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1 Introduction and Preliminaries
We consider the nonlinear programming problem

r) Minimize f(z)
subject to g(z) 20,
where f and g are twice differentiable functions from R” into R and R™, respectively. Higher order duality

in nonlinear programming has been studied by many researchers. By introducing two differentiable
functions A : R x R” — R and k : R® x R® — R™, Mangasarian [4] formulated the higher order dual

(HD1)  Maximize F(u) + h(u,p) — y" g(u) — y"k(u, p)
subject to Vph(u,p) = VoyTk(u, p),
y=20,

where V,h(u,p) denotes the n x 1 gradient of h with respect to p and VyTk(u,p) denotes the n x 1
gradient of y7k with respect to p. Later, in [8], Mond and Weir formulated the conditions for which
duality holds between (P) and (HD1). They considered other higher order duals to (P), for instance,

(HD) Maximize f(u) + h(u,p) — pT Vph(u,p)
subject to Vph(u,p) = VuyT k(u,p),
¥:9i (u) + yiki(u, p) — p” Vpyiki(u,p) <0,
i=1,2,---,m,
y=20,

Also, Mond and Zhang [9] gave more general invexity type conditions under which duality holds between
(P) and (HD1), and (P) and (HD). The duality between (P) and a general higher order Mond-Weir dual
was established. In [6], Mishra and Rueda introduced the concepts of higher-order type I, pseudo-type I
and quasi-type I functions and established various higher-order duality results involving these functions.

Recently, Mishra and Rueda [5] considered higher order duality for nondifferentiable mathematical
programming problem. They formulated a number of higher order duals to a nondifferentiable program-
ming problem and established duality under the higher order generalized invexity conditions introduced
in [6].

In [11], Yang et al. extended the results in [5] to a class of nondifferentiable multiobjective pro-
gramming programs. A unified higher order dual model for nondifferentiable multiobjective programs
was presented, where every component of the objective function contains a term involving the support
function of a compact convex set.

Very recently, Kim et al.[2] formulated Mond-Weir and Wolfe type higher order dual models with
cone constraints. Weak, strong and converse duality theorems are established for an efficient solution by
using higher order generalized invexity conditions.
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We consider the following nondifferentiable multiobjective programming problem. we introduce the
nondifferentiable multiobjective problem involving cone constraints, where every component of the ob-
jective function contains a term involving the support function of a compact convex set.

(MCP)  Minimize f(z) + s(z|D)
= (fi(z) + s(z|D1), f2(z) + 8(z|D2), - - - , i) + s(z| D))
subject to —g(z) € C3, z € Cy,
where f : R® — R!, g : R® — R™, C) and C; are closed convex cones with nonempty interiors in
R™ and R™, respectively and Cj3 is polar cone of Cs.

Definition 1.1 (1)Fori=1,---,land j =1,--- ,m,(fi, g;) are said to be higher order type I at u with
respect to 0, if for all z, the following inequalities hold:
fi(@) ~ fi(u) 2 n(z, )T Vphi(u, p) + hi(u, p) — pT Vphi(u, p)
and
—g;(u) £ n(z, u)T Vpk;(u, p) + kj(u, p) — P Vpk;(u, p).
(2)Fori=1,---,land j =1,---,m,(fi,g;) are said to be higher order pseudo quasi type I at u with
respect to 0, if for all z, the following inequalities hold:
n(z, v)TVphi(u, p) 2 0 = fi(z) — fi(u) — hi(u, p) + T Vphi(u,p) 2 0
and
—g;(w) 2 k;(u,p) — p¥ Vok;(u, p) = n(z, u) Vpk;(u,p) 2 0.

Definition 1.2 Let F: S x S x R — R be a sublinear functional, p = (p1, p2) and d(-, ) be a metric on
R.

(1)Fori=1,---,land j = 1,---,m,(fi,g;) are said to be higher order (F,p) type I at u, if for all z,
the following inequalities hold:

fi(z) — fi(u) 2 F(z,u; Vphi(u,p)) + hi(u, p) — p7 Vphi(u, p) + prid(z, u)

and :

95(u) Z F (2, u; = Vpk;(u, p)) - k;(u, p) + 97 Vpk;(u, p) + p25d(z, u).
(2)Fori=1,---,land j=1,---,m,(fi,g;) are said to be higher order (F,p) pseudo quasi type I at u,
if for all z, the following inequalities hold:

F(z,u; Vphi(u, p)) 2 —prid(z, u)

= fi(z) — fi(u) — hi(u, p) + P Vphi(u,p) 2 0

and

9i(w) + k;j(u,p) — pT Vpk;(u,p) £ 0 = F(z,u; ~Vpk;(u, p)) £ —pa;d(z, u).

