A class of preorders iterated under a type of RCS

Tadatoshi Miyamoto

宮元 忠敏

南山大学 経営学部

27th, January, 2011

Abstract

We formulate a class of preorders which we call preproper. This class contains the class of proper preorders and is a modification to the subproper preorders by R. Jensen. We show that this class of preorders is iterable under a type of revised countable support iteration.

Introduction

Jensen formulates classes of notions of forcing in [1]. We take subproper among those. This class is wider than proper, may differ from semiproper of Shelah and is iterable under the revised countable support a la Donder according to [1]. We formulate a class of notion of forcing whose definition involves less parameters than Jensen's subproper and show that it iterates under a type of revised countable support of [2]. We say a preorder P is preproper, if there exist a set z and a regular cardinal θ with $z, P \in H_{\theta}$ such that for all (χ, A, N, p, s) such that

- χ is a regular cardinal with $H_{\theta} \subseteq L_{\chi}[A]$,
- $(N, \in, A \cap N)$ is a countable elementary substructure of $(L_{\chi}[A], \in, A \cap L_{\chi}[A])$ with $z, P \in N$,
- there exists a transitive set model M of ZFC⁻ (i.e. no power set axiom) such that the transitive collapse of N appears as a $(H_{\tau})^M$ with a regular τ in M,
- $p \in P \cap N$ and $s \in N$,

there exists (q, \dot{N}) such that $q \leq p$ in P, \dot{N} is a P-name and q forces the following three.

- $(\dot{N}, \in, A \cap \dot{N})$ is a countable elementary substructure of $(L_{\chi}[A], \in, A \cap L_{\chi}[A])$.
- There exists an isomorphism between the two structures $(N, \in, A \cap N)$ and $(N, \in, A \cap N)$ which fixes s.
- For all dense subsets $D \in \dot{N}$ of P, we have $D \cap \dot{N} \cap \dot{G} \neq \emptyset$, where \dot{G} denotes the canonical P-name of the P-generic filters over the ground model V.

Therefore we do not use H_χ 's but $L_\chi[A]$ which are fat enough relative to P. A reason to use the structures $(L_\chi[A], \in, A \cap L_\chi[A])$ is to escape definabilities of H_χ 's calculated in finitely many intermediate stages in iterated forcing. We do not expect genericity over N but over N which may exist in the generic extension. The condition on the collapse of N is very technical without which we may have no control over the isomorphic images of N. The roll of s is to fix finite-parts in an increasing manner to diagonally build a new isomorphic elementary substructures in the limit stages of iterated forcing.

§ 1. Preliminary

We collect what we think are basics in this subject.

Proposition. Let P be a preorder. Let θ and χ be regular cardinals such that $P \in H_{\theta} \subseteq L_{\chi}[A]$. Let $P \in N$ and $(N, \in, A \cap N)$ be an elementary substructure of $(L_{\chi}[A], \in, A \cap L_{\chi}[A])$, which we simply denote by

$$(N, \in, A \cap N) \prec (L_{\chi}[A], \in, A \cap L_{\chi}[A]).$$

Let G be a P-generic filter over the ground model V. Let $L_{\chi}[A][G] = \{\sigma_G \mid \sigma \in L_{\chi}[A], \sigma \text{ is a } P\text{-name}\}$ and $N[G] = \{\sigma_G \mid \sigma \in N, \sigma \text{ is a } P\text{-name}\}$. Let $B = (\{0\} \times (A \cap L_{\chi}[A])) \cup (\{1\} \times G)$. Then we have

(1) $(L_{\chi}[A], \in, A \cap L_{\chi}[A])$ models ZFC⁻ in the expanded language.

- (2) $(L_{\mathbf{Y}}[A][G], \in, L_{\mathbf{Y}}[A], A \cap L_{\mathbf{Y}}[A])$ models ZFC⁻ in the expanded language.
- (3) If $\pi \in N$ is a P-name and $\varphi(x,y)$ is a formula in the expanded language, then there exists a P-name $\tau \in N$ such that $\models_P "(L_X[A][\dot{G}], \in, L_X[A], A \cap L_X[A]) \models "\exists y \varphi(y,\pi) \longrightarrow \varphi(\tau,\pi)$ ". And so we have

$$(N[G], \in, L_{\gamma}[A] \cap N[G], (A \cap L_{\gamma}[A]) \cap N[G]) \prec (L_{\gamma}[A][G], \in, L_{\gamma}[A], A \cap L_{\gamma}[A]).$$

- (4) The following five are all equivalent.
 - $\bullet \ N[G] \cap L_{\chi}[A] = N.$
 - $N[G] \cap \chi = N \cap \chi$.
 - For all dense subsets $D \in N$, we have $D \cap N \cap G \neq \emptyset$.
 - $\bullet \ (N[G], \in, N, A \cap N) \prec (L_{\chi}[A][G], \in, L_{\chi}[A], A \cap L_{\chi}[A]).$
 - The transitive collapse of (N, \in) gets extended to the transitive collapse of $(N[G], \in)$.
- $(5) \ L_\chi[A][G] = L_\chi[B] \ \text{holds. If} \ (N[G], \in, N, A \cap N) \prec (L_\chi[A][G], \in, L_\chi[A], A \cap L_\chi[A]), \ \text{then}$

$$(N[G], \in, B \cap N[G]) \prec (L_{\chi}[B], \in, B \cap L_{\chi}[B]).$$

(6) Let $(N[G], \in, N, A \cap N) \prec (L_{\chi}[A][G], \in, L_{\chi}[A], A \cap L_{\chi}[A])$ and two substructures $(N[G], \in, B \cap N[G])$ and $(M, \in, B \cap M) \prec (L_{\chi}[B], \in, B \cap L_{\chi}[B])$ be isomorphic fixing P. Let $X = L_{\chi}[A] \cap M$. Then $P \in X$, $(X, \in, A \cap X) \prec (L_{\chi}[A], \in, A \cap L_{\chi}[A])$ and M = X[G] hold. We also have

$$(X[G], \in, X, A \cap X) \prec (L_{\chi}[A][G], \in, L_{\chi}[A], A \cap L_{\chi}[A]).$$

The two substructures $(N[G], \in, N, A \cap N)$ and $(X[G], \in, X, A \cap X)$ are isomorphic by the given isomorphism. So are $(N, \in, A \cap N)$ and $(X, \in, A \cap X)$ by restricting the given isomorphism.

