H}_{1}$ . If instead of $\theta_{n}$ we adopt some estimator $\tilde{\theta}_{n}$ , which is only $\sqrt{T_{n}}$-consistent even under $\mathcal{H}_{0}$ , then,
from the proof of Theorem 4.1, $\mathcal{T}_{n}$ would not work: more precisely, the required rate of $\hat{\theta}_{n}$ mentioned above
are enough to conclude that the effect ofplugging-in $\hat{\theta}_{n}$ vanishes in the leading term of $\mathcal{T}_{n}$ (see the proof of
Theorem 4.1 for details). In this sense, the approximate quadratic estimatingfunction is quite natural to adopt
in ourframework, for it produce possibly the simplest rate-optimal estimator under $\mathcal{H}_{0}$ , and at the same time,
$\sqrt{T_{n}}$-consistency under $\mathcal{H}_{1}$ .

Remark 4.4. From the proofof the consistency of the test (Section 5.3.2), it is clear that we may adopt

$\mathcal{T}_{n}’:=\frac{n}{6}\{\hat{\Phi}_{n}^{(3)}-\frac{3\sqrt{h_{n}}}{n}\sum_{i=1}^{n}\partial_{x}b(X_{t_{i-1}},\hat{\beta}_{n})\}^{2}$

instead of $\mathcal{T}_{n}$ ; then, $\mathcal{T}_{n}’arrow^{d}\chi^{2}(1)$ under $\mathcal{H}_{0}$ and the consistency remains valid. That is to say, in order to
derive the consistency against the ’‘full” alternative $\mathcal{H}_{1}$ (i.e., presence of “any“ nontrivial jump component),
it is enough to look at the sample skewness solely. This is a sharp contrast to the classical $i.i.d$.-sample case;
one can consult Henze [2] for an extensive review of the consistency issue in testing (possibly multivariate)
normality.

Remark 4.5. For computing $\hat{\Phi}_{n}^{(k)}$ , the factor $\sqrt{h_{n}}$ in the denominator of (9) is clearly redundant. However,
we keep itfor convenience of references in the proof.

5 Proofs
Throughout this section we use the following notation.. $R_{1}(x, \theta)$ (resp. $R_{2}(x,$ $\theta)$ ) denotes generic functions on $\mathbb{R}\cross\Theta$ such that $\sup_{x,\theta}|R_{1}(x, \theta)|<\infty$ (resp.

$\sup_{\theta}|R_{2}(x, \theta)|\leq C(1+|x|)^{C})$. Dimensions of $R_{j}(x, \theta)$ vary depending on the context.. $\rho_{k}$ stands for the $k$ th moment of the standard normal distribution.. For random sequences $(x_{n})$ and $(y_{n}),$ $x_{n}\sim<y_{n}$ means that $x_{n}\leq Cy_{n}$ a.s. for every $n$ large enough.. $\zeta_{ni}’$ $:=\Delta_{i}X-h_{n}a_{i-1}(\alpha_{0})$ and $\zeta_{ni}’’$ $:=\{\Delta_{i}X-h_{n}a_{i-1}(\alpha_{0})\}^{2}-h_{n}b_{i-1}(\beta_{0})^{2}$.

5.1 Leading terms of It\^o-Taylor expansions
We begin with fundamental facts conceming conditional size of $X$ ’s increments.
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Lemma 5.1. Let $g(x, \theta)$ $:=|a(x, \alpha)|\vee|b(x, \beta)|$ . Fix any $q\geq 2$ such that $E[|Z_{t}|^{q}]<\infty$ . Then

$E_{\theta}^{i-1}[ \sup_{s\in[t_{i-1}t_{i}]},|X_{s}-X_{t_{i-1}}|^{q}]<\sim\{\begin{array}{ll}h_{n}^{q/2}g(X_{t_{i-1}}, \theta)^{q}, \iota fv(\mathbb{R})=0,h_{n}g(X_{t_{i-1}}, \theta)^{q}, otherwise.\end{array}$ (11)

In particular, the lefl-hand side of (11) are essentially bounded $\iota f$ so is $g$ .

Proof. Let $v(\mathbb{R})>0$ , and $\tau_{i-1,K}$ $:= \inf\{s\geq t_{i-1} : |X_{s}|\geq K\}$ for $K>0$ . By means of Assumption
2.1, triangular and martingale inequalities (consult, e.g., Protter [15, Section V. 11] with minor modifications),

$h_{n}g(X_{t_{i-1}} \theta)^{q},theupperboundbeinga\overline{s}^{1}.finit\overline{e}accorditothedefinitionof_{T_{i-1}},{}_{K}Henceb_{ec1aimfo11ows}^{\xi_{i-1,K}(s)ds+}WeSeethat\xi_{i-1K}(S):=E_{\theta}^{i-1}[\sup_{u\in[t_{i}.’ s\wedge\tau_{i1.\kappa I}}|X_{u}-X_{t_{i-1}}|^{q}]s\xi_{i-1,K}(t_{i})_{\sim}\int_{t_{i}}^{t_{i}}$

on applying Gronwall‘s inequality and then letting $Karrow\infty$ . The case where $v(\mathbb{R})=0$ is similar (see also
Kessler [5, Lemma 6] $)$ . $\square$

For a smooth function $f$ : $\mathbb{R}arrow \mathbb{R}$ , the generator of $X$ under $P_{\theta}$ is formally given by

$\mathcal{A}_{\theta}f(x)=a(x,\alpha)\partial f(x)+\frac{1}{2}b(x, \beta)^{2}\partial^{2}f(x)$

$+ \int\{f(x+b(x, \beta)z)-f(x)-\partial f(x)b(x, \beta)z\}v(dz)$ . (12)

Given any $m\in N$ , successive applications of $It\hat{o}$ ’s formula yield that

$E_{\theta}^{i-1}[f(X_{t_{i}})]= \sum_{l=0}^{m}\frac{h_{n}^{l}}{l!}\mathcal{A}_{\theta}^{l}f(X_{t_{i-1}})$

$+ \int_{t_{i-1}}^{t_{i}}\int_{t_{i-1}}^{s_{1}}\ldots\int_{t_{i-1}}^{s_{m}}E_{\theta}^{i-1}[\mathcal{A}_{\theta}^{m+1}f(X_{s_{m+1}})]ds_{m+1}ds_{m}\ldots ds_{1}$

$+E_{\theta}^{i-1}[M(f)_{t_{i-1}}^{t_{i}}]+ \int_{t_{i-1}}^{t_{i}}E_{\theta}^{i-1}[M(\mathcal{A}_{\theta}f)_{t_{i-1}}^{s_{1}}]ds_{1}$

$+ \sum_{l=1}^{m-1}\int_{t_{i-1}}^{t_{i}}\int_{t_{i-1}}^{s_{1}}\cdots\int_{t_{i-1}}^{s_{l}}E_{\theta}^{i-1}[M(\mathcal{A}_{\theta}^{l+1}f)_{t_{i-1}}^{s_{l+1}}]ds_{l+1}ds_{l}\ldots ds_{1}$ , (13)

where, for $t\geq s$ ,

$M(g)_{s}^{t}$ $:= \frac{1}{2}\int_{s}^{t}\partial g(X_{u})b(X_{u}, \beta)dw_{u}+\int_{s}^{t}\int\{g(X_{u-}+b(X_{u-}, \beta)z)-g(X_{u-})\}\tilde{\mu}(du, dz)$. (14)

(13) is valid as soon as all the appearing conditional expectations a.s. exist.
For $i\leq n$ and $k\in N$ , we let

$F_{k,i}(\theta):=E_{\theta}^{i-1}[\{\Delta_{i}X-h_{n}a_{i-1}(\alpha)\}^{k}]$ .