Definition 1.8 [7/ Let B be a compact convez set in R™. The support function s(x|B) of B is defined
by
8(z|B) := maz{zTy : y € B}.

The support function s(z|B), being convez and everywhere finite, has a subdifferential, that is, there exists
z such that

s(y|B) > s(x|B) + 2¥ (y — x) for all y € B.
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2 Duality Results
We propose the following dual problem (MMCD) to (MCP):

(MMCD)  Maximize fw) +uTw+ (ATh(u,p))e — pTV,(ATh(u,p))e
subject to  AT[V,h(u,p) +w]) = VpyTk(uy, p), (1)
g(w) + k(u, p) — p* Vpk(u, p) € C3, )
w; €D;,i=1,---,1,
y€Cz A>0, ATe=1,

where
(9)f : R® - R! and g : R — R™ are differentiable functions,
(#)C1 and C; are closed convex cones in R” and R™ with nonempty interiors,

respectively,

(#1)CT and C are polar cones of C; and Cy, respectively ,

(iv)e = (1,---,1)7 is vector in R,

(v)wi(i=1,---,1) is vector in R™ and D;(i = 1,---,1) is compact convex

set in R™, respectively,

(vi)h : R" x R™ — R' and &k : R® x R® — R™ are differentiable functions;
Vph;(u,p) and V,y" k(u, p) denote the n x 1 gradient of h; and y”k
with respect to p, respectively.

Now we establish the duality theorems between (MCP) and (MMCD).

Theorem 2.1 (Weak Duality) Let z and (u,y, A, w, p) be feasible solutions of (MCP) and (MMCD),
respectively. Assume that

(ATF() + ()Tw], yT g(-)) is higher order pseudo quasi type I with respect to n or

(@)(f: () + () Twi, y7g9()),i = 1,2, - - - 1, is higher order (F, p) type I with py + p2 20 or

(i) AT[£(-) + (-)Tw), yTg(")) is higher order (F,p) pseudo quasi type I with py + p2 2 0.

Then,

fi(@) + 8(2|Di) £ fi(w) +uTws + (ATh(y, p)) = pT Vp(ATh(x, ), for all i
and fi(z) + s(z|D;) < fi(u) + vwTw; + (\Th(u, p)) — T V(AT h(u,p)), for some i.

Proof. Assume to the contrary that
f(z) + s(z|D) < f(u) + uTw + (AT h(u, p))e — p* V(AT h(u, p))e.
Since A > 0,
N{f(@) + s(z| D)) < AT[f(w) + uTw] + N h(u, p) — p"V, AT h(u, p). (3)
(1)Since y € C; and the constraint (2), we obtain y7 [g(u) + &(u, p) — pTVpk(u, p)] £ 0. By the assumption
(1), we get
n(z,u)" Vpy" k(u,p) Z 0.

From the constraint (1), the above inequality implies

n(z, w)TAT [V h(u,p) +w] 2 0.



Also, by the assumption (i), we have
N[ f(z) + 27w] 2 XT[f(u) + uTw] + XTh(u, p) — T VpXTh(y, p).
Using the fact that f(z) + s(z|D) 2 f(z) + 27w, it becomes
N[f(z) + s(z|D)] 2 AT[f(u) + uTw] + AT h(u, p) — p" VAT h(y, p).

which contradicts (3).
(ii)By the assumption (ii), we have

M f(z) + zTw] - AT(f(u) + uTw] — ATh(u,p) + pTVpATh(u, D)
2 F(z,u; Vo ATh(u,p) + ATw) + AT prd(z,u) and

yTg(u) + yTk(u,p) — 0" Vi k(u, )
2 F(z,u; —Vpy k(u,p)) + p2d(z, u).

Summing (4) and (5), and using sublinearity of F(z,u;-), we have
(AT @) + 27wl = AT[f(w) +uTw] = ATh(w,p) + BT VpATh(u, 7))

+(y79(w) + v k(. p) - " Vot k(u, )
2 F(z,u; VpATh(u,p) + ATw — VT k(u, p))
+(AT p1 + p2)d(z, u).