(7) Let us further assume in (6) that we have a preorder $Q \in H^{V[G]}_{\theta} \cap M$, H is Q-generic over V[G] and $(M[H], \in, M, B \cap M) \prec (L_{\chi}[B][H], \in, L_{\chi}[B], B \cap L_{\chi}[B])$. Then

$$(X[G][H], \in, X[G], X, A \cap X) \prec (L_{\chi}[A][G][H], \in, L_{\chi}[A][G], L_{\chi}[A], A \cap L_{\chi}[A]).$$

Proof. Mostly routine interpreting formulas in structures with unary predicates. Notice that we assume every dense subset $D \in V$ of P belongs to H_{θ} and so to $L_{\chi}[A]$, though $L_{\chi}[A]$ may not satisfy the power set axiom. Details are left.

§ 2. Iteration Lemma

We define the class of preorders under consideration and show that it iterates under the revised countable support iteration of [2].

Definition. A preorder P is preproper, if there exist θ and z such that

- θ is a regular cardinal and $z, P \in H_{\theta}$.
- Given any (A, χ, N, p, s) such that
 - $H_{\theta} \subseteq L_{\chi}[A]$, χ is a regular cardinal.
 - $z, P \in N, N$ is countable and $(N, \in, A \cap N) \prec (L_{\chi}[A], \in, A \cap L_{\chi}[A])$.
 - The transitive collapse \overline{N} of N satisfies $\overline{N} = (H_{\tau})^M$ for some M, where M is a transitive set model of ZFC⁻ (i.e. ZFC minus the power set axiom) and τ is a regular cardinal in M.

┚

• $p \in P \cap N$ and $s \in N$.

There exists (q, \dot{N}, \dot{f}) such that

- $q \le p$ and \dot{N}, \dot{f} are P-names.
- q forces the following.
- (1) \dot{f} is an isomorphism from $(N, \in, A \cap N)$ to $(\dot{N}, \in, A \cap \dot{N}) \prec (L_{\chi}[A], \in, A \cap L_{\chi}[A])$ with $\dot{f}(s) = s$.
- (2) For all dense subsets $D \in \dot{N}$ of $P, D \cap \dot{N} \cap \dot{G} \neq \emptyset$.

Remark. (1) The condition (2) in the definition is equivalent to

$$(\dot{N}[\dot{G}], \in, \dot{N}, A \cap \dot{N}) \prec (L_{\chi}[A][\dot{G}], \in, L_{\chi}[A], A \cap L_{\chi}[A]),$$

where $L_{\chi}[A][\dot{G}]$ denotes the generic extension of $L_{\chi}[A]$ via P.

- (2) $(L_{\chi}[A][\dot{G}], \in, L_{\chi}[A], A \cap L_{\chi}[A])$ and $(L_{\chi}[B], \in, B \cap L_{\chi}[B])$ are suitably interpretable equivalent structures with $L_{\chi}[A][\dot{G}] = L_{\chi}[B]$, where $B = (\{0\} \times (A \cap L_{\chi}[A])) \cup (\{1\} \times \dot{G})$.
- (3) If a preorder P is proper, then P is preproper.
- (4) This formulation of preproper is tentative and is a modification to the subproper of [1]. There remains a chance to further reformulate this notion of forcing. A possible modification may include relativizing things in L[A] so that if $j:V\longrightarrow M$ is an elementary embedding and P is preproper in V, then P is preproper in M whenever, say, $H_{\theta} \in M$.

However, we know little on the notion of preproper except the following.

Lemma. Let $\langle P_{\alpha} \mid \alpha \leq \nu \rangle$ be a simple iteration such that for all $\alpha < \nu$, $\Vdash_{P_{\alpha}} "P_{\alpha\alpha+1}$ is preproper with $\dot{\theta}_{\alpha}$ and \dot{z}_{α} ". Let θ and z be such that

- θ is a regular cardinal such that for all $\alpha < \nu$, $\vdash_{P_{\alpha}} \dot{\theta}_{\alpha} < \theta^{n}$.
- $\langle P_{\alpha} \mid \alpha \leq \nu \rangle$, $\langle (\dot{\theta}_{\alpha}, \dot{z}_{\alpha}) \mid \alpha < \nu \rangle \in z \prec H_{\theta}$ and z is countable.

Then for all (α, β) with $\alpha < \beta \le \nu$, we have $\Vdash_{P_{\alpha}} P_{\alpha\beta}$ is preproper with θ and (\dot{G}_{α}, z) .

Proof. By induction on β (for all $\alpha < \beta$). We assume that for all (i,j) with $i < j < \beta$, $\Vdash_{P_i} "P_{ij}$ is preproper with θ and (\dot{G}_i, z) ". Fix any $\alpha < \beta$. We want to show $\Vdash_{P_\alpha} "P_{\alpha\beta}$ is preproper with θ and (\dot{G}_α, z) ".

Case. β is limit. Suppose $w \Vdash_{P_{\alpha}} "(\dot{A}, \chi, \dot{N}, p[\alpha, \beta), \dot{s})$ as in the hypothesis". Namely, w forces

- $H_{\theta}^{V[\dot{G}_{\alpha}]} \subseteq L_{\chi}[\dot{A}], \chi$ is regular.
- $\dot{G}_{\alpha}, z, P_{\alpha\beta} \in \dot{N}$ is countable and $(\dot{N}, \in, \dot{A} \cap \dot{N}) \prec (L_{\chi}[\dot{A}], \in, \dot{A} \cap L_{\chi}[\dot{A}])$ and \dot{N} satisfies the condition on the transitive collapse.
- $p[\alpha, \beta] \in P_{\alpha\beta} \cap \dot{N}$ and $\dot{s} \in \dot{N}$.

Then we have that

• $z, \beta \in \dot{N}$ and so $P_{\beta} \in \dot{N}$.

We may assume that

• $p \in P_{\beta} \cap \dot{N}$, $p \lceil \alpha \in \dot{G}_{\alpha}$ and p has stages $\langle \delta_k^p \mid k < \omega \rangle \in \dot{N}$.

We may also extend w so that

- $w \leq p \lceil \alpha$.
- $w^{-}(1_{\beta}\lceil [\alpha,\beta)) \parallel_{P_{\beta}} "\delta_{0}^{p} = \alpha"$.