We need the leading terms of the stochastic expansions of $F_{k,i}(\theta)$ in h-power series (the so-called It\^o-Taylor
expansions), which play a central role in deriving the asymptotic behaviors of our estimator and test statistics.

Lemma 5.2. Suppose $v(\mathbb{R})=0$, so that $X$ is a diffusion process. Then, for each $i\leq n$ we have, under
Assumption 2.1.1,

$F_{1,i}(\theta)=h_{n}^{2}R_{1}(X_{t_{i-1}}, \theta)$,

$F_{2,i}(\theta)=h_{n}b_{i-1}(\beta)^{2}+h_{n}^{2}R_{1}(X_{t_{i-1}}, \theta)$,

$F_{3,i}(\theta)=3h_{n}^{2}b(X_{t_{i-1}}, \beta)^{3}\partial_{X}b(X_{t_{i-1}}, \beta)+h_{n}^{3}R_{1}(X_{t_{i-1}}, \theta)$,

also, for $k\geq 4$,

$F_{k,i}(\theta)=\{\begin{array}{ll}h_{n}^{(k+1)/2}R_{1}(X_{t_{i-1}}, \theta), for k odd,h_{n}^{k/2}\rho_{k}b(X_{t_{i-1}}, \beta)^{k}+h_{n}^{(k+2)/2}R_{1}(X_{t_{i-1}}, \theta), for k even.\end{array}$

The same expressions except that all the $R_{1}$ are replaced by $R_{2}$ remain valid under Assumption 2.1.2.
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Proof. We only prove the lemma under Assumption 2.1.1; the proof under Assumption 2.1.2 is quite similar.
Letting $f_{k,x}(y)$ $:=(y-x)^{k}$ , we look at $E_{\theta}^{i-1}[f_{k,X_{t_{i-1}}}(X_{t_{i}})]$ by making use of (13) with $f$ replaced by

$f_{k,X_{t_{i-1}}}$ . It is clear that $|\mathcal{A}_{\theta}^{l’}f_{k,x}(y)|\leq C(1+|y-x|^{k-1})$ for each $l’\in \mathbb{N}$ . Hence, in view of (14) with
the purely discontinuous local martingale part dropped out, it follows from Lemma 5.1 and Burkholder-Davis-
Gundy inequality that

$E_{\theta}^{i-1}[ \sup_{s\in[t_{i-1}t_{i}]},|M(\mathcal{A}_{\theta}^{l}f_{k,X_{t_{i-1}}})_{t_{i-1}}^{s}|^{2}]\leq Ch_{n}$ .

Therefore, the last three terms in the right-hand side of (13) for any $m$ vanishes as a matter of fact (see Protter
[15, Theorem I.51] $)$ . Moreover, for each $m$ , the second term in the right-hand side of (13) can be bounded by
$Ch_{n}^{m+1}$ . In view of (12),

$\{$ $\mathcal{A}_{\theta}^{f}f_{k,x}(y)\mathcal{A}^{l}f_{k,x}(y)\equiv 0foreachl\equiv 0foreachl\leq\leq[k/2]-1[k/2]$

if $k\in \mathbb{N}$ is even.
if $k\in \mathbb{N}$ is odd,

Now we deduce all the claims by easy algebra. $\square$

In the presence of any nontrivial jump component, the leading terms of $F_{k,i}(\theta)$ for $k\geq 2$ are of $O_{p}(h_{n})$ :

Lemma 5.3. Suppose that $v(\mathbb{R})\in(0, \infty],$ $\int|z|^{k}v(dz)<\infty$for some $k\geq 2$, with $E[Z_{1}]=0$ and $E[Z_{1}^{2}]=1$ .
Then, for each $i\leq n$ we have under Assumption 2.1.1,

$F_{k,i}(\theta)=\{\begin{array}{ll}h_{n}^{2}R_{1}(X_{t_{i-1}}, \theta), for k=1,h_{n}b(X_{t_{i-1}}, \beta)^{2}+h_{n}^{2}R_{1}(X_{t_{i-1}}, \theta), for k=2,h_{n}v_{k}b(X_{t_{i-1}}, \beta)^{k}+h_{n}^{2}R_{1}(X_{t_{i-1}}, \theta), for k\geq 3.\end{array}$ (15)

The same expressions except that all the $R_{1}$ are replaced by $R_{2}$ remain valid under Assumption 2.1.2.

Proof. Again we only prove under Assumption 2.1.1 as the proof under Assumption 2.1.2 is similar with minor
modifications.

Let $f_{k,x}(y);=(y-x)^{k}$ as before. We here need to look at (13) and (14) for $f=f_{k,X_{t_{i-1}}}$ and $m=1$ in
more detail. Under the condition $\int|z|^{k}v(dz)<\infty$ , it follows from (12) that (rather roughly)

$|\partial(\mathcal{A}_{\theta}f_{k,x})(y)|_{\sim}<|\partial f_{k,x}(y)|+|\partial^{2}f_{k,x}(y)|+|\partial^{3}f_{k,x}(y)|$

$+| \int(\int_{0}^{1}u\int_{0}^{1}\partial^{3}f_{k,x}(y+uvb(y)z)dvdu)b(y)^{2}z^{2}v(dz)|$

$+| \int(\int_{0}^{1}\partial^{2}f_{k,x}(y+ub(y)z)du)b(y)\partial b(y)z^{2}v(dz)|$

$\sim<1+|y-x|+\cdots+|y-x|^{k-1}$ ,

the upper bound remaining valid for $|\partial^{2}(\mathcal{A}_{\theta}f_{k,x})(y)|$ . Hence, from the expression

$\mathcal{A}^{2}f_{k,x}(y)=a(y)\partial(\mathcal{A}_{\theta}f_{k,x})(y)+\frac{1}{2}b(y)^{2}\partial^{2}(\mathcal{A}_{\theta}f_{k,x})(y)$

$+ \int\{\int_{0}^{1}u\int_{0}^{1}\partial^{2}(\mathcal{A}_{\theta}f_{k,x})(y+uvb(y)z)dudv\}b(y)^{2}z^{2}v(dz)$ ,

we also deduce the estimate $|\mathcal{A}^{2}f_{k,x}(y)|\sim<1+|y-x|+\cdots+|y-x|^{k-1}$ . This combined with Lemma
5.1 readily implies that, in (13): $E_{\theta}^{i-1}[M(\mathcal{A}_{\theta}^{l}f)_{t_{i-1}}^{s_{0}}]=0,$ $E_{\theta}^{i-1}[M(f)_{t_{i-1}}^{t_{i}}]=0$ , and $E_{\theta}^{i-1}[|\mathcal{A}^{2}f_{k,x}(y)|]_{\sim}<1$

(Indeed, the first two can be verified just like the proof of Lemma 5.2). Thus we obtain

