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Abstract

We formulate a class of preorders which we call preproper. This class contains the class of proper
preorders and is a modification to the subproper preorders by R. Jensen. We show that this class of preorders
is iterable under a type of revised countable support iteration.

Introduction

Jensen formulates classes of notions of forcing in [1]. We take subproper among those. This class is wider
than proper, may differ from semiproper of Shelah and is iterable under the revised countable support a la
Donder according to [1]. We formulate a class of notion of forcing whose definition involves less parameters
than Jensen's subproper and show that it iterates under a type of revised countable support of [2]. We say
a preorder P is preproper, if there exist a set z and a regular cardinal  with z, P € Hy such that for all
(x, A, N,p, s) such that

¢ X is a regular cardinal with Hy C L, [A],
(N,€,AN N) is a countable elementary substructure of (L,[A], €, AN L,[A]) with z, P& N,
there exists a transitive set model M of ZFC~ (i.e. no power set axiom) such that the transitive collapse
of N appears as a (H.)M with a regular 7 in M,
p€ PNNand s€e N,
there exists (g, N) such that ¢ < pin P, N is a P-name and q forces the following three.

(N,€, AN N) is a countable elementary substructure of (Ly|A], €, AN Ly[A]).

There exists an isomorphism between the two structures (N, €, ANN) and (N, €, ANN) which fixes s.

For all dense subsets D € N of P, we have DNN NG # @, where G denotes the canonical P-name of
the P-generic filters over the ground model V.

Therefore we do not use Hy's but L,[A] which are fat enough relative to P. A reason to use the
structures (Ly[A], €, AN Ly[A]) is to escape definabilities of H,'s calculated in finitely many intermediate
stages in iterated forcing. We do not expect genericity over N but over N which may exist in the generic
extension. The condition on the collapse of N is very technical without which we may have no control over
the isomorphic images of N. The roll of s is to fix finite-parts in an increasing manner to diagonally build a
new isomorphic elementary substructures in the limit stages of iterated forcing.

§ 1. Preliminary

We collect what, we think are basics in this subject.

Proposition. Let P be a preorder. Let 6 and x be regular cardinals such that P € Hy C Ly[A]. Let
P € N and (N,€, AN N) be an elementary substructure of (Ly[A], €, AN Ly[A]), which we simply denote
by
(N,€,ANN) < (Ly[A], €, AN L, [A}]).

Let G be a P-generic filter over the ground model V. Let L, [A](G] = {o¢ | o € Ly|A], 0 is a P-name} and
N[G}={og | g € N, 0 is a P-name}. Let B = ({0} x (AN Ly[A])) U ({1} x G). Then we have

(1) (Ly[A}, €, AN Ly[A]) models ZFC~ in the expanded language.
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(2) (Lx[A][G], €, Ly[A], AN Ly|A]) models ZFC™ in the expanded language.
(3) If m € N is a P-name and ¢(z,y) is & formula in the expanded language, then there exists a P-name
7 € N such that |- p“(Ly[A][G], €, Ly[A], AN Ly[A]) E “3y¢(y, 1) — ¢(7,7)"". And so we have

(NIG], €, Ly[A] N N[G], (AN Lx|A]) N N[G]) < (Lx[Al[G], €, Ly[A], AN Ly[A]).

(4) The following five are all equivalent.

o N[G]N Ly[A] = N.

e N[GInx=Nnx.

o For all dense subsets D € N, we have DN N NG # 0.

o (N[G], €, N, An N) < (Ly[A)[G), €, Ly[Al, AN L, [A)).

e The transitive collapse of (N, €) gets extended to the transitive collapse of (N[G], €).
(5) Ly[A][G] = Ly[B] holds. If (N[G], €, N, AN N) < (Ly[A}[G], €, Ly|A], AN Ly[A)), then

(N[G], €, BAN|G]) < (Ly[B], €, BN Ly[B]).

