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ON ALMOST CONVERGENCE FOR VECTOR-VALUED
FUNCTIONS AND ITS APPLICATION

HIROMICHI MIYAKE (=% Hi&)

1. INTRODUCTION

In 1948, Lorentz [11] introduced a notion of almost convergence for
bounded sequences of real numbers: Let {z,} be a bounded sequence
of real numbers. Then, {z,} is said to be almost convergent if

pin(Zn) = Vn(Tn)

for any Banach limits u and v. Day [6] defined a notion of almost
convergence for bounded real-valued functions defined on an amenable
semigroup.

On the other hand, von Neumann [15] introduced a notion of almost
periodicity for bounded real-valued functions defined on a group and
proved the existence of the mean values for those functions. Later,
Bochner and von Neumann [3] proved the existence of the mean values
for vector-valued almost periodic functions defined on a group with
values in a locally convex space. Recently, Miyake and Takahashi [13,
14] proved the existence of the mean values for vector-valued almost
periodic functions defined on an amenable semigroup and obtained non-
linear mean ergodic theorems for transformation semigroups of various
types.

In this paper, we announce some results recently obtained in study-
ing on almost convergence for vector-valued functions defined on an
amenable semigroup with values in a locally convex space. First, moti-
vated by the work of Lorentz, we introduce a notion of almost conver-
gence for those functions and obtain characterizations of vector-valued
almost convergent functions. Next, we introduce a notion of the mean
values for those functions defined on a semigroup without assumption
of amenability and prove characterizations of the space of bounded
real-valued functions defined on a semigroup. Finally, by study on al-
most convergence for commutative semigroups of non-linear mappings,
we prove mean ergodic theorems for non-Lipschitzian asymptotically
isometric semigroups of continuous self-mappings of a compact convex
subset of a general Banach space.



2. PRELIMINARIES

Throughout this paper, we denote by S a semigroup with identity
and by E a locally convex topological vector space (or l.c.s.). We also
denote by R; and N, the set of non-negative real numbers and the
set of non-negative integers, respectively. Let (E, F) be the duality
between vector spaces E and F. For each y € F, we define a linear
functional f, on E by f,(z) = (z,y). We denote by o(E, F) the weak
topology on E generated by {f, : y € F}. E, denotes a l.c.s. E with
the weak topology o(E,E’). If X is a l.c.s., we denote by X’ the
topological dual of X. We also denote by (-,-) the canonical bilinear
form between E and E’, that is, for z € E and 2’ € E', (z,2’) is the
value of 2’ at z.

We denote by [*°(S) the Banach space of bounded real-valued func-
tions on S. For each s € S, we define operators I(s) and r(s) on I%°(S)

by
U))@)) = f(st) and (r(s)f)(t) = f(ts)

for each t € § and f € I*°(S), respectively. A subspace X of [®(S) is
said to be translation invariant if I(s)X C X and r(s)X C X for each
s € S. Let X be a subspace of [*°(S) which contains constants. A linear
functional ¢ on X is said to be a mean on X if ||ul| = u(e) = 1, where
e(s) = 1 for each s € S. We often write u, f(s) instead of u(f) for each
f € X. For s € S, we define a point evaluation &, by 6,(f) = f(s)
for each f € X. A convex combination of point evaluations is called a
finite mean on S. As is well known, p is a mean on X if and only if

inf f(s) < p(f) < sup f(s)
s seS

for each f € X; see Day [6] and Takahashi [22] for more details. Let X
be also translation invariant. Then, a mean p on X is said to be left (or
right) invariant if p(l(s)f) = pu(f) (or u(r(s)f) = u(f)) for each s € S
and f € X. A mean y on X is said to be invariant if u is both left and
right invariant. If there exists a left (or right) invariant mean on X,
then X is said to be left (or right) amenable. If X is also left and right
amenable, then X is said to be amenable. We know from Day [6] that
if S is commutative, then X is amenable. Let {u,} be a net of means
on X. Then {y,} is said to be asymptotically invariant (or strongly
regular) if for each s € S, both I(s) q — pie and r(s) po — e converge
to 0 in the weak topology o(X’, X') (or the norm topology), where I(s)’
and r(s)’ are the adjoint operators of I(s) and 7(s), respectively. Such
nets were first studied by Day [6].