$E_{\theta}^{i-1}[f_{k,X_{t_{i-1}}}(X_{t_{j}})]=h_{n}\mathcal{A}_{\theta}f_{k,X_{t_{i-1}}}(X_{t_{i-1}})+h_{n}^{2}R_{1}(X_{t_{i-1}}, \theta)$
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for each $k\geq 2$ : of course, the first term in the right-hand side is $h_{n}a_{i-1}(\alpha)$ when $k=1$ . The claim now
follows on the binomial expansion

$F_{k,i}( \theta)=\sum_{l=0}^{k}(\begin{array}{l}kl\end{array})\{-a_{i-1}(\alpha)\}^{k-l}h_{n}^{k-l}E_{\theta}^{i-1}[f_{l,X_{t_{i-1}}}(X_{t_{i}})]$ ,

$=h_{n}\mathcal{A}_{\theta}f_{k,X_{l_{i-1}}}(X_{t_{i-1}})+h_{n}^{2}R_{1}(X_{t_{i-1}}, \theta)$

combined with the expressions $\mathcal{A}_{\theta}f_{1,x}(x)=a(x,\alpha),$ $\mathcal{A}_{\theta}f_{2,x}(x)=b(x, \beta)^{2}$ (because of $E[Z_{1}^{2}]=1$ ), and
$\mathcal{A}_{\theta}f_{k,x}(x)=v_{k}b(x, \beta)^{k}$ for $k\geq 3$ . $\square$

Remark 5.4. The higher-order expansions can be derived through straightforward but messy and lengthy
computations; they might be practically intractable in optimization of the corresponding estimating functions.
Needless to say, the principle can apply to a more general multivariate diffusions with jumps, where diffusion
andjump-part coefficientfunctions may differ. Although we do not need them in this paper, it may be used to
construct estimating functionsfor diffisions with jumps.

5.2 Proof of Theorem 3.4
We rely on a Cram\’er-type result from general M-estimation theory.

We need to show the convergence in $P_{0}$ probability of several random sequences uniformly in $\theta\in\Theta$ . In
this respect it is the most convenient to rewrite (6) as

$Q_{n}^{1}( \theta)=h_{n}\sum_{=1}^{n}A_{i-1}(\theta)\{a_{i-1}(\alpha_{0})-a_{i-1}(\alpha)\}+\sum_{=ii1}^{n}A_{i-1}(\theta)\zeta_{ni}’$ , (16)

$Q_{n}^{2}( \theta)=h_{n}\sum_{i=1}^{n}B_{i-1}(\theta)\{b_{i-1}(\beta_{0})^{2}-b_{i-1}(\beta)^{2}\}]+\sum_{i=\iota}^{n}B_{i-1}(\theta)\zeta_{ni}’’$

$+h_{n} \sum_{i=1}^{n}B_{i-1}(\theta)2\zeta_{ni}’\{a_{i-1}(\alpha_{0})-a_{i-1}(\alpha)\}+h_{n}^{2}\sum_{i=1}^{n}B_{i-1}(\theta)\{a_{i-1}(\alpha_{0})-a_{t-1}(\alpha)\}^{2}$ . (17)

Under the assumptions we can differentiate these quantities to obtain

$\partial_{\alpha}Q_{n}^{1}(\theta)=\sum_{i}\partial_{\alpha}A_{i-1}(\theta)\zeta_{ni}’+h_{n}\sum_{i}[\partial_{\alpha}A_{i-1}(\theta)\{a_{i-1}(\alpha_{0})-a_{i-1}(\alpha)\}-A_{i-1}(\theta)\partial_{\alpha}a_{i-1}(\alpha)]$
, (18)

$\partial_{\beta}Q_{n}^{1}(\theta)=\sum_{i}\partial_{\beta}A_{i-1}(\theta)\zeta_{ni}’+h_{n}\sum_{i}\partial_{\beta}A_{i-1}(\theta)\{a_{i-1}(\alpha_{0})-a_{i-1}(\alpha)\}$
, (19)

$\partial_{\alpha}Q_{n}^{2}(\theta)=\sum_{i}\partial_{\alpha}B_{i-1}(\theta)\zeta_{ni}’’+h_{n}\sum_{i}\partial_{\alpha}B_{i-1}(\theta)\{b_{i-1}(\beta_{0})^{2}-b_{i-1}(\beta)^{2}\}$

$+2h_{n} \sum_{i}\zeta_{ni}’[\partial_{\alpha}B_{i-1}(\theta)\{a_{i-1}(\alpha_{0})-a_{i-1}(\alpha)\}-B_{i-1}(\theta)\partial_{\alpha}a_{i-1}(\alpha)]$

$+h_{n}^{2} \sum_{i}[\partial_{\alpha}B_{i-l}(\theta)\{a_{i-1}(\alpha_{0})-a_{i-1}(\alpha)\}^{2}-2B_{i-1}(\theta)\{a_{i-1}(\alpha_{0})-a_{i-1}(\alpha)\}\partial_{\alpha}a_{i-1}(\alpha)],$
(20)

$\partial_{\beta}Q_{n}^{2}(\theta)=\sum_{i}\partial_{\beta}B_{i-1}(\theta)\zeta_{ni}’’+h_{n}\sum_{i}\partial_{\beta}B_{i-1}(\theta)\{b_{i-1}(\beta_{0})^{2}-b_{i-1}(\beta)^{2}\}$

$+2h_{n} \sum_{i}[\partial_{\beta}B_{i-1}(\theta)\zeta_{ni}’\{a_{i-1}(\alpha_{0})-a_{i-1}(\alpha)\}-B_{i-1}(\theta)b_{i-1}(\beta)\partial_{\beta}b_{i-1}(\beta)]$

$+h_{n}^{2} \sum_{i}\partial_{\beta}B_{i-1}(\theta)\{a_{i-1}(\alpha_{0})-a_{i-1}(\alpha)\}^{2}$
. (21)

(Note that we presuppose that $\partial_{\beta}\alpha=\partial_{\alpha}\beta=0.$ )
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Let us prove that there exist $\mathbb{R}^{p}$ -valued measurable functions $\hat{\theta}_{n}=\hat{\theta}_{n}$ $(X_{t_{i}} : i\leq n)$ such that $P_{0}[Q_{n}(\hat{\theta}_{n})=$

$0]arrow 1$ , and that any such sequence fulfils $\hat{\theta}_{n}arrow p\theta_{0}$ . Put

$Q(\theta)=(\begin{array}{l}Q^{1}(\theta)Q^{2}(\theta)\end{array}):=(\pi_{0}(B(,\theta)\{b^{2}(\cdot,\beta_{0})-b^{2}(\cdot, \beta)\})\pi_{0}(A.(\cdot, \theta)\{a(\cdot,\alpha_{0})-a(\cdot,\alpha)\}))$. (22)

Under Assumption 3.3, $Q(\theta)=0$ iff $\theta=\theta_{0}$ , therefore,

$\forall\epsilon>0$ $\inf$ $|Q(\theta)|>0$ . (23)
$\theta\in\Theta:|\theta-\theta_{0}|\geq\epsilon$

Moreover, $Q$ is of class $C^{1}(\Theta)$ with the partial derivatives given by

$\partial_{\alpha}Q^{1}(\theta)=\pi_{0}(\partial_{\alpha}A(\cdot, \theta)\{a(\cdot, \alpha_{0})-a(\cdot, \alpha)\})-\pi_{0}(A(\cdot, \theta)\partial_{\alpha}a(\cdot, \alpha))$ , (24)
$\partial_{\beta}Q^{1}(\theta)=\pi_{0}(\partial_{\beta}A(\cdot, \theta)\{a(\cdot, \alpha_{0})-a(\cdot, \alpha)\})$, (25)
$\partial_{\alpha}Q^{2}(\theta)=\pi_{0}(\partial_{\alpha}B(\cdot, \theta)\{b^{2}(\cdot, \beta_{0})-b^{2}(\cdot, \beta)\})$ , (26)