This is because $z \in \dot{N} \prec L_{\chi}[\dot{A}]$ and so \dot{N} contains various maps defined in V and so \dot{N} is closed under those maps. For example, we have $\langle p \mapsto \langle \delta_k^p \mid k < \omega \rangle \rangle \in \dot{N}$.

Hence w decides P_{α} -names \dot{A} , \dot{N} , $\dot{s} \in V$ and the values of χ , p, $\langle \delta_k^p \mid k < \omega \rangle$ and δ_0^p .

It suffices to find $(q, \dot{X}_{\omega}, \dot{f}_{\omega})$ such that

- $q \in P_{\beta}$, $q \lceil \alpha = w, q \leq p$.
- \dot{X}_{ω} and \dot{f}_{ω} are P_{β} -names.

q forces the following.

- (1) \dot{f}_{ω} is an ismorphism from $(\dot{N}, \in, \dot{A} \cap \dot{N})$ to $(\dot{X}_{\omega}, \in, \dot{A} \cap \dot{X}_{\omega}) \prec (L_{\chi}[\dot{A}], \in, \dot{A} \cap L_{\chi}[\dot{A}]), \dot{f}_{\omega}(\dot{s}) = \dot{s}$ and $G_{\alpha}(=\dot{G}_{\beta}[\alpha), P_{\beta} \in \dot{X}_{\omega}.$
- (2) For all dense subsets $D \in \dot{X}_{\omega}$ of P_{β} , $D \cap \dot{X}_{\omega} \cap \dot{G}_{\beta} \neq \emptyset$.

This is because, given any dense subset $D' \in \dot{X}_{\omega}$ of $P_{\alpha\beta}$, let

$$D = \{ y \in P_{\beta} \mid y [\alpha \notin G_{\alpha} \mid | y [\alpha, \beta) \in D' \}.$$

Then $D \in \dot{X}_{\omega}$ is a dense subset of P_{β} with $D[[\alpha, \beta) = D'$. Since $D \cap \dot{X}_{\omega} \cap \dot{G}_{\beta} \neq \emptyset$, we have $D' \cap \dot{X}_{\omega} \cap G_{\alpha\beta}(=\dot{G}_{\beta}[[\alpha, \beta)) \neq \emptyset$.

In order to get $(q, \dot{X}_{\omega}, \dot{f}_{\omega})$ as such, we construct a nested antichain T with associated structures. To do so, we present the following general construction.

Claim. Given any $(i, x, \langle \delta_k^x \mid k < \omega \rangle, a, \dot{X}, \dot{f}, \dot{D})$ such that

- $\alpha \le i$, $a \in P_i$, $x \in P_\beta$, $a \lceil \alpha \le w$, $a \le x \lceil i$ and $x \le p$.
- $\langle \delta_k^x \mid k < \omega \rangle$ are stages for x and $a^1 \parallel_{P_B} \delta_0^x = i$.
- $a \in P_i$ forces the following, where $\dot{X}, \dot{f}, \dot{D} \in V$ are P_i -names.
- (1) \dot{f} is an isomorphism from $(\dot{N}, \in, \dot{A} \cap \dot{N})$ to $(\dot{X}, \in, \dot{A} \cap \dot{X}) \prec (L_{\chi}[\dot{A}], \in, \dot{A} \cap L_{\chi}[\dot{A}])$ with $\dot{f}(G_{\alpha}, z, \dot{s}, P_{\beta}) = (G_{\alpha}, z, \dot{s}, P_{\beta})$.
- (2) $P_i \in \dot{X}$ and $(\dot{X}[G_{\alpha i}], \in, \dot{X}, \dot{A} \cap \dot{X}) \prec (L_{\chi}[\dot{A}][G_{\alpha i}], \in, L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}])$.
- (3) $x \in P_{\beta} \cap \dot{X}$ and $\langle \delta_k^x \mid k < \omega \rangle \in \dot{X}$.
- (4) $\dot{D} \in \dot{X}$ is a dense subset of P_{β} .

Get $(j, y, \langle \delta_k^y \mid k < \omega \rangle, b, \dot{Y}, \dot{g})$ such that

- $i < j, b \in P_j, y \in P_\beta, b \lceil i \le a, b \le y \lceil j \text{ and } y \le x.$
- $\langle \delta_k^y \mid k < \omega \rangle$ are stages for y and are a step ahead of $\langle \delta_k^x \mid k < \omega \rangle$, namely, \Vdash_{P_β} " $\delta_{k+1}^x \leq \delta_k^y$ " for all $k < \omega$.
- $b^{1} \parallel_{P_{\beta}} \delta_{0}^{y} = j$.
- $b \in P_j$ forces the following, where $Y, g \in V$ are P_j -names.
- (1*) \dot{g} is an isomorphism from $(\dot{X}[G_{\alpha i}], \in, \dot{X}, \dot{A} \cap \dot{X})$ to

$$(\dot{Y}[G_{\alpha i}], \in, \dot{Y}, \dot{A} \cap \dot{Y}) \prec (L_{\chi}[\dot{A}][G_{\alpha i}], \in, L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}])$$

with

$$\dot{g}(G_{\alpha},z,\dot{s},P_{\beta},P_{\alpha i},G_{\alpha i},j,y,\langle\delta_{k}^{y}\mid k<\omega\rangle)=(G_{\alpha},z,\dot{s},P_{\beta},P_{\alpha i},G_{\alpha i},j,y,\langle\delta_{k}^{y}\mid k<\omega\rangle).$$

 $(2^*) \ j \in \dot{X} \cap \dot{Y} \text{ and so } P_{\alpha j} \in \dot{Y}, \ L_{\chi}[\dot{A}][G_{\alpha j}] = L_{\chi}[\dot{A}][G_{\alpha i}][G_{ij}] \text{ and } \dot{Y}[G_{\alpha j}] = \dot{Y}[G_{\alpha i}][G_{ij}]. \text{ We have } \\ (\dot{Y}[G_{\alpha i}][G_{ij}], \in, \dot{Y}[G_{\alpha i}], \dot{Y}, \dot{A} \cap \dot{Y}) \prec (L_{\chi}[\dot{A}][G_{\alpha i}][G_{ij}], \in, L_{\chi}[\dot{A}][G_{\alpha i}], L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}]).$

And so $\dot{Y}[G_{\alpha j}] \cap L_{\chi}[\dot{A}][G_{\alpha i}] = \dot{Y}[G_{\alpha i}]$ and $\dot{Y}[G_{\alpha i}] \cap L_{\chi}[\dot{A}] = \dot{Y}$.