(6) Let (N[G], €, N, AN N) < (Ly[A][G], €, Lx[A], AN Ly[A]) and two substructures (N[G], €, BN N[G])
and (M, €, BN M) < (L,[B], €, BN Ly[B]) be isomorphic fixing P. Let X = L,[A]n M. Then P € X,
(X,€,AN X) < (Ly[A], €, AN Ly[A]) and M = X[G] hold. We also have

(X[G), €, X, AN X) < (Ly[A][G], €, Ly[A], AN L, [A]).
The two substructures (N{G], €, N,ANN) and (X[G], €, X, AN X) are isomorphic by the given isomor-
phism. So are (N,€, AN N) and (X, €, AN X) by restricting the given isomorphism.
(7) Let us further assume in (6) that we have a preorder @ € H;/ 1~ M , H is Q-generic over V[G] and
(M[H),€,M,BN M) < (Ly[B}|H}, €, Ly[B], BN Ly[B]). Then

(XIGI[H], €, X[G], X, AN X) < (Ly[A][G][H], €, Ly[A][G], Lx[A], AN Ly [A]).

Proof. Mostly routine interpreting formulas in structures with unary predicates. Notice that we assume
every dense subset D € V of P belongs to Hg and so to Ly[A], though L,[A] may not satisfy the power set
axiom. Details are left.

a

§ 2, Iteration Lemma
We define the class of preorders under consideration and show that it iterates under the revised countable
support iteration of [2].
Definition. A preorder P is preproper, if there exist § and z such that
e @ is a regular cardinal and z, P € Hg.
e Given any (A, x, N, p, s) such that
e Hg C Ly[A], X is a regular cardinal.
e z,P € N, N is countable and (N, €, AN N) < (Ly[A], €, AN Ly[A]).

e The transitive collapse N of N satisfies N = (H,)™ for some M, where M is a transitive set model
of ZFC~ (i.e. ZFC minus the power set axiom) and 7 is a regular cardinal in M.
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epc PNNandseN.

There exists (g, N, f) such that

e g<pand N, f are P-names.

e g forces the following.

(1) f is an isomorphism from (N, €, AN N) to (N,€,ANN) < (Ly[4],€, AN L, [A]) with f(s) = s.
(2) For all dense subsets D e N of P, DANNG # 0.

Remark. (1) The condition (2) in the definition is equivalent to
(NIG), €, N, AN N) < (Ly[Al[C], €, Ly[A], AN Ly [A)),

where L, [A][G] denotes the generic extension of Ly [A] via P.

(2) (Lx[Al[G], €, Ly[A], ANL,[A]) and (Ly|B], €, BNL,|B]) are suitably interpretable equivalent structures
with Ly [A][G] = Ly[B], where B = ({0} x (AN Ly[4])) U ({1} x G).

(8) If a preorder P is proper, then P is preproper.

(4) This formulation of preproper is tentative and is a modification to the subproper of {1]. There remains
a chance to further reformulate this notion of forcing. A possible modification may include relativizing
things in L[A] so that if j : V — M is an elementary embedding and P is preproper in V, then P is
preproper in M whenever, say, Hy € M.

However, we know little on the notion of preproper except the following.

. Lemma. Let (P, | a < v) be a simple iteration such that for all @ < v, | p, “Pnya+1 is preproper with
6, and 2,". Let € and z be such that

* 0 is a regular cardinal such that for all & < v, |-p, “f, < 6”.
o (P ] a< vy, {(fata) | < v) € 2 < Hg and z is countable,
Then for all (o, 8) with & < 8 < v, we have |- p, “Pag is preproper with 8 and (G, 2)”.

Proof. By induction on 8 (for all & < §). We assume that for all (,5) with i < j < G, ”-P.-_“ ]
preproper with 6 and (G, z)”. Fix any a < 8. We want to show | p, “Pagp is preproper with 8 and (Gq, 2)”.