$\partial_{\beta}Q^{2}(\theta)=\pi_{0}(\partial_{\beta}B(\cdot, \theta)\{b^{2}(\cdot, \beta_{0})-b^{2}(\cdot, \beta)\})-\pi(B(\cdot, \theta)\partial_{\beta}b^{2}(\cdot, \beta))$ . (27)

So $\partial_{\theta}Q(\theta_{0})$ is diagonal, and Assumption 3.3 implies that

$\partial_{\theta}Q(\theta_{0})=$ diag $[-\pi_{0}(A\partial_{\alpha}^{T}a), -\pi_{0}(B\partial_{\beta}^{T}b^{2})]$ is nonsingular. (28)

In view of the general M-estimation theory combined with (23) and (28), it remains to prove (see, e.g., Yoshida
[27] $)$ :

$\sup_{\theta\in\Theta}|\frac{1}{T_{n}}\partial_{\theta}^{l}Q_{n}(\theta)-\partial_{\theta}^{l}Q(\theta)|arrow^{p}0$ for $l\in\{0,1\}$ ; (29)

$\frac{1}{T_{n}}Q_{n}(\theta_{0})arrow^{p}0$ . (30)

For clarity, from now on we focus on the proof under Assumption 3.2.1 with $v(\mathbb{R})>0$ . We mention the
remaining cases at the end of the proof.

The following facts are well-known and repeatedly used in the sequel without mentioning:. Assumption 2.2 yields that $n^{-1} \sum_{i=1}^{n}F(X_{t_{i-1}})arrow P\pi_{0}(F)$ for any smooth bounded function $F$ with
bounded derivatives (this is tme as $E_{0}[|T_{n}^{-1} \int_{0}^{T_{n}}F(X_{s})ds-n^{-1}\sum_{i=1}^{n}F(X_{t_{i-1}})|]_{\sim}<\sqrt{h_{n}}$);. for vector-valued triangular arrays $(\chi_{ni})_{i\leq n}$ with each $\chi_{ni}$ being $\mathcal{F}_{t_{i}}$ -measurable and a random vector $\chi$ ,
the convergence $| \sum_{i=1}^{n}(\chi_{ni}-E_{0}[\chi_{ni}])|arrow^{p}0$ is implied by $\sum_{i=1}^{n}E_{0}^{i-1}[|\chi_{ni}|^{2}]arrow^{p}0$;. if $E[|Z_{t}|^{q}]<\infty$ for some integer $q>(p\vee 2),$ $T>1$ , and $c$ is a predictable process, then the
Burkholder-Davis-Gundy inequality gives $E_{0}[| \int_{0}^{T}c_{s-}dZ_{s}|^{q}]_{\sim}<T^{q/2-1}\int_{0}^{T}E_{0}[|c_{s}|^{q}]ds$.

Prior to the proofs of (29) and (30), we recall two more or less well known facts.

Lemma 5.5. Let $\{U_{n}(h) : h\in H\}_{n\in N}$ be random fields of class $C^{1}$ defined on a bounded convex domain
$H\subset \mathbb{R}^{p}$ . Suppose the following conditions.

1. $U_{n}(h)arrow^{p}0$for each $h\in H$ .

2. Either one of the following holds true:

$(a) \sup_{n}E[\sup_{h}|\partial_{h}U_{n}(h)|]<\infty$;

$(b) \sup_{n,h}E[|U_{n}(h)|^{q}]<\infty$ and $\sup_{n}E[\sup_{h}|\partial_{h}U_{n}(h)|^{q}]<\infty$ for a constant $q>p$ $(so, q>1)$ .
Then $\sup_{h}|U_{n}(h)|arrow^{p}0$.
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It is easy to prove that $U_{n}$ $($ . $)$ is tight with respect to the uniform metric on $H$ under the conditions 1 and
2(a). See, e.g., Kunita [9, Section 1.4] for details conceming the tightness under the conditions 1 and 2(b).

Lemma 5.6. Let $\{(U_{ni})_{i=1}^{n}\}_{n\in N}$ be arrays of $\mathbb{R}^{r}$ -valued random variables in $L^{2}(P)$ , each $U_{ni}$ being $\mathcal{F}_{t_{i}}-$

measurable. Suppose the following conditions:

1. $\sum_{i=1}^{n}E_{0}^{i-1}[U_{ni}]arrow^{p}0$ and $\sum_{i=1}^{n}|E_{0}^{i-1}[U_{ni}]|^{2}arrow^{p}0$ ;

2. $\sum_{i=1}^{n}E_{0}^{i-1}[U_{ni}^{\otimes 2}]arrow pV$ for some constant $V\in \mathbb{R}^{r}\otimes \mathbb{R}^{r}$ ;

3. $\sum_{i=1}^{n}E_{0}^{i-1}[|U_{ni}|^{2+\epsilon}]arrow^{p}0$ for some constant $\epsilon>0$ .

Then $\sum_{i=1}^{n}U_{ni}arrow^{d}\mathcal{N}_{r}(0, V)$ .

See Dvoretzky [1] for details of the proof of Lemma 5.6.

Proof of (29). This follows by using Lemmas 5.1, 5.3, 5.5, and 5.6, together with the expressions (16) to (21),
(22), and (24) to (27). To save space, we only prove $\sup_{\theta\in\Theta}|T_{n}^{-1}Q_{n}^{1}(\theta)-Q^{1}(\theta)|arrow^{p}0$ , and omit the others.

We have

$\sup_{\theta\in\Theta}|T_{n}^{-1}Q_{n}^{1}(\theta)-Q^{1}(\theta)|\leq\sup_{\theta\epsilon\Theta}|\frac{1}{n}\sum_{i=1}^{n}A_{i-1}(\theta)\{a_{i-1}(\alpha_{0})-a_{i-1}(\alpha)\}-Q^{1}(\theta)|$

$+ \sup_{\theta\in\Theta}|\frac{1}{T_{n}}\sum_{i=1}^{n}A_{i-1}(\theta)\zeta_{ni}’|$

$=: \sup_{\theta\in\Theta}|W_{n}^{1}(\theta)|+\sup_{\theta\in\Theta}|W_{n}^{2}(\theta)|$ .