(3*) $y \in \dot{D} \cap \dot{X} \cap \dot{Y}$ and $\langle \delta_k^y \mid k < \omega \rangle \in \dot{X} \cap \dot{Y}$.

Hence, we have

- $b \in P_j$ forces the following.
- (1) $\dot{g} \circ \dot{f}$ is an isomorphism from $(\dot{N}, \in, \dot{A} \cap \dot{N})$ to $(\dot{Y}, \in, \dot{A} \cap \dot{Y}) \prec (L_{\chi}[\dot{A}], \in, \dot{A} \cap L_{\chi}[\dot{A}])$ with

$$\dot{g} \circ \dot{f}(G_{\alpha}, z, \dot{s}, P_{\beta}) = (G_{\alpha}, z, \dot{s}, P_{\beta}).$$

- (2) $P_j \in \dot{Y}$ and $(\dot{Y}[G_{\alpha j}], \in, \dot{Y}, \dot{A} \cap \dot{Y}) \prec (L_{\chi}[\dot{A}][G_{\alpha j}], \in, L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}])$.
- (3) $y \in P_{\beta} \cap \dot{Y}$ and $\langle \delta_k^y \mid k < \omega \rangle \in \dot{Y}$.

Proof. Let G_i be P_i -generic over V with $a \in G_i$. In $V[G_i]$, let $G_{\alpha} = G_i \lceil \alpha, G_{\alpha i} = G_i \lceil (\alpha, i), A = \dot{A}_{G_{\alpha}}, X = \dot{X}_{G_i}, f = \dot{f}_{G_i}$ and $D = \dot{D}_{G_i}$. Then we have

• $x \in X \cap P_{\beta}$, $P_{\alpha i} \in X$ and

$$(X[G_{\alpha i}], \in, X, A \cap X) \prec (L_X[A][G_{\alpha i}], \in, L_X[A], A \cap L_X[A]).$$

• $D \in X$ is a dense subset of P_{β} .

Get $y \in D \cap X[G_{\alpha i}] = D \cap X$, $y \mid i \in G_i$, $y \leq x$ and stages $\langle \delta_k^y \mid k < \omega \rangle \in X$ for y which is a step ahead of $\langle \delta_k^x \mid k < \omega \rangle \in X$.

Then decide the value of δ_0^y as $u \cap 1 \Vdash_{P_\beta} "\delta_0^y = j$ ". We may assume $j \in \beta \cap X[G_{\alpha i}] = \beta \cap X$, $u \in P_j \cap X[G_{\alpha i}] = P_j \cap X$, $u \leq y \lceil j$ and $u \lceil i \in G_i$.

Since P_{ij} is preproper with θ , G_i , z and in $V[G_i]$, we have

- $H_{\theta}^{V[G_i]} = H_{\theta}^{V[G_{\alpha}]}[G_{\alpha i}] \subseteq L_{\chi}[A][G_{\alpha i}], \chi$ is regular.
- $G_i, z, P_{ij} \in X[G_{\alpha i}], (X[G_{\alpha i}], \in, X, A \cap X) \prec (L_{\chi}[A][G_{\alpha i}], \in, L_{\chi}[A], A \cap L_{\chi}[A]).$
- And so the transitive collapse $\overline{X[G_{\alpha i}]}$ of $X[G_{\alpha i}]$ satisfies

$$\overline{X[G_{\alpha i}]} = \overline{X}[\overline{G_{\alpha i}}] = (H_{\tau})^M[\overline{G_{\alpha i}}] = (H_{\tau})^{M[\overline{G_{\alpha i}}]} \text{ with } \overline{P_{\alpha i}} \in (H_{\tau})^M.$$

• $u \in P_j \cap X[G_{\alpha i}], u[i \in G_i \text{ and } G_{\alpha}, z, G_{\alpha i} \in X[G_{\alpha i}].$

Hence we may fix (b, \dot{Y}, \dot{g}) in V such that

- $b \le u$ and $b \lceil i \le a$.
- $b \in P_j$ forces the following.
- $(1)^*$ \dot{g} is an isomorphism from $(\dot{X}[G_{\alpha i}], \in, \dot{X}, \dot{A} \cap \dot{X})$ to

$$(\dot{Y}[G_{\alpha i}], \in, \dot{Y}, \dot{A} \cap \dot{Y}) \prec (L_{\chi}[\dot{A}][G_{\alpha i}], \in, L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}])$$

with

$$\dot{g}(G_{\alpha},z,\dot{s},P_{\beta},P_{\alpha i},G_{\alpha i},j,y,\langle\delta_{k}^{y}\mid k<\omega\rangle)=(G_{\alpha},z,\dot{s},P_{\beta},P_{\alpha i},G_{\alpha i},j,y,\langle\delta_{k}^{y}\mid k<\omega\rangle).$$

$$(2)^* \qquad (\dot{Y}[G_{\alpha i}][G_{ij}], \in, \dot{Y}[G_{\alpha i}], \dot{Y}, \dot{A} \cap \dot{Y}) \prec (L_{\chi}[\dot{A}][G_{\alpha i}][G_{ij}], \in, L_{\chi}[\dot{A}][G_{\alpha i}], L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}]).$$

 $(3)^* \ y \in \dot{D} \cap \dot{X} \cap \dot{Y} \text{ and } \langle \delta_k^y \mid k < \omega \rangle \in \dot{X} \cap \dot{Y}.$

And so, we have

- $b \in P_i$ forces the following.
- (1) $\dot{g} \circ \dot{f}$ is an isomorphism from $(\dot{N}, \in, \dot{A} \cap \dot{N})$ to $(\dot{Y}, \in, \dot{A} \cap \dot{Y}) \prec (L_{\chi}[\dot{A}], \in, \dot{A} \cap L_{\chi}[\dot{A}])$.
- $(2) \ P_j \in \dot{Y}[G_{\alpha j}] \cap L_\chi[\dot{A}] = \dot{Y} \ \text{and} \ (\dot{Y}[G_{\alpha j}], \in, \dot{Y}, \dot{A} \cap \dot{Y}) \prec (L_\chi[\dot{A}][G_{\alpha j}], \in, L_\chi[\dot{A}], \dot{A} \cap L_\chi[\dot{A}]).$
- (3) $y \in \dot{D} \cap \dot{Y}$ and $\langle \delta_k^y \mid k < \omega \rangle \in \dot{Y}$.