Case. (3 is limit. Suppose w|-p, “(4,x, N,p[[a, 8), 5) as in the hypothesis”. Namely, w forces

H;/[G"l C L,[A], x is regular.

Ga» 2, Pag € N is countable and (N, €, ANN) < (Ly[A], €, AN L, [A]) and N satisfies the condition on
the transitive collapse.

plla,B) € PagN N and $ € N.
Then we have that
e 2,0 Nandso Ps€ N.

We may assume that

p€ P3N N, pla € G, and p has stages (67 | k <w) € N,

We may also extend w so that
e w < pfa.
w™ (1g][a, B)) F-p, “68 = 0.
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This is because z € N < Ly[A] and so N contains various maps defined in V and so N is closed under
those maps. For example, we have (p — (0} | k <w)) € N.

Hence w decides P,-names A, N, $ € V and the values of x, p, (6% | k < w) and 5.
It suffices to find (g, X.,, f.,) such that

®* g€ Pggla=w,g<p

e X, and fw are Pg-names.
q forces the following.

(1) f,is an ismorphism from (N,€,ANN) to (Xo,€,ANX,) < (LylA], €, AN Ly[A)]), fu(s) = é and
Ga(= Gg[a),Pg € X,.

(2) For all dense subsets D € X,, of Ps, DN X, NGg # 0.

This is because, given any dense subset D' € Xw of P,g, let
D={y€Ps|ylagGall ylle,B) € D'}.

Then D € X,, is a dense subset of Pg with D[[a, ) = D'. Since DN X,, N Gp # 0, we have D' N X, N
Gaﬁ( = Gﬁ”a,,@)) #0.

In order to get (g, X., f.,) as such, we construct a nested antichain 7 with associated structures. To do
so, we present the following general construction.

Claim. Given any (4,2, (6f | k < w),a, X, f, D) such that
ea<i,a€P,z€ Psg,afla<wa<z[iand z < p.
e (07 | k < w) are stages for z and a~1|-p, “0F = 7",
e a € P, forces the following, where X, f ,D € V are P,-names.

(1) f is an isomorphism from (N,€, AN N) to (X, €, AnX) < (Lx[/i],e,AﬂLx[A]) with f(Ga, 2,4, Pg) =
(Ga,z,\é, Pﬁ).

(2) Pie X and (X[Gai), €, X, AN X) < (Ly[A][Gai, €, Ly|A], AN Ly [A]).
(8) z€ PsN X and (67 | k <w) € X.
(4) D € X is a dense subset of Ps.

Get (5,9, (6 | k <w),b,Y,g) such that
ei<j, beP,y€e Py bli<a b<yl[jandy<z

¢ (0¥ | k < w) are stages for y and are a step ahead of (6f | k < w), namely, |-p, “6%,; < d6§" for all
k<w.

° br\l “—Pﬂ uéy - -sa'
e b c P; forces the following, where Y, g € V are Pj-names.
(1*) ¢ is an isomorphism from (X[Gm-], €, X,AHX) to
(Y[Gail, €, Y, ANY) < (LylA|[Gail, €, Ly[A], AN Ly[A])

with
g(GayzaéaPﬂ’Pai,Gai:j, Y, (6;: I k < w)) = (Gﬂﬂz"é’ Pﬂ’Pa‘hGai’j’yv (611: I k < w))
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(2*) j € XNY and 50 Py € Y, Ly[A][Gaj] = Ly[A][Gai](Gi;] and Y[Gas] = ¥[Gai][Gij]. We have
(Y[GaillGy) €, Y[Gail, Y, ANY) < (Lx[Al[GailGisls €, Ly[Al[Gi], Ly[Al, AN Ly[A]).

And 50 Y[Goj] N Ly[A]l[Gai] = Y[Gai] and ¥[Gai] N Ly [A] =
B)yeDNXNYand (¢ |k<w)ye XNY.
Hence, we have
® b € P; forces the following.
(1) gof is an isomorphism from (N,e,ANN) to (Y,e,ANY) Ly[A], €, An Ly[A]) with

90 f(Gay 2,5, Pg) = (Ga, 2, 3, Ps).