The $\theta$ -pointwise convergences to $0$ of $W_{n}^{1}$ and $W_{n}^{2}$ follow from $E_{0}^{i-1}[\zeta_{ni}’]=h_{n}^{2}R_{1}(X_{t_{i-1}}, \theta)$ and $E_{0}^{i-1}[\zeta_{ni}^{\prime 2}]=$

$h_{n}c_{i-1}(\beta)+h_{n}^{2}R_{1}(X_{t_{i-1}}, \theta)$ (cf. Lemma 5.3), and the uniformity of the convergence of $W_{n}^{1}$ are implied by
using Lemma 5.5 under the condition 2(a) therein. As for the uniformity of the convergence of $W_{n}^{2}$ , we are
going to apply Lemma 5.5 under the condition 2(b) therein. Fix an integer $q>(p\vee 4)$ . Noting that

$|W_{n\sim^{\frac{1}{T_{n}}}}^{2}( \theta)|^{q}<\sum_{i=1}^{n}|A_{i-1}(\theta)|^{q}\int_{t_{i-1}}^{t_{i}}|a(X_{s}, \alpha_{0})-a_{i-1}(\alpha_{0})|^{q}ds$

$+| \frac{1}{T_{n}}\int_{0}^{T_{n}}(\sum_{i=1}^{n}1_{(t_{i-1},t_{i}](s)A_{i-1}(\theta)b(X_{s},\beta_{0}))dZ_{s}}|^{q}$ ,

we deduce, using Lemma 5.1 in part,

$+ \frac{1}{T_{n}^{q/2+1}}\int_{0}^{T_{n}}E_{0}[(\sum_{i=1}^{n}1_{(t_{i-1},t_{i}]}(s)|A_{i-1}(\theta)b(X_{s}, \beta_{0})|)^{q}]ds\}$

$\sim<\sup_{\theta,n}(h_{n}+\frac{1}{T_{n}^{q/2+1}}\sum_{i=1}^{n}\int_{t_{i-1}}^{t_{i}}E_{0}[R_{1}(X_{s}, \theta)]ds)<\sim 1$ ,

hence the first condition in 2(b) of Lemma 5.5. The second condition in 2(b) of Lemma 5.5 can be verified in
a similar manner. Hence we obtain the uniformity of the convergence of $W_{n}^{2}$ .

Proofof (30). This is automatic according to the form of $Q(\theta)$ and (29) for $l=0$.

We now tum to the proof of the asymptotic normality; we may focus on the event $\{\omega\in\Omega : Q_{n}(\hat{\theta}_{n})=0\}$ ,

whose $P_{0}$ probability tends to 1. By means of the first-order Taylor expansion $T_{n}^{-1}\partial_{\theta}Q_{n}(\tilde{\theta}_{n})\sqrt{T_{n}}(\hat{\theta}_{n}-\theta_{0})=$
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$-T_{n}^{-1/2}Q_{n}(\theta_{0})$ , the convergence (29) for $l=1$ , and Slutsky’s lemma, it suffices to prove the central limit
theorem

$\frac{1}{\sqrt{T_{n}}}Q_{n}(\theta_{0})=:\sum_{i=1}^{n}(\begin{array}{l}\xi_{ni}^{1}\xi_{ni}^{2}\end{array})arrow^{d}\mathcal{N}_{p}(0,$ $(\pi_{0}(A^{\otimes 2}.b^{2})Sym$ $v_{3}\pi_{0}(AB^{T}b^{3})v_{4}\pi_{0}(B^{\otimes 2}b^{4})))$ , (31)

where $\xi_{ni}^{1}\in \mathbb{R}^{p_{\alpha}}$ and $\xi_{ni}^{2}\in \mathbb{R}^{p_{\beta}}$ . From Lemma 5.3 we easily get $E_{0}^{i-1}[\xi_{ni}^{j}]=h_{n}^{3/2}R_{1}(X_{t_{i-1}}, \theta)$ and
$E_{0}^{i-1}[|\xi_{ni}^{j}|^{q}]=n^{-1}T_{n}^{1-q/2}R_{1}(X_{t_{i-1}}, \theta)$ for $j\in\{1,2\}$ and $q>2$ , so that, in view of Lemma 5.6 it re-
mains to prove the convergence of the predictable quadratic covaniation matrix. As a matter of fact, Lemma 5.3
leads to the desired convergence:

$\sum_{i=1}^{n}E_{0}^{i-1}[\xi_{ni}^{1\otimes 2}]=\frac{1}{n}\sum_{i=1}^{n}A_{i-1}^{\otimes 2}(\theta_{0})\frac{1}{h_{n}}E_{0}^{i-1}[\zeta_{ni}^{;2}]+O_{p}(h_{n})$

$=\pi_{0}(A^{\otimes 2}b^{2})+o_{p}(1)$ ,

$\sum_{i=1}^{n}E_{0}^{i-1}[\xi_{ni}^{1}\xi_{ni}^{2T}]=\frac{1}{n}\sum_{i=1}^{n}A_{i-1}(\theta_{0})B_{i-1}^{T}(\theta_{0})\frac{1}{h_{n}}E_{0}^{i-1}[\zeta_{ni^{3}}’]+O_{p}(h_{n}^{2})$

$=v_{3}\pi_{0}(AB^{T}b^{3})+o_{p}(1)$ ,

$\sum_{i=1}^{n}E_{0}^{i-1}[\xi_{ni}^{2\otimes 2}]=\frac{1}{n}\sum_{i=1}^{n}B_{i-1}^{\otimes 2}(\theta_{0})\frac{1}{h_{n}}E_{0}^{i-1}[\zeta_{ni^{4}}’]+O_{p}(h_{n})$

$=v_{4}\pi_{0}(B^{\otimes 2}b^{4})+o_{p}(1)$ ,

leading to (31). Thus we have proved Theorem 3.4 under Assumption 3.2.1 with $v(\mathbb{R})\in(O, \infty]$ .

Conceming the consistent estimators of $V_{0}’$ and $V_{0}’’$ , the case of (7) is obvious from Assumption 2.2 and
Lemma 5.5. Tuming to the case (8), we only mention $v_{4}\hat{V}_{22,n}$ . Put $v_{4} \hat{V}_{22,n}=\sum_{i=1}^{n}\eta_{ni}$ . By means of
Lemma 5.3 we readily get $\sum_{i=1}^{n}E_{0}^{i-1}[\eta_{ni}]=v_{4}V_{22}+o_{p}(1)$ . Moreover, since $v_{8}<\infty$ under Assumption
2.3, $\sum_{i=1}^{n}E_{0}^{i-1}[\eta_{ni}^{\otimes 2}]=T_{n}^{-1}\{v_{8}n^{-1}\sum_{i=1}^{n}[(B^{\otimes 2})^{\otimes 2}b^{8}](X_{t_{i-1}}, \theta_{0})+o_{p}(1)\}=o_{p}(1)$ as was to be shown.

Finally, let us briefly mention the remaining cases in proving Theorem 3.4. The proof for cases where
$v(\mathbb{R})>0$ under Assumption 3.2.2 can be achieved in the same way as above except that we should replace all
the appearing $R_{1}$ by $R_{2}$ . As for the diffusion cases under Assumption 3.2, the only difference is, of course, that
we need to use Lemma 5.2 instead of Lemma 5.3, together with the different norming of $Q_{n}$ . We may omit the
details, for it is well known in the literature under Assumption 3.2.2 (cf. Kessler [5] and Srensen [19]), and
the proof under Assumption 3.2.1 can be achieved all without distinction by making use of Lemma 5.1 with $g$

bounded.

5.3 Proof of Theorem 4.1
Put $\epsilon_{ni}=\epsilon_{ni}(\theta_{0})$ , and define

$H_{n}^{(k)}:= \frac{1}{n}\sum_{i=1}^{n}\epsilon_{ni}^{k}$ , $\hat{H}_{n}^{(k)};=\frac{1}{n}\sum_{i=1}^{n}\hat{\epsilon}_{ni}^{k}$ , $\hat{M}_{n}^{(k,j)}:=\frac{1}{n}\sum_{i=1}^{n}\epsilon_{ni}^{k-j}(\hat{\epsilon}_{ni}-\epsilon_{ni})^{j}$ .