In V, we construct a nested antichain $\langle (a,n) \mapsto p^{(a,n)} \mid a \in T_n, n < \omega \rangle$ together with an associated structures $(\dot{X}^{(a,n)}, p^{(a,n)}, \langle \delta_k^{(a,n)} \mid k < \omega \rangle, \dot{D}^{(a,n)}, \dot{f}^{(a,n)}, S^{(a,n)}, \dot{f}^{(a,n)(b,n+1)})$ for $a \in T_n$, $b \in \operatorname{suc}_T^n(a)$, $n < \omega$ such that

• $T_0 = \{w\}, \ \dot{X}^{(w,0)} = \dot{N}, \ p^{(w,0)} = p, \ \langle \delta_k^{(w,0)} \mid k < \omega \rangle = \langle \delta_k^p \mid k < \omega \rangle, \ \dot{D}^{(w,0)} = \check{P}_{\beta}, \ \dot{f}^{(w,0)} = (id \text{ on } \dot{N}), \ S^{(w,0)} = \{p\}.$

Then for all $a \in T_n$, we have (with n = 0)

- $\alpha \leq l(a), a \in P_{l(a)}, p^{(a,n)} \in P_{\beta}, a \lceil \alpha \leq w, a \leq p^{(a,n)} \lceil l(a) \text{ and } p^{(a,n)} \leq p.$
- $\langle \delta_h^{(a,n)} \mid k < \omega \rangle$ are stages for $p^{(a,n)}$ and $a \cap l \models_{P_0} "\delta_0^{(a,n)} = l(a)"$.
- $S^{(a,n)}$ is a finite subset of P_{β} with $p^{(a,n)} \in S^{(a,n)}$.
- $a \in P_{l(a)}$ forces the following, where $\dot{X}^{(a,n)}$, $\dot{D}^{(a,n)}$, $\dot{f}^{(a,n)}$ are $P_{l(a)}$ -names.
- (1) $\dot{f}^{(a,n)}$ is an isomorphism from $(\dot{N}, \in, \dot{A} \cap \dot{N})$ to

$$(\dot{X}^{(a,n)},\in,\dot{A}\cap\dot{X}^{(a,n)})\prec(L_{\chi}[\dot{A}],\in,\dot{A}\cap L_{\chi}[\dot{A}])$$

with

$$\dot{f}^{(a,n)}(G_{\alpha},z,\dot{s},P_{\beta})=(G_{\alpha},z,\dot{s},P_{\beta}).$$

(2) $S^{(a,n)} \cup \{G_{\alpha}, z, \dot{s}, P_{l(a)}\} \subset \dot{X}^{(a,n)}$ and so $G_{l(a)} \in \dot{X}^{(a,n)}[G_{\alpha l(a)}]$ and

$$(\dot{X}^{(a,n)}[G_{\alpha l(a)}], \in, \dot{X}^{(a,n)}, \dot{A} \cap \dot{X}^{(a,n)}) \prec (L_{\chi}[\dot{A}][G_{\alpha l(a)}], \in, L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}]).$$

- (3) $p^{(a,n)} \in P_{\beta} \cap \dot{X}^{(a,n)}$ and $\langle \delta_k^{(a,n)} \mid k < \omega \rangle \in \dot{X}^{(a,n)}$.
- (4) $\dot{D}^{(a,n)} \in \dot{X}^{(a,n)}$ is a dense subset of P_{β} . We demand the following for a bookkeeping.

$$\dot{D}^{(a,n)} = \left\{ egin{aligned} \dot{f}^{(a,n)}(\dot{x}_n), & ext{if it is dense in } P_{eta}. \\ P_{eta}, & ext{otherwise,} \end{aligned}
ight.$$

where $\dot{N} = \{\dot{x}_n \mid n < \omega\}$ with $\dot{x}_0 = \check{P}_{\beta}$.

For $b \in \operatorname{suc}_T^n(a)$,

- $p^{(b,n+1)} \le p^{(a,n)}$ and $\langle \delta_k^{(b,n+1)} \mid k < \omega \rangle$ is a step ahead of $\langle \delta_k^{(a,n)} \mid k < \omega \rangle$.
- $S^{(b,n+1)} = S^{(a,n)} \cup \{p^{(b,n+1)}\}.$
- $b \in P_{l(b)}$ forces the following, where $\dot{f}^{(a,n)(b,n+1)}$ is a $P_{l(b)}$ -name.
- (1)* $\dot{f}^{(a,n)(b,n+1)}$ is an isomorphism from $(\dot{X}^{(a,n)},\in,\dot{A}\cap\dot{X}^{(a,n)})$ to

$$(\dot{X}^{(b,n+1)},\in,\dot{A}\cap\dot{X}^{(b,n+1)})\prec(L_\chi[\dot{A}],\in,\dot{A}\cap L_\chi[\dot{A}])$$

with

$$\dot{f}^{(a,n)(b,n+1)}\left(G_{\alpha},z,\dot{s},P_{\beta},P_{\alpha l(a)},G_{\alpha l(a)},l(b),S^{(b,n+1)}\right) = \left(G_{\alpha},z,\dot{s},P_{\beta},P_{\alpha l(a)},G_{\alpha l(a)},l(b),S^{(b,n+1)}\right)$$

and

$$\dot{f}^{(a,n)(b,n+1)} \left(\langle \delta_k^{(b,n+1)} \mid k < \omega \rangle \right) = \langle \delta_k^{(b,n+1)} \mid k < \omega \rangle$$

and furthermore

$$\dot{f}^{(a,n)(b,n+1)}(\dot{f}^{(a,n)}(\dot{x}_0),\cdots,\dot{f}^{(a,n)}(\dot{x}_n)) = (\dot{f}^{(a,n)}(\dot{x}_0),\cdots,\dot{f}^{(a,n)}(\dot{x}_n)).$$

 $\dot{f}^{(b,n+1)} = \dot{f}^{(a,n)(b,n+1)} \circ \dot{f}^{(a,n)}$ and so

 $\dot{f}^{(b,n+1)}$ is an isomorphism from $(\dot{N},\in,\dot{A}\cap\dot{N})$ to $(\dot{X}^{(b,n+1)},\in,\dot{A}\cap\dot{X}^{(b,n+1)})$.