(2) P; €Y and (Y[Gqj], €,Y,ANY) < (Ly[Al[Gasl)s €, Ly[Al, AN Ly [A)).
(3) ye PsnY and (6} | k<w) €Y.

Proof. Let G; be P;-generic over V with a € G;. In V[Gi], let G4 = Gi[a, Goi = Gif[a, i), A = Ag,,
X = Xa,, f = fg, and D = Dg,. Then we have

o z€ XNPs, Py € X and
(X[Gasl €, X, AN X) < (Ly[A][Gail, €, Ly[A], AN Ly [A]).

¢ D€ X is a dense subset of Pg.

Get y € DN X[Gail = DN X, yfi € Gi, y <z and stages (§} | k < w) € X for y which is a step ahead
of (6f | k<w) € X.

Then decide the value of §§ as u™1|p,“0¥ = ;7. We may assume j € 8N X[Gw] = BN X, u €
PiNX[Guil=PNX, u<yljand ufi€G;.

Since P;; is preproper with 6, G;, z and in V[G;], we have

. H;/[G‘] = H;/[G"][Gm:] C Ly[A][Gai), x is regular.
Gi 2, Pij € X[Guil, (X[Gai), €, X, AN X) < (Ly[A][Gai), €, Ly[A], AN Ly [A]).
And so the transitive collapse X [Gq;] of X[Gqs] satisfies

X[Goil = X[Ca] = (H/)M[Ca] = (H,)MC~1 with Py € (H,)™.

u € PN X[Gai), ufi € G; and Ga, 2, Gai € X (G-

Hence we may fix (b,Y,g) in V such that
e b <y and bfi <a.
® b € P; forces the following.
(1)* g is an isomorphism from (X[GM], e, X, An X) to
(Y[Gail, €, Y, ANY) < (Ly[A)[Guil, €, LylA], AN Ly {A])

with
g(G(M Z,é,Pﬁ, Pui!Gaiajay’ (6}: [ k< w)) = (Guizi‘é! Pﬁ, Pai,Gai’ja Y, (6;: I k< UJ)).

(Y[GaillGisl, €, Y[Gail Y, ANY) < (LylAl[Gail(Gijl, €, Ly[Al[Gail, Lyl Al AN Ly A]).
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(B yeDNXNYand (! |k<w)e XNY.
And so, we have
e b € P; forces the following.
(1) go f is an isomorphism from (N,€, ANN) to (Y,€,ANY) < (Ly[A],€,AN Ly [A)]).
(2) Pj € V[Gaj) N Ly[A] = Y and (Y[Gusl €, Y, ANY) < (Ly[A][Gajl, €, LylA), AN L,[A].
(3) ye DNY and (¥ lk<w)eY.

a

In V, we construct a nested antichain ((a,n) — p@™ | a € T,,n < w) together with an associated
structures (X(@m), plem) (5 | g < w), Dlem), flem) glan) flam®nil)) for g € Ty, b € such(a), n < w
such that

o Ty = {w}, X0 = N, p0 = p, (6% | k < w) = (& | k < w), D@ = Py, f0 = (id on N),
5040 = {p}.

Then for all a € T,,, we have (with n = 0)
e a <l(a), a€ Py, p®™ € Pg, afa < w, a < p!®™[i(a) and p*™ < p.
o (6,(;"") | k < w) are stages for p(®™ and a1 |- p, «gl®™) = ()",
e S(®M) is a finite subset of Pg with p(®™ € §(an),
e a € Py, forces the following, where X(@n) plem) f@n) are Py(q)-names.
(1) f(@n) is an isomorphism from (N, €, AN N) to
(0o, €, A0 K@) < (LyfAl €, An Ly[A)
with )
f@™(Ga, 2,5, Ps) = (Ga: 2,5, Pp).
(2) 8™ U {Gq, 2,4, Pay} € X@™ and so Gi(a) € X(@™[G ()] and