It is convenient to expand $\hat{\Psi}_{n}^{(k)}$ and $\hat{H}_{n}^{(k)}$ as follows: for $k\in N$ ,

$\hat{\Psi}_{n}^{(k)}=\hat{H}_{n}^{(k)}-k\hat{H}_{n}^{(1)}\hat{H}_{n}^{(k-1)}+\sum_{j=2}^{k}(\begin{array}{l}kj\end{array})(-\hat{H}_{n}^{(1)})^{j}\hat{H}_{n}^{(k-j)}$ , (32)

$\hat{H}_{n}^{(k)}=H_{n}^{(k)}+k\hat{M}_{n}^{(k,1)}+\sum_{j=2}^{k}(\begin{array}{l}kj\end{array})\hat{M}_{n}^{(k,j)}$ . (33)

Once again, we will prove the claims only under Assumption 2.1.1, as the case of Assumption 2.1.2 can be
treated in the same way under the condition $\sup_{t\in \mathbb{R}+}E_{0}[|X_{t}|^{q}]<\infty$ for every $q>0$ .
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5.3.1 Under the null hypothesis

First we prove $\mathcal{T}_{n}arrow^{d}\chi^{2}(2)$ under $\mathcal{H}_{0}$ . We write $\overline{\alpha}_{n}=\sqrt{T_{n}}(\hat{\alpha}_{n}-\alpha_{0})$ and $\overline{\beta}_{n}’=\sqrt{n}(\hat{\beta}_{n}-\beta_{0})$ , both being
$O_{p}(1)$ . In what follows we abbreviate $b_{i-1}(\hat{\beta}_{n})$ to $\hat{b}_{\dot{\iota}-1}$ , and also, $R_{1}(X_{t_{i-1}}, \theta)$ to $R_{i-1}$ .

First we note the following direct consequences of Lemma 5.2:

$H_{n}^{(k)}arrow^{p}\rho_{k}$ for each $k\in N$ , and especially $H_{n}^{(1)}=O_{p}( \frac{1}{\sqrt{n}})$ . (34)

The next lemma shows that, thanks to the centering factor $\overline{\hat{\epsilon}}_{n}$ in the summands of $\hat{\Psi}_{n}^{(k)}$ , the effect of ”plugging-
in $\hat{\alpha}_{n}$

‘’ disappears from the expressions up to order $o_{p}(1/\sqrt{n})$ .

Lemma 5.7. For each $k\in N$ we have

$\hat{\Psi}_{n}^{(k)}=(H_{n}^{(k)}-kH_{n}^{(1)}H_{n}^{(k-1)})-\frac{k\rho_{k}}{\sqrt{n}}\gamma_{n}^{(b)}\overline{\beta}_{n}’+o_{p}(\frac{1}{\sqrt{n}}I,$ (35)

where $\gamma_{n}^{(b)}$

$:=n^{-1} \sum_{i=1}^{n}(\partial_{\beta}^{T}b_{i-1}/b_{i-1})(\beta_{0})=O_{p}(1)$.

Proof. Applying the Taylor expansion under Assumption 3.2, we obtain

$\sqrt{n}(\hat{\epsilon}_{ni}-\epsilon_{ni})$

$= \hat{b}_{i-1}^{-1}[-\epsilon_{ni}\{\partial_{\beta}b_{i-1}(\beta_{0})\overline{\beta}_{n}’+\frac{1}{\sqrt{n}}(\int_{0}^{1}u\int_{0}^{1}\partial_{\beta}^{2}b_{i-1}(\beta_{0}+uv(\hat{\beta}_{n}-\beta_{0}))dvdu)[\overline{\beta}_{n}^{\prime\otimes 2}]\}$

$- \{\partial_{\alpha}a_{i-1}(\alpha_{0})\overline{\alpha}_{n}+\frac{1}{\sqrt{T_{n}}}(\int_{0}^{1}u\int_{0}^{1}\partial_{\alpha}^{2}a_{i-1}(\alpha_{0}+uv(\hat{\alpha}_{n}-\alpha_{0}))dvdu)[\overline{\alpha}_{n}^{\otimes 2}]\}]$

$= \hat{b}_{i-1}^{-1}\{-\epsilon_{ni}\partial_{\beta}^{T}b_{i-1}(\beta_{0})\overline{\beta}_{n}’-\partial_{\alpha}a_{i-1}(\alpha_{0})\overline{\alpha}_{n}+\epsilon_{ni}\frac{1}{\sqrt{n}}R_{i-1}[\overline{\beta}_{n}^{\prime\otimes 2}]+\frac{1}{\sqrt{T_{n}}}R_{i-1}[\overline{\alpha}_{n}^{\otimes 2}]\}$ , (36)

where $G[\overline{\alpha}_{n}^{\otimes 2}]$ $:=\overline{\alpha}_{n}^{T}G\overline{\alpha}_{n}$ for $G\in \mathbb{R}^{p_{\alpha}}\otimes \mathbb{R}^{p_{\alpha}}$ , with a similar notation for $G[\overline{\beta}_{n}^{\prime\otimes 2}]$ . In the same way,

$\hat{b}_{i-1}^{-1}=b_{i-1}^{-1}+\frac{1}{\sqrt{n}}R_{i-1}\overline{\beta}_{n}’$. (37)

It follows from (34), (36), and (37) that for $k\in N$

$\sqrt{n}\hat{M}_{n}^{(k,1)}=-\frac{1}{n}\sum_{i=1}^{n}\epsilon_{ni}^{k}(\frac{\partial_{\beta}^{T}b_{i-1}}{b_{i-1}})(\beta_{0})\overline{\beta}_{n}’-\frac{1}{n}\sum_{i=1}^{n}\epsilon t_{i}^{-1}(\frac{\partial_{\alpha}^{T}a_{i-1}}{b_{i-1}})(\theta_{0})\overline{\alpha}_{n}+O_{p}(\frac{1}{\sqrt{n}})$

$=- \rho_{k}\gamma_{n}^{(b)}\overline{\beta}_{n}’-\rho_{k-1}\gamma_{n}^{(a)}\overline{\alpha}_{n}+O_{p}(\frac{1}{\sqrt{n}})$ , say. (38)

In particular, (38) implies that $\hat{M}_{n}^{(k,1)}=O_{p}(1/\sqrt{n})$. In view of (36), we see that

$\frac{1}{n}\sum_{i=1}^{n}|\sqrt{n}(\hat{\epsilon}_{ni}-\epsilon_{ni})|^{l}=O_{p}(1)$

for any $l\in N$ under Assumption 3.2, so that for $j\geq 2$

$| \sqrt{n}\hat{M}_{n}^{(k,j)}|=n^{(1-j)/2}|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{ni}^{k-j}\{\sqrt{n}(\hat{\epsilon}_{ni}-\epsilon_{ni})\}^{j}|=O_{p}(n^{(1-j)/2})=O_{p}(\frac{1}{\sqrt{n}})$ .

Hence we have obtained that for $k\in N$ :

$M_{n}^{(k,j)}=\{\begin{array}{ll}O_{p}(1/\sqrt{n}), j=1;O_{p}(1/n), j\geq 2.\end{array}$ (39)
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Combining (33), (34), and (39) now gives $\hat{H}_{n}^{(k)}=O_{p}(1)$ , and especially $\hat{H}_{n}^{(1)}=O_{p}(1/\sqrt{n})$ . Therefore (32)
and (33) actually become $\hat{\Psi}_{n}^{(k)}=\hat{H}_{n}^{(k)}-k\hat{H}_{n}^{(1)}\hat{H}_{n}^{(k-1)}+O_{p}(1/n)$ and $\hat{H}_{n}^{(k)}=H_{n}^{(k)}+k\hat{M}_{n}^{(k,1)}+O_{p}(1/n)$ ,
respectively, from which we get

$\hat{\Psi}_{n}^{(k)}=(H_{n}^{(k)}-kH_{n}^{(1)}H_{n}^{(k-1)})+k\hat{F}_{n}^{(k)}+O_{p}(\frac{1}{\sqrt{n}}I$ (40)

for each $k\in \mathbb{N}$ , where $\hat{F}_{n}^{(k)}$ $:=\hat{M}_{n}^{(k,1)}-H_{n}^{(k-1)}\hat{M}_{n}^{(1,1)}$ . Now substituting (38) in (40) and then rearranging
the resulting terms, we amive at (35). $\square$

Put $C_{n}^{(k)}=n^{-1} \sum_{i=1}^{n}E_{0}^{i-1}[\epsilon_{ni}^{k}]$ and $\tilde{H}_{n}^{(k)}=H_{n}^{(k)}-C_{n}^{(k)}$ ; note that $C_{n}^{(k)}arrow p\rho_{k}$ . As seen in the next
lemma, the self-normalizing factors $(\hat{\Psi}_{n}^{(2)})^{k/2}$ in the definitions of $\hat{\Phi}_{n}^{(k)}$ disable the effect of ”plugging-in $\hat{\beta}_{n}$

”

up to order $o_{p}(1/\sqrt{h})$ .

Lemma 5.8. For each $k\in \mathbb{N}$ we have

$\hat{\Phi}_{n}^{(k)}-C_{n}^{(k)}=(\tilde{H}_{n}^{(k)}-k\rho_{k-1}\tilde{H}_{n}^{(1)}-\frac{k}{2}\rho_{k}\tilde{H}_{n}^{(2)})+o_{p}(\frac{1}{\sqrt{n}}I\cdot$ (41)

Proof. In view of Lemma 5.7, we see that

$\hat{\Psi}_{n}^{(k)}=C_{n}^{(k)}+\frac{1}{\sqrt{n}}\{\sqrt{n}\tilde{H}_{n}^{(k)}-k\rho_{k-1}\sqrt{n}\tilde{H}_{n}^{(1)}-k\rho_{k}\gamma_{n}^{(b)}\overline{\beta}_{n}’\}+o_{p}(\frac{1}{\sqrt{n}}I\cdot$ (42)

This in particular yields that for $k\geq 2$

$( \hat{\Psi}_{n}^{(2)})^{k/2}=\{1+\frac{1}{\sqrt{n}}(\sqrt{n}\tilde{H}_{n}^{(2)}-2\gamma_{n}^{(b)}\overline{\beta}_{n}’)+o_{p}(\frac{1}{\sqrt{n}})\}^{k/2}$

$=1+ \frac{k}{2\sqrt{n}}(\sqrt{n}\tilde{H}_{n}^{(2)}-2\gamma_{n}^{(b)}\overline{\beta}_{n}’)+o_{p}(\frac{1}{\sqrt{n}}I,$ (43)

since $C_{n}^{(2)}=1+O_{p}(h_{n})=1+o_{p}(1/\sqrt{n})$ under $nh_{n}^{2}arrow 0$ . Thus expanding the fraction $\hat{\Psi}_{n}^{(k)}/(\hat{\Psi}_{n}^{(2)})^{k/2}$ by
using (42) and (43), we get

$\hat{\Phi}_{n}^{(k)}-C_{n}^{(k)}=\frac{1}{\sqrt{n}}\{\sqrt{n}\tilde{H}_{n}^{(k)}-k\rho_{k-1}\sqrt{n}\tilde{H}_{n}^{(1)}-k\rho_{k}\gamma_{n}^{(b)}\overline{\beta}_{n}’$

$- \frac{k}{2}C_{n}^{(k)}(\sqrt{n}\tilde{H}_{n}^{(2)}-2\gamma_{n}^{(b)}\overline{\beta}_{n}’)\}+o_{p}(\frac{1}{\sqrt{n}})$ .

Using $\tilde{H}_{n}^{(2)}=O_{p}(1/\sqrt{n})$ (apply Lemma 5.6) and $C_{n}^{(k)}=\rho_{n}+o_{p}(1)$ , it is obvious that the right-hand side
being identical to that of (41). $\square$

Finally, we apply Lemma 5.6 to the expressions (41) for $k=3$ and 4.

Lemma 5.9. We have

$\sqrt{n}(\hat{\Phi}_{n}^{(3)}-\frac{3\sqrt{h_{n}}}{n}\sum_{i--1}^{n}\partial_{x}b(X_{t_{i-1}},\hat{\beta}_{n})\hat{\Phi}_{n}^{(4)}-3)arrow^{d}\mathcal{N}_{2}((\begin{array}{l}00\end{array}),$ $(\begin{array}{ll}6 00 24\end{array}))$
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Proof. By Lemma 5.2 and Taylor’s expansion of $\beta_{0}\mapsto\partial_{x}b(X_{t_{i-1}}, \beta_{0})$ around $\hat{\beta}_{n}$ , we have

$C_{n}^{(3)}= \frac{1}{n}\sum_{i=1}^{n}\{3\sqrt{h_{n}}\partial_{x}b(X_{t_{i-1}}, \beta_{0})+h_{n}^{3/2}R_{1}(X_{t_{i-1}}, \theta)\}$

$= \frac{3\sqrt{h_{n}}}{n}\sum_{i=1}^{n}\partial_{x}b(X_{t_{i-1}},\hat{\beta}_{n})+o_{p}(\frac{1}{\sqrt{n}}I\cdot$

Hence it follows from (41) that

$\sqrt{n}\{\hat{\Phi}_{n}^{(3)}-\frac{3\sqrt{h_{n}}}{n}\sum_{i=1}^{n}\partial_{x}b(X_{t_{i-1}},\hat{\beta}_{n})\}$

$= \sum_{i=1}^{n}\frac{1}{\sqrt{n}}\{(\epsilon_{ni}^{3}-E_{0}^{i-1}[\epsilon_{ni}^{3}])-3(\epsilon_{ni}-E_{0}^{i-1}[\epsilon_{ni}])\}+o_{p}(1)$ . (44)

We similarly get $C_{n}^{(4)}=3+O_{p}(h_{n})=3+o_{p}(1/\sqrt{n})$, so that

$\sqrt{n}(\hat{\Phi}_{n}^{(4)}-3)=\sum_{i=1}^{n}\frac{1}{\sqrt{n}}\{(\epsilon_{ni}^{4}-E_{0}^{i-1}[\epsilon_{ni}^{4}])-6(\epsilon_{ni}^{2}-E_{0}^{i-1}[\epsilon_{ni}^{2}])\}+o_{p}(1)$ . (45)

We deduce the claim by applying Lemma 5.6 together with Lemma 5.2 to the first terms of the right-hand sides
of (44) and (45). $\square$

Lemma 5.9 combined with the continuous mapping theorem completes the proof of Theorem 4.1 under $\mathcal{H}_{0}$ .