 $(2)^* p^{(b,n+1)} \in S^{(b,n+1)} \subset \dot{X}^{(a,n)} \cap \dot{X}^{(b,n+1)}$ and

$$(\dot{X}^{(b,n+1)}[G_{\alpha l(b)}], \in, \dot{X}^{(b,n+1)}, \dot{A} \cap \dot{X}^{(b,n+1)}) \prec (L_{\chi}[\dot{A}][G_{\alpha l(b)}], \in, L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}]).$$

$$(3)^* \ p^{(b,n+1)} \in \dot{D}^{(a,n)} \cap \dot{X}^{(a,n)} \cap \dot{X}^{(b,n+1)} \ \text{and} \ \langle \delta_k^{(b,n+1)} \ | \ k < \omega \rangle \in \dot{X}^{(a,n)} \cap \dot{X}^{(b,n+1)}.$$

This completes the construction. Let $q \in P_{\beta}$ be a fusion of $\langle T_n \mid n < \omega \rangle$. Then $q \leq p$ and $q \lceil \alpha = w$ holds. Let G_{β} be P_{β} -generic over V with $q \in G_{\beta}$. We want to construct X_{ω} and f_{ω} . In $V[G_{\beta}]$, let $\langle a_n \mid n < \omega \rangle$ be the generic cofinal path through T. Let $\alpha_n = l(a_n)$, $X_n = \dot{X}_{G_{\alpha_n}}^{(a_n,n)}$, $p_n = p^{(a_n,n)}$, $D_n = \dot{D}_{G_{\alpha_n}}^{(a_n,n)}$, $f_n = \dot{f}_{G_{\alpha_n}}^{(a_n,n)}$, $S_n = S^{(a_n,n)}$ and $f_{nn+1} = \dot{f}_{G_{\alpha_{n+1}}}^{(a_n,n)(a_{n+1},n+1)}$. We also let $A = \dot{A}_{G_{\alpha}}$, $s = \dot{s}_{G_{\alpha}}$ and $N = \dot{N}_{G_{\alpha}} = \{x_n \mid n < \omega\}$. Then in $V[G_{\beta}]$ we have

- $a_n \in G_{\alpha_n} (= G_{\beta}[\alpha_n) \text{ and } p_n \in G_{\beta}.$
- $(X_n, \in, A \cap X_n) \prec (L_{\chi}[A], \in, A \cap L_{\chi}[A]).$
- $S_0 = \{p\}, S_{n+1} = S_n \cup \{p_{n+1}\}$ and so $S_n = \{p_0, \dots, p_n\}$.
- f_n is an isomorphism from $(N, \in, A \cap N)$ to $(X_n, \in, A \cap X_n)$ with

$$f_n(G_\alpha, z, s, P_\beta) = (G_\alpha, z, s, P_\beta)$$

• $f_{n+1} = f_{nn+1} \circ f_n$ and

$$f_{nn+1}(p_0,\cdots,p_n,p_{n+1})=(p_0,\cdots,p_n,p_{n+1})$$

$$f_{nn+1}(f_n(x_0), \dots, f_n(x_n)) = (f_n(x_0), \dots, f_n(x_n)).$$

$$D_n = \begin{cases} f_n(x_n), & \text{if it is dense in } P_{\beta}. \\ P_{\beta}, & \text{otherwise.} \end{cases}$$

• $p_0 = p \in N$, $D_n \in X_n$ and $p_{n+1} \in D_n \cap X_n \cap X_{n+1}$.

Let $X_{\omega} = \{f_n(x_n) \mid n < \omega\}$ and f_{ω} be a map from N to X_{ω} defined by $f_{\omega}(x_n) = f_n(x_n)$.

Claim. (1) f_{ω} is a well-defined isomorphism from $(N, \in, A \cap N)$ to

$$(X_{\omega}, \in, A \cap X_{\omega}) \prec (L_{\gamma}[A], \in, A \cap L_{\gamma}[A])$$

such that $f_{\omega}(s, G_{\alpha}, P_{\beta}) = (s, G_{\alpha}, P_{\beta})$ and so $G_{\alpha}, P_{\beta} \in X_{\omega}$.

(2) For all dense subsets $D \in X_{\omega}$ of P_{β} , we have $D \cap X_{\omega} \cap G_{\beta} \neq \emptyset$.

Proof. (well-defined): Suppose $x_n = x_m$. Then $(N, \in, A \cap N) \models "x_n = x_m"$. Hence $(X_l, \in, A \cap X_l) \models "f_l(x_n) = f_l(x_m)"$, where $l = \max\{n, m\}$. Hence $f_n(x_n) = f_m(x_m)$.

(One-to-one): Suppose $x_n \neq x_m$: Then $(N, \in, A \cap N) \models "x_n \neq x_m"$. Hence $(X_l, \in, A \cap X_l) \models "f_l(x_n) \neq f_l(x_m)"$, where $l = \max\{n, m\}$. Hence $f_n(x_n) \neq f_m(x_m)$.

(\in \text{-homo}): Suppose $x_n \in x_m$. Then $(N, \in, A \cap N) \models "x_n \in x_m"$. Hence $(X_l, \in, A \cap X_l) \models "f_l(x_n) \in f_l(x_m)"$, where $l = \max\{n, m\}$. Hence $f_n(x_n) \in f_m(x_m)$ and so $(X_\omega, \in, A \cap X_\omega) \models "f_\omega(x_n) \in f_\omega(x_m)"$.

 $(\not\in$ -homo): Suppose $x_n \not\in x_m$. Then $(N, \in, A \cap N) \models "x_n \not\in x_m"$. Hence $(X_l, \in, A \cap X_l) \models "f_l(x_n) \not\in f_l(x_m)"$, where $l = \max\{n, m\}$. Hence $f_n(x_n) \not\in f_m(x_m)$ and so $(X_\omega, \in, A \cap X_\omega) \models "f_\omega(x_n) \not\in f_\omega(x_m)"$.

(A-homo): Suppose $x_n \in A$. Then $(N, \in, A \cap N) \models \text{``}\dot{A}(x_n)\text{''}$. Hence $(X_n, \in, A \cap X_n) \models \text{``}\dot{A}(f_n(x_n))\text{''}$. Hence $f_n(x_n) \in A$ and so $(X_\omega, \in, A \cap X_\omega) \models \text{``}\dot{A}(f_\omega(x_n))\text{''}$.