(X(u.n) {Gal(a)}i €, X'(a,n), A n X(a,n)) = (LX(A][Gal(a)]a €, Lx[A], A n Lx[A])

(3) plem™ € Pgn X@n) and (6™ | k < w) € X(@m),
(4) Dt@n) ¢ X(am) is 5 dense subset of Ps. We demand the following for a bookkeeping.

plam) = { f@™ (&), ifit is dense in Pp.
~ | Ps, otherwise,

where N = {&,, | n < w} with o = Ps.

For b € suc}(a),
o plom+1) < plam) and (5O | k < w) is a step ahead of (6™ | k < w).
° S(b,n+1) = S(a,n) U {p(b.n+l)}_

e b€ Py forces the following, where flem)bntl) jg g Pyp)-name.
(1)* fl@m)bntl) is an isomorphism from (X(@™, €, An X(a™) to

(XCn+D e An XOm+D) < (L [A], €, AN Ly|A])
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with
f(a,n)(b‘n-i-l) (Gaa 2, 8, P[is Pal(a)’ Gal(a)v l(b), S(b’n+1)) = (ch z,8, PBs Pal(a)s Gal(a)a l(b), S(b'n+l))

and
flam @D (G g o h) = (60D | g < w)

and furthermore

FomOn) (0 ). [0 (3,)) = (70 (ag) -, O (32).
f(bvn+l) = f(a!n)(b'n‘"l) o f'(uvn) and so
f®n+1) s an isomorphism from (N, €, AN N) to (X®n+D g, An X(bn+1)y,

(2)* p(b,n-!-l) g §(bn+1) C X(an) A x(bntl) and

(X DG o m), €, XEH AN XOnH)Y < (L, [A][Gaiwy), €5 Lyl Al AN Ly [A]).

(3)* p®n+D) e Dlan) 0 x(@n) 4 xomtD) and (507 | g < w) € X (@) A X Gt

This completes the construction. Let ¢ € Py be a fusion of (T, | n < w). Then ¢ < p and g[a = w holds.
Let G be Pg-generic over V with ¢ € Gg. We want to construct X, and f,. In V[Gg], let {(a, | n < w) be

the generic cofinal path through 7. Let a, = l(a,), X» = Xg:':"), pp, = pler™) D, = Dﬁ;’;”’, fo= f(G"u“"’"),
Sn = 8@ and fonyr = f((;a" ':1)(a"+”n+l). We also let A = Ag,, s =g, and N = Ng, = {z, | n < w}.
Then in V{Gg] we have

® an € Go, (= Gglan) and p, € Gp.
* (Xn,€,ANXy) < (Lx[A], €, AN Ly [A]).

[ SO = {P}, Sn+1 = Sn U {pn+1} and so Sn = {po’ . apn}
® f, is an isomorphism from (N, €,ANN) to (X,,€, AN X,) with

fn(Gm 353:Pﬁ) = (szasapﬁ)

® fn+1 = fan+10 frn and
fnn+l(p07 o ',pn,pn+1) = (pUa * 'apmpn-H)

fant1 (fn(mO)’ Tty fn(xn)) = (fn(xo), i ‘,fn(xn))-
D — falzn), ifit is dense in Pg.
™) Pg, otherwise.
epo=pEN, D, € X, and ppy1 € DN Xp N Xpy1.

Let X, = {fa(zs) | n <w} and f,, be a map from N to X,, defined by f.(zn) = fn(zn)-
Claim. (1) f, is a well-defined isomorphism from (N,€, AN N) to

(X €, AN X,,) < (LylA], €, AN Ly [A)])

such that f,(s,Ga, P3) = (8,Gq, Pg) and so Gq, P3 € X,,.
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(2) For all dense subsets D € X,, of P, we have DN X, NGg # 0.