Using the fact that s(z|D) = zTw and (1), above inequality becomes

M[f(z) + s(z|D)] — /\T[f(u) + uTw] — ATh(u, p) + pTVpATh(u, p)
2 —y"g(u) — yTk(u,p) + P VT k(u, ).
20, (by(2))

which contradicts (3).
(iii)Since s(z|D) = zTw, (3) implies,

AT[f(z) + =Tw]) < AT[f(u) + uTw] + AT h(u, p) — pT VAT h(u, p).
By assumption (iii), it yields
F(z,u; VAT h(u,p) + ATw) < —prd(z, u).

Since y € C2 and (2), we get
y" [g(w) + k(u, p) — p* Vpk(u, p)] < 0.

By assumption (iii), it yields
F(z,u; —VpyTk(u,p)) £ —p2d(z, u).
Hence (6), (7), sublinearity of F' and p; + p2 2 0, then we have
F(z,u; Vp)\Th(u, p) + AMTw — VpyTk(u, p)) <0,
which is a contradiction, since F(z,u;0) = 0.

We obtain the following lemma from [1] and [7] in order to prove strong duality theorem.

20
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Lemma 2.1 IfZ is a weakly eﬁiczent solution of (MCP) at which constraint qualification [3] be satisfied.
Then there exist @; € Di(i = 1,---,1), x> 0 and § € Cy with (X, 7) # 0 such that

N (ViZE) +T) - ViTe@)|T(z ~2) 20, forall z€Ch,

7 9(@) =
W; € D;, 8(T|D;)=F"w;, i=1,-,L

Theorem 2.2 (Strong Duality) Let T be a weakly efficient solution of (MCP) at which constraint
qualification [3] be satisfied. Let

h(Z,0) = 0, k(Z,0) = 0, V,h(Z,0) = Vf(T), V,pk(Z,0)= Vg(Z). (8)

Then there exist A > 0, § € Cy and @; € Di(i = 1,---,1) such that (Z,7, )\, W, = 0) is feasible for
(MMCD) and the objective values of (MCP) and (MMCD) are equal. If the assumptions of Theorem
2.1 are satisfied, then (Z,7, N, W,P = 0) is a weakly efficient solution of (MMCD).

Proof. Since 7 is a weakly efficient solution of (MCP), by Lemma 2.1, then there exist W; € D;,i =
,{, A> 0 and § € C; with (X,7) # 0 such that

(V@) +D) -FFVg@E) (@ -7) 20, forall zeC, (9)
7 9(z) =0, (10)
s(Z|D;) =xTw;, i=1,---,1. (11)

Since z € C1, Z € C; and C is a closed convex cone, we have z + T € C; and thus the inequality (9)
implies

AT (V@) + D) -7 Ve@)Tz 20, forall zeCy,
ie.,
T
X (V@) +®) -7 V(@) =
And (10) implies 77 g(Z) < 0, then g(Z) € Cj. Clearly, using (8) and (11), (Z,7, X\, W,p = 0) is feasible for

(MMCD) and corresponding values of (MCP) and (MMCD) are equal. If the assumptions of Theorem
2.1 are satisfied, then (Z,7, A, @, = 0) is a weakly efficient solution of (MMCD) O

Theorem 2.3 (Converse Duality) Let (7,7, A, w,5) be a weakly efficient solution of (MMCD). As-
sume that

(1)h(@,0) = 0, k(T,0) =0, V,h(g,0) = Vf(@), V,k(7,0) = Vg(n),

(16)V [V -XTh( P) — Vuka(u D)] is positive or negative definite and

(iii)the set of vectors {[Vpp,\ h(@,D)|;, [Vppki(@,D)]j, i =1,---,m, j=1,---,n} are linearly indepen-
dent, where {Vpp,\ h(w,p)]; is the j-th row of the matriz Vm,)‘ h(,p) and [Vppki(G,D)]; is the j-th row
of the matriz V ok, (4, D).

Then U is feasible for (MCP) and the objective values of (MCP) and (MMCD) are equal. If the
assumptions of Theorem 2.1 are satisfied, then T is a weakly efficient solution of (MCP).