 $(\neg A\text{-homo})$: Suppose $x_n \notin A$. Then $(N, \in, A \cap N) \models "\neg \dot{A}(x_n)"$. Hence $(X_n, \in, A \cap X_n) \models "\neg \dot{A}(f_n(x_n))"$. Hence $f_n(x_n) \notin A$ and so $(X_\omega, \in, A \cap X_\omega) \models "\neg \dot{A}(f_\omega(x_n))"$.

Since f_{ω} is onto, it is an isomorphism.

(Elementarity): Suppose

$$(L_{\chi}[A], \in A \cap L_{\chi}[A]) \models "\exists y \varphi(y, f_0(x_0), \dots, f_n(x_n))".$$

Since $(X_n, \in, A \cap X_n) \prec (L_{\chi}[A], \in, A \cap L_{\chi}[A])$, we have

$$(X_n, \in, A \cap X_n) \models "\exists y \varphi(y, f_0(x_0), \dots, f_n(x_n))".$$

Take $f_n(x_m) \in X_n$ such that

$$(X_n, \in, A \cap X_n) \models "\varphi(f_n(x_m), f_0(x_0), \cdots, f_n(x_n))".$$

Then

$$(X_l, \in, A \cap X_l) \models "\varphi(f_m(x_m), f_0(x_0), \cdots, f_n(x_n))",$$

where $l = \max\{n, m\}$. Hence

$$(L_{\mathbf{Y}}[A], \in, A \cap L_{\mathbf{Y}}[A]) \models "\varphi(f_m(x_m), f_0(x_0), \cdots, f_n(x_n))".$$

(Generic): Let $D \in X_{\omega}$ be a dense subset of P_{β} . Let $D = f_n(x_n)$. By definition, $D_n = f_n(x_n) = D$ holds. Hence $p_{n+1} \in D_n \cap G_{\beta}$. But $p_{n+1} \in X_n$ and so $p_{n+1} = f_n(x_m) = f_m(x_m) \in X_{\omega}$. Therefore, $D \cap X_{\omega} \cap G_{\beta} \neq \emptyset$.

Case. β is successor. We write $\beta + 1$ for β for convenience. Since $\alpha < \beta + 1$, we have two subcases.

Subcase. $\alpha = \beta$. We want $\Vdash_{P_{\beta}} P_{\beta\beta+1}$ is preproper with θ and (\dot{G}_{β}, z) . Let G_{β} be any P_{β} -generic filter over V. Argue in $V[G_{\beta}]$. Let (A, χ, N, p, s) satisfy

- $G_{\beta}, z, P_{\beta\beta+1} \in H_{\theta}^{V[G_{\beta}]} \subseteq L_{\chi}[A].$
- $G_{\beta}, z, P_{\beta\beta+1} \in N$ is countable and $(N, \in, A \cap N) \prec (L_{\chi}[A], \in, A \cap L_{\chi}[A])$ and N satisfies the condition on the transitive collapse.
- $p[[\beta, \beta+1) \in P_{\beta\beta+1} \cap N \text{ and } s \in N.$

We may assume

• $p \in P_{\beta+1} \cap N$ and $p \lceil \beta \in G_{\beta}$.

Then $z_{\beta} = (\dot{z}_{\beta})_{G_{\beta}} \in N$ and $z_{\beta}, P_{\beta\beta+1} \in H_{\theta_{\beta}}^{V[G_{\beta}]} \subset H_{\theta}^{V[G_{\beta}]} \subseteq L_{\chi}[A]$. By assumption, $P_{\beta\beta+1}$ is preproper with θ_{β} and z_{β} . Hence there exists (q, \dot{N}, \dot{f}) such that

- $q \in P_{\beta+1}$, $q \lceil \beta \in G_{\beta}$ and $q \leq p$.
- $q[\beta, \beta + 1)$ forces the following, where \dot{N} and \dot{f} are $P_{\beta\beta+1}$ -names.
- (1) \dot{f} is an isomorphism from $(N, \in, A \cap N)$ to

$$(\dot{N}, \in, A \cap \dot{N}) \prec (L_{\chi}[A], \in, A \cap L_{\chi}[A])$$

with $\dot{f}(s) = s$.

(2) $(\dot{N}[\dot{G}_{\beta\beta+1}], \in, \dot{N}, A \cap \dot{N}) \prec (L_{\chi}[A][\dot{G}_{\beta\beta+1}], \in, L_{\chi}[A], A \cap L_{\chi}[A]).$

Subcase. $\alpha < \beta < \beta + 1$. We want $\|-P_{\alpha} P_{\alpha\beta+1}\|$ is preproper with θ and (\dot{G}_{α}, z) . Let $w \|-P_{\alpha} (\dot{A}, \chi, \dot{N}, p, \dot{s})$ be as in the hypothesis. Namely, w forces the following.

- $\dot{G}_{\alpha}, z, P_{\alpha\beta+1} \in H_{\theta}^{V[\dot{G}_{\alpha}]} \subseteq L_{\chi}[\dot{A}].$
- $\dot{G}_{\alpha}, z, P_{\alpha\beta+1} \in \dot{N}$ is countable and $(\dot{N}, \in, \dot{A} \cap \dot{N}) \prec (L_{\chi}[\dot{A}], \in, \dot{A} \cap L_{\chi}[\dot{A}])$ and \dot{N} satisfies the condition on the transitive collapse.
- $p[[\alpha, \beta + 1) \in P_{\alpha\beta+1} \cap \dot{N} \text{ and } \dot{s} \in \dot{N}.$

We may assume

- $w \leq p \lceil \alpha$.
- $w \Vdash_{P_{\alpha}} "p \in \dot{N} \cap P_{\beta+1}$ ".

We want (q, \dot{Y}, \dot{h}) such that

- $q \in P_{\beta+1}$, $q \lceil \alpha \le w$ and $q \le p$.
- q forces the following, where \dot{Y} and \dot{h} are $P_{\beta+1}$ -names.
- (1) \dot{h} is an isomorphism from $(\dot{N}, \in, \dot{A} \cap \dot{N})$ to

$$(\dot{Y}, \in, \dot{A} \cap \dot{Y}) \prec (L_{\chi}[\dot{A}], \in, \dot{A} \cap L_{\chi}[\dot{A}])$$

with $\dot{h}(\dot{s}) = \dot{s}$.