Proof. (well-defined): Suppose =, = Zr». Then (N,€,ANN) E “z, = z,”. Hence (X}, €, AN X)) E
“filzn) = fi(zm)", where | =max{n, m}. Hence f,(z,) = fm(@m).

(One-to-one): Suppose p, # Tm: Then (N, €, ANN) = “z, # zn,”. Hence (X1, €, ANX)) = “fi(zn) #
fi(zm)", where | =max{n, m}. Hence fn(zn) # fm(Zm)-

(e-homo): Suppose z, € zm- Then (N,€,ANN) | “z, € z,,”. Hence (X;,€,AN X)) E “fi(z,) €
fi(zm)", where | =max{n,m}. Hence fn(zp) € fm(zm) and so (X,,€,ANX,) E “fu(zs) € fulzm)".

(¢-homo): Suppose zn, & Trm. Then (N,€,ANN) | “z, € zn". Hence (X;,€,AN X)) E “fi(z,) &
fi(xm)", where | =max{n,m}. Hence f,(zn) € fm(Zm) and so (X, €, AN X,) & “fu(zn) € folzm)".

(A-homo): Suppose z, € A. Then (N,€, ANN) | “A(z,)". Hence (X,,€,ANX,) E “A(fn(:c,.))".
Hence fn(zn) € A and so (X, €, AN X,) E “A(fu(za))”.

(~A-homo): Suppose z, ¢ A. Then (N, €, ANN) = “~A(z,)". Hence (Xn, €, ANXy) = “~A(fn(zn))".
Hence f,(z4) € A and so (X, €, AN X,) E “~A(fu(zn))".

Since f,, is onto, it is an isomorphism.

(Elementarity): Suppose
(Ly[A), €, AN Ly[A]) E “Syo(y, fo(zo), - -+, falzn))".
Since (Xn, €, AN X,) < (Ly[A], €, AN Ly[A]), we have
(Xn, €, AN X3) = “Juo(y, fo(xo), -+, fa(zn))"
Take fn(Zm) € Xn such that
(Xn, € AN Xn) = “p(fn(zm), fo(zo), "+ falzn))™

Then
(Xl| G,Aﬂ Xl) t: “‘P(fm(mm)’ fO(wO)v R} fn(xn))“v

where | = max{n, m}. Hence

(LX[A]! €,4N LX[A]) F “So(fm(xm)a fo(zo)s- -+, fn(xn))"-

(Generic): Let D € X, be a dense subset of Pg. Let D = fr(z.). By definition, D, = fo(zn) = D
holds. Hence ppy1 € Dn N Gg. But ppy1 € Xp 8nd 50 ppy1 = fo(@Zm) = fm(Tm) € Xo. Therefore,
DnX,NGg#0.

Case. 3 is successor. We write 8+ 1 for 3 for convenience. Since a < § + 1, we have two subcases.

Subcase. a = 3. We want |-p, “Pgg41 is preproper with § and (G, 2)". Let G be any Pg-generic
filter over V. Argue in V[Gpg]. Let (4, x. N, p, s) satisfy

o Gp,z,Papyr € Hy©*l C L, (4]

e Gg,2,Pag+1 € N is countable and (N, €, ANN) < (Ly[A], €, AN Ly[A]) and N satisfies the condition
on the transitive collapse.

. pf[@ﬁ-i— 1) € Pggpy NN and s € N,
We may assume

o p€ Pz NN and p[B € Gg.
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Then 25 = (28)¢, € N and 23, Pgg41 € H;?G”] C H;/[G"] C L [A]. By assumption, Pggy; is preproper

with 65 and z5. Hence there exists (g, N, f) such that

(1)

(2)

1)

()

(1)

q € Pgi1,q[B € Gp and ¢ < p.
q[[B,B + 1) forces the following, where N and f are Pgsy;-names.
f is an isomorphism from (N, €, AN N) to

(N,€,ANN) < (L,[A),€, AN Ly[A])

with f(s) = s.
(N[Gﬁﬁ+1]v €, Na AN N) = (LX[A][Gﬁﬁ+1]’ g, LX{A]’ AN Lx[A])'

Subcase. a < < f+ 1. We want |-p, “Pag+1 is preproper with 8 and (G, 2)”.
Let w|-p, “(A,x, N,p, 5) be as in the hypothesis”. Namely, w forces the following.