Proof. Since (%,7, \, @, D) is a weakly efficient solution of (MMCD), by modifying the Fritz John
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optimality condition, then there exist a € Rﬂ_, BERY, peCr,0€Csand p€ Rﬂ, such that
aT[Vuf(@) + T + VX h(T,B)e — BXVpuh- h(T, el
=T S _ —
~BT [VpuX h(5,P) — VpuT" k(T, D))

—uT[Vug(B) + Vuk(@, D) — B* Vpuk(%,P)] = 0, (12)
BTV k(4,p) — 6 =0, (13)
o [h(@, P)e — BT Vyph(T, P)e] — 87 [Vph(,P) +B) +p = 0, (14)
a?ﬁ—ﬂTxi € ND‘-(U,'), i= 1:"' al7 (15)
[(0Te)p+ BT VepX h(E,B) — [(67F) + (17D)|TVppk(T,B) = 0, (16)
BT (Voh(T,B) + ) ~ V77 k(T, )] =0, (17)
uT [g(@) + k(B,B) — BT Vpk(, )] =0, (18)
§Tg =0, (19)
pTA=0, (20)
(@, B,p,0,p) # 0. (21)

By the assumption (iii), (16) implies that
(aTe)p+B=0 and (677)+ (u"P) =0. (22)

Also, using (22) in (12), we have

aT[Vuf(@) +B + Vuk h(T,B)e] — uT[Vug(@) + Vouk(T, )] = 0. (23)

Multiplying (23) by § and using (22), we obtain
BTV F@) + X T+ VuX (T, B)] - (679)7[Vug(®) + Vuk(T, P)] = 0,

that is,
BTV X £(@) + X B+ Vud h(E,B) — VuiT9(@) — VuTTk(@,5)) = 0. (24)
Differentiating (24) with respect to B, it follows that
=T
BTV[VuX h(%,P) — VuF k(@,P)] = 0. (25)

Multiplying (25) by 3, it follows that
=T, ,__ _ ! o
BTVoVuX h(7,D)) — Vg k(w,5))]8 = 0.

By the assumption (ii), it implies that 8 = 0. So, (22) yields (@Te)p = 0 and u7p = 0. If & = 0
and g = 0, then from (13) and (14), § = 0 and p = 0. This contradicts (21). Hence p = 0. Using
7 = 0 and the assumption (i), (18) yields uT g(@) = 0, which implies uTg(@) 2 0. Since u € C2, we get
—g(@) € C3. Thus, U is a feasible solution of (MCP). From (15), @ € Np,(w;), i = 1,---,1, so that
alw; = s(@|D;),i =1,---,l. Therefore, The corresponding value of (MCP) and (MMCD) are equal,
because of = 0 and the assumption (i). Moreover, By Theorem 2.1, it follows that @ is & weakly efficient
solution of (MCP). O

Also, we consider the following Wolfe dual problem (MWCD) to (MCP):

(MWCD) Maximize f(u) + uTw + (AT h(y, p))e — pT V(AT h(u, p))e
—y7 [g(u) + k(u, ) — pT Vok(u, p)le
subject to  AT[Vph(u,p) + w] = VpyTk(u, p), (26)

w‘ieDi’ i=1v"',17
y€Cs A>0, Me=1,

By using the similar method, we can establish the weak, strong and converse duality theorems between
(MCP) and (MWCD).
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3 Special Cases

We give some special cases of our duality.

KC, =R}, Co=RPand D;={0},i=1,---,l,

()h(u,p) = pTV f(u) and k(u,p) = TVg(u), then (MWCD) becomes the first order dual program in
Wolfe [10],

(i)A(u, p) = pTV f(u) + 3pT V2 f(u)p and k(u, p) = p? Vg(u) + 1pT V2g(u)p, then we obtain second order
dual programs which studied by Mangasarian [4].

(iii)then our primal and dual models become dual programs considered in Zhang [12].

(iv)then our primal and dual model (MWCD) become dual programs considered in Mangasarian [4].
(v)l = 1, then our dual programs become dual programs considered in Mond and Zhang [9].

(vi)Let 01 R%, Co =R, 1 =1and D € R® x R™ be positive semidefinite symmetric matrix. If
s(z|D) = (7 Bz)* where D = { Bw|wT Bw < 1}, then we get higher order dual programs which studied
by Mishra and Rueda [5].

(vii)If C1 = R} and C; = R7, then our primal and dual model become dual programs considered in
Yang et al. [11].

(viii)If D; = {0},i=1,---,!, then (MMCD) and (MWCD) reduced the pair of Mond-Weir and Wolfe
type programs considered in D.S. Kim et al.[2].
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