 $(2) \quad (\dot{Y}[G_{\alpha\beta+1}], \in, \dot{Y}, \dot{A} \cap \dot{Y}) \prec (L_{\chi}[\dot{A}][G_{\alpha\beta+1}], \in, L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}]).$

But w forces

- $\dot{G}_{\alpha}, z, P_{\alpha\beta} \in H_{\theta}^{V[\dot{G}_{\alpha}]} \subseteq L_{\chi}[\dot{A}].$
- $\dot{G}_{\alpha}, z, P_{\alpha\beta} \in \dot{N}$ is countable and $(\dot{N}, \in, \dot{A} \cap \dot{N}) \prec (L_{\chi}[\dot{A}], \in, \dot{A} \cap L_{\chi}[\dot{A}])$ and \dot{N} satisfies the condition on the transitive collapse.
- $p[\alpha, \beta] \in P_{\alpha\beta} \cap \dot{N}$ and $\dot{s} \in N$.

Since $\|-P_{\alpha} P_{\alpha\beta}$ is preproper with θ and (\dot{G}_{α}, z) by induction, we have $(q \beta, \dot{X}, \dot{f}) \in V$ such that

- $q\lceil \beta \in P_{\beta}, q\lceil \alpha \leq w \text{ and } q\lceil \beta \leq p\lceil \beta.$
- $q[\beta]$ forces the following, where \dot{X} and \dot{f} are P_{β} -names.
- (1) \dot{f} is an isomorphism from $(\dot{N}, \in, \dot{A} \cap \dot{N})$ to

$$(\dot{X}, \in, \dot{A} \cap \dot{X}) \prec (L_{Y}[\dot{A}], \in, \dot{A} \cap L_{X}[\dot{A}])$$

with $\dot{f}(G_{\alpha}, z, \dot{s}, P_{\beta}, p) = (G_{\alpha}, z, \dot{s}, P_{\beta}, p)$.

(2)
$$(\dot{X}[G_{\alpha\beta}], \in, \dot{X}, \dot{A} \cap \dot{X}) \prec (L_{\chi}[\dot{A}][G_{\alpha\beta}], \in, L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}]).$$

Now we want $q\lceil [\beta,\beta+1)$. To do so let G_{β} be any P_{β} -generic filter over V with $q\lceil \beta \in G_{\beta}$. Then argue in $V[G_{\beta}]$ to specify the interpretation of $q\lceil [\beta,\beta+1)$. Let $G_{\alpha}=G_{\beta}\lceil \alpha,G_{\alpha\beta}=G_{\beta}\lceil [\alpha,\beta),\,A=\dot{A}_{G_{\alpha}},\,N=\dot{N}_{G_{\alpha}},\,s=\dot{s}_{G_{\alpha}},\,X=\dot{X}_{G_{\beta}}$. Then we have

- $G_{\alpha}, P_{\alpha\beta} \in X$ and so $G_{\beta} \in X[G_{\alpha\beta}]$.
- $\bullet \ (\dot{z}_{\beta})_{G_{\beta}}, P_{\beta\beta+1} \in H_{\theta_{\beta}}^{V[G_{\beta}]} \subset H_{\theta}^{V[G_{\beta}]} = H_{\theta}^{V[G_{\alpha}]}[G_{\alpha\beta}] \subseteq L_{\chi}[A][G_{\alpha\beta}], \text{ as } P_{\alpha\beta} \in H_{\theta}^{V[G_{\alpha}]}.$
- $(\dot{z}_{\beta})_{G_{\beta}}, P_{\beta\beta+1} \in X[G_{\alpha\beta}]$ is countable and $(X[G_{\alpha\beta}], \in, X, A \cap X) \prec (L_{\chi}[A][G_{\alpha\beta}], \in, L_{\chi}[A], A \cap L_{\chi}[A])$ and $X[G_{\alpha\beta}]$ satisfies the condition on the transitive collapse.
- $p[[\beta, \beta + 1) \in P_{\beta\beta+1} \cap X[G_{\alpha\beta}] \text{ and } s \in X[G_{\alpha\beta}].$

Since $P_{\beta\beta+1}$ is preproper with θ_{β} and z_{β} , we have $(q[\beta, \beta+1), \dot{Y}, \dot{g})$ such that

- $q\lceil [\beta, \beta+1) \le p\lceil [\beta, \beta+1)$.
- $q[\beta, \beta + 1)$ forces the following, where \dot{Y} and \dot{g} are $P_{\beta\beta+1}$ -names.
- (1) \dot{g} is an isomorphism from $(X[G_{\alpha\beta}], \in, X, A \cap X)$ to

$$(\dot{Y}[G_{\alpha\beta}], \in, \dot{Y}, A \cap \dot{Y}) \prec (L_{\chi}[A][G_{\alpha\beta}], \in, L_{\chi}[A], A \cap L_{\chi}[A])$$

with $\dot{g}(s) = s$.

$$(2) \ (\dot{Y}[G_{\alpha\beta}][\dot{G}_{\beta\beta+1}], \in, \dot{Y}[G_{\alpha\beta}], \dot{Y}, A \cap \dot{Y}) \prec (\mathbf{L}_{Y}[A][G_{\alpha\beta}][\dot{G}_{\beta\beta+1}], \in, L_{Y}[A][G_{\alpha\beta}], L_{Y}[A], A \cap L_{Y}[A]).$$

Hence we may assume $q \in P_{\beta+1}$, $q \le p$ and q forces the following.

(1) $\dot{g} \circ \dot{f}$ is an isomorphism from $(\dot{N}, \in, \dot{A} \cap \dot{N})$ to

$$(\dot{Y}, \in, \dot{A} \cap \dot{Y}) \prec (L_\chi[\dot{A}], \in, \dot{A} \cap L_\chi[\dot{A}])$$

with $\dot{q} \circ \dot{f}(\dot{s}) = \dot{s}$.

 $(2) \quad (\dot{Y}[G_{\alpha\beta+1}], \in, \dot{Y}, \dot{A} \cap \dot{Y}) \prec (L_{\chi}[\dot{A}][G_{\alpha\beta+1}], \in, L_{\chi}[\dot{A}], \dot{A} \cap L_{\chi}[\dot{A}]).$

References

- [1] R. Jensen, Jensen's home page.
- [2] T. Miyamoto, A limit stage construction for iterating semiproper preorders, *Proceedings of the 7th and 8th Asian Logic Conferences*, World Scientific, pp. 303-327 (2003).

miyamoto@nanzan-u.ac.jp

Mathematics

Nanzan University

18 Yamazato-cho, Showa-ku, Nagoya

466-8673 Japan