We denote by {*°(S, E') the vector space of vector-valued functions
defined on S with values in E such that for each f € [®(S, E), f(S) =
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{f(s) : s € S} is bounded. Let i is a neighborhood base of 0 in F
and let M(V) = {f € I*°(S,E) : f(S) c V} for each V € L. A family
B ={M(V):V € i} is a filter base in [*(S, E). Then, I*°(S, E) is
a l.c.s. with the topology ¥ of uniform convergence on S that has a
neighborhood base B of 0. For each s € S, we define the operators
R(s) and L(s) on (S, E) by

(R(s)f)(t) = f(ts) and (L(s)f)(t) = f(st)

for each t € S and f € [®(S, E), respectively. Let f € I°(S, E).
We denote by RO(f) the right orbit of f, that is, the set {R(s)f €
[®(S, E) : s € S} of right translates of f. Similarly, we also denote by
LO(f) the left orbit of f, that is, the set {L(s)f € [*(S, E) : s € S} of
left translates of f. A subspace = of [*°(S, F) is said to be translation
invariant if L(s)2 C Z and R(s)E C E for each s € S. Let = be
a subspace of [°(S, F) which contains constant functions. For each
s € S, we define a (vector-valued) point evaluation A, by Ay(f) = f(s)
for each f € I>°(S,E). A convex combination of vector-valued point
evaluations is said to be a (vector-valued) finite mean. A mapping M
of Z into E is called a vector-valued mean on = if M is contained in
the closure of convex hull of {4, : s € S} in the product space (E,)=.
Then, a vector-valued mean M on Z is a linear continuous mapping of
= into E such that (i) Mp = p for each constant function p in Z, and (ii)
M(f) is contained in the closure of convex hull of f(S) for each f € E.
We denote by @z the set of vector-valued means on =. Let E be also
translation invariant. Then, a vector-valued mean M on = is said to be
left (or right) invariant if M(L(s)f) = M(f) (or M(R(s)f) = M(f))
for each s € S and f € E. A vector-valued mean M on = is said to
be invariant if M is both left and right invariant. Let f € = and let
M be a vector-valued mean on Z. We define a vector-valued function
M.f € I®(S,E) by (M.f)(s) = M(L(s)f) for each s € S. Then, Z is
said to be introverted if for each f € = and vector-valued mean M on
=, M.f is contained in =.

We also denote by I°(S, E) the subspace of [°(S, E) such that for
each f € [®(S, E), f(S) is relatively weakly compact in E. Let X be a
subspace of [°°(S) containing constants such that for each f € I3°(S, E)
and z' € F', a function s — (f(s),z’) is contained in X. Such an X is
called admissible. Let u € X’'. Then, for each f € I2°(S, E), we define
a linear functional 7(x)f on E' by

() f ' = p(f(-),z').

It follows from the bipolar theorem that 7(u)f is contained in E. A
mapping 7 of X’ onto ®(s,k) is linear and continuous where X’ is



equipped with the weak topology o(X’, X). Then, for each mean u
on X, 7(u) is a vector-valued mean on I°(S, E) (generated by u).
Conversely, every vector-valued mean on [°(S, E) is also a vector-
valued mean in the sense of Goldberg and Irwin [8], that is, for each
M € ®;(s,5), there exists a mean y on X such that 7(u) = M. Note
that ®j(s,k) is compact and convex in (E,)% (58); see also Day [6],
Takahashi [20, 22] and Kada and Takahashi [10]. Let X be also trans-
lation invariant and amenable. If y is a left (or right) invariant mean
on X, then 7(u) is also left (or right) invariant. Conversely, if M is
a left (or right) invariant vector-valued mean on (S, E), then there
exists a left (or right) invariant mean u on X such that 7(u) = M.
Let C be a closed convex subset of a l.c.s. E and let § be the semi-
group of continuous self-mappings of C under operator multiplication.
If T is a semigroup homomorphism of S into §, then 7 is said to be a
representation of S as continuous self-mappings of C. Let § = {T'(s) :
s € S} be a representation of S as continuous self-mappings of C such
that for each z € C, the orbit O(z) = {T(s)z : s € S} of z under S
is relatively weakly compact in C' and let X be a subspace of 1®°(S)
containing constants such that for each z € C and 2’ € F’, a function
s+ (T'(s)z,z’) is contained in X. Such an X is called admissible with
respect to S. If no confusion will occur, then X is simply called admis-
sible. Let p € X’. Then, there exists a