5.3.2 Under the altemative hypothesis

Next we prove that $P_{0}[\mathcal{T}_{n}>K]arrow 1$ for every $K>0$ under $\mathcal{H}_{1}$ . Write $\overline{\beta}_{n}’’=\sqrt{T_{n}}(\hat{\beta}_{n}-\beta_{0})$, which has the
Gaussian weak limit as specified in Theorem 3.4. Fix any $K>0$ in the sequel. According to the definition of
$\mathcal{T}_{n}$ , it suffices to show that

$P_{0}[|\Lambda_{n}^{(3)}|>K]arrow 1$ , (46)

where $\Lambda_{n}^{(3)}=\sqrt{n}\{\hat{\Phi}_{n}^{(3)}-3n^{-1}\sqrt{h_{n}}\sum_{i=1}^{n}\partial_{x}b(X_{t_{i-1}},\hat{\beta}_{n})\}$.
Using (32), we rewrite $\Lambda_{n}^{(3)}$ as

$\Lambda_{n}^{(3)}=(\hat{\Psi}_{n}^{(2)})^{-3/2_{\frac{1}{h_{n}}}}\{\sqrt{nh_{n}^{2}}\hat{H}_{n}^{(3)}-3\sqrt{nh_{n}^{2}}\hat{H}_{n}^{(1)}\hat{H}_{n}^{(2)}+2\sqrt{nh_{n}^{2}}\hat{H}_{n}^{(2)}$

$-( \hat{\Psi}_{n}^{(2)})^{3/2}\sqrt{nh_{n}^{3}}\frac{1}{n}\sum_{i=1}^{n}\partial_{x}b(X_{t_{i-1}},\hat{\beta}_{n})\}$ . (47)

It is convenient to note $\Delta_{i}X-h_{n}a_{i-1}(\hat{\alpha}_{n})=\zeta_{ni}’+\delta_{ni}\sqrt{h_{n}/n}$ , where $\delta_{ni}=R_{i-1}\overline{\alpha}_{n}$ . Then

$\hat{H}_{n}^{(k)}=h_{n}^{-k/2}\{\sum_{j=0}^{k-1}(\begin{array}{l}kj\end{array})-kk-J+n^{-k/2}\frac{1}{n}\sum_{i=1}^{n}\hat{b}_{i-1}^{-k}\delta_{ni}^{k}\}$ , (48)

from which combined with Lemma 5.3 we deduce

$\hat{H}_{n}^{(1)}=\sqrt{h_{n}}\frac{1}{T_{n}}\sum_{i=1}^{n}\hat{b}_{i-1}^{-1}\zeta_{ni}’+O_{p}(\frac{1}{\sqrt{n}})=o_{p}(1)$,

$\hat{H}_{n}^{(2)}=\frac{1}{T_{n}}\sum_{i=1}^{n}\hat{b}_{i-1}^{-2}\zeta_{ni^{2}}’+2\sqrt{\frac{h_{n}}{n}}\frac{1}{T_{n}}\sum_{i=1}^{n}\hat{b}_{i-1}^{-2}\zeta_{ni}’\delta_{ni}+O_{p}(\frac{1}{n}I=1+o_{p}(1)$ .
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(We used $\hat{b}_{i-1}^{-2}=b_{i-1}(\beta_{0})^{-2}+T_{n}^{-1/2}R_{i-1}\overline{\beta}_{n}’’$ for the latter.) Hence we also have $\hat{\Psi}_{n}^{(2)}=\hat{H}_{n}^{(2)}-(\hat{H}_{n}^{(1)})^{2}=$

$1+o_{p}(1)$ , so that (47) becomes

$\Lambda_{n}^{(3)}=\frac{1}{h_{n}}(1+o_{p}(1))\{\sqrt{nh_{n}^{2}}\hat{H}_{n}^{(3)}+o_{p}(1)\}$ .

We are going to prove that $\sqrt{nh_{n}^{2}}\hat{H}_{n}^{(3)}$ does not tend in $P_{0}$ probability to $0$ , from which (46) follows.
Using (48) with Lemma 5.3 as before, it is easy to see that

$\sqrt{nh_{n}^{2}}\hat{H}_{n}^{(3)}:=\sum_{i=1}^{n}\frac{1}{\sqrt{T_{n}}}\hat{b}_{i-1}^{-3}\{\zeta_{ni^{3}}’-h_{n}v_{3}b_{i-1}^{3}(\beta_{0})\}+v_{3}\sqrt{T_{n}}\frac{1}{n}\sum_{i=1}^{n}(\frac{b_{i-1}(\beta_{0})}{\hat{b}_{i-1}}I^{3}+o_{p}(1)$

$= \sum_{i=1}^{n}\frac{1}{\sqrt{T_{n}}}b_{i-1}^{-3}(\beta_{0})\{\zeta_{ni}^{3}-h_{n}v_{3}b_{i-1}^{3}(\beta_{0})\}+v_{3}\sqrt{T_{n}}\frac{1}{n}\sum_{i=1}^{n}(\frac{b_{i-1}(\beta_{0})}{\hat{b}_{i-1}}I^{3}+o_{p}(1)$

$=:I_{1n}+I_{2n}+o_{p}(1)$ .

Write $I_{1n}= \sum_{i=1}^{n}\chi_{ni}$ , then Lemma 5.3 gives that $E_{0}^{i-1}[\chi_{ni}]=T_{n}^{-1/2}h_{n}^{2}R_{i-1}$ . Also, for each $\delta\in(0, q-2)$ ,

$\sum_{i=1}^{n}E_{0}^{i-1}[|\chi_{ni}|^{2+\delta}]\leq T_{n}^{-\delta/2}\frac{1}{T_{n}}\sum_{i=1}^{n}E_{0}^{i-1}[|\zeta_{ni^{3}}’-h_{n}v_{3}b_{i-1}(\beta_{0})^{3}|^{2+\delta}]$

$\sim<T_{n}^{-\delta/2}\frac{1}{T_{n}}\sum_{i=1}^{n}(E_{0}^{i-1}[|\Delta_{i}X|^{6+3\delta}]+h_{n}^{6+3\delta}+v_{3}^{2+\delta}h_{n}^{2+\delta})$

Moreover,

$\sum_{i=1}^{n}E_{0}^{i-1}[|\chi_{n}\iota|^{2}]=\frac{1}{T_{n}}\sum_{i=1}^{n}b_{i-1}(\beta_{0})^{-6}\{E_{0}^{i-1}[\zeta_{ni}^{;6}]-2h_{n}v_{3}b_{i-1}(\beta_{0})^{3}E_{0}^{i-1}[\zeta_{ni^{3}}’]+h_{n}^{2}v_{3}^{2}b_{i-1}(\beta_{0})^{6}\}$

$= \frac{1}{n}\sum_{i=1}^{n}(v_{6}-h_{n}v_{3}^{2})+o_{p}(h_{n})arrow pv_{6}$.

Thus Lemma 5.6 yields that $I_{1n}arrow^{d}\mathcal{N}_{1}(0, v_{6})$ . On the other hand, we have $I_{2n}\equiv 0$ if $v_{3}=0$ , but otherwise
the sequence $(I_{2n})$ is not stochastically bounded since $I_{2n}=v_{3}\sqrt{T_{n}}(1+o_{p}(1))$ . The proof of Theorem 4.1 is
thus complete.
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