Gor 2 Paprr € HYV C L A].

Gar 2, Paps1 € N is countable and (N, €, ANN) < (L, [A], €, An L, [A]) and N satisfies the condition
on the transitive collapse.

plla,B+1) € Pagpi NN and § € N.

We may assume

w < pla.

wllp,“p € NN Ppyy”.

We want (g, Y, iz) such that

g € Psy1, gfa <wand g <p.

q forces the following, where Y and A are Pgy1-names.

h is an isomorphism from (N, €, AN N) to

(Y, €, ANY) < (Ly[A],€, AN Ly[4])

with A(3) = 5.

(Y[Gapt1], €, Y, ANY) < (Ly[A)[Gaps1), €, Ly[A], AN L, [A]).
But w forces

Cun 2, Pos € HY'921 C L [A).

Ga, 2, Pag € N is countable and (N, €, ANN) < (Ly[A], €, AN Ly[A]) and N satisfies the condition on
the transitive collapse.

pfla,B8) € P.sNN and s € N.

Since |- p, “Pag is preproper with 6 and (G4, 2)” by induction, we have (g[8, X, f) € V such that
q[B € Pg, g[a < w and ¢{B < p[B.

g[8 forces the following, where X and f are Pg-names.

f is an isomorphism from (N,€, AN N) to

(X,€,ANX) < (Ly[A}, €, AN Ly [A])
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with j(Gm 2,8, PE,P) = (szv‘.’v Pﬁsp)'
(2) (X[Gagl € X, ANX) < (Lx[A)[Gasl, €, Lx[A], AN Ly [A)).
Now we want g[8, 8+1). To do so let Gz be any Pg-generic filter over V with ¢[8 € G5. Then argue in

V[Gj] to specify the interpretation of g[[3,8+ 1). Let Go = Gsla, Gug = Gs[la, 8), A = Ag,, N = Ng.,
8 = 4g,, X = Xg,. Then we have

® Go, Pop € X and 50 Gg € X[Gap).
o (i8)cs Passr € Hyl® € HY'M = B)'®)[Gog) C Ly[A)[Gal, o5 Pas € Hy'®".

® (28)G,1 Pag+1 € X[Gag) is countable and (X[Gagpl, €, X, AN X) < (Ly[A][Gag), €, Ly|A}, AN Ly [A])
and X[G,g)| satisfies the condition on the transitive collapse.

. p”ﬂ,ﬁ +1) € Pagg+1 N X[Ga,@] and s € X[Gap}.
Since Pgg4 is preproper with 85 and zg, we have (q[[8, 8 + 1), Y, g) such that

e q[[8,.8+1) < p[|B,B+1).
e ¢[8,8 + 1) forces the following, where Y and g are Psg.;-names.
(1) g is an isomorphism from (X[Gag],€, X,AN X) to

(Y[Gaﬁll €, Ya AN Y) =< (LX[A”GaﬁL €, LX[A]Y AN LX[A])

with g(s) = s.
(2) (Y[GagllGaps1), €, Y[Gagl, Y, ANY) < (Ly[Al[Gasl(Gas1], €, Ly|Al[Gagl, Ly[A], AN Ly [A)).

Hence we may assume g € Pgy), ¢ < p and g forces the following.

(1) go f is an isomorphism from (N, €, AN N) to
(Y,€,ANY) < (Ly[A], €, An L, [A])

with go f(3) = .
(2) (Y[GQB-H], €, Y, An Y) = (Lx[AJ[GaBH]v <, Lx[A]v An LX[A])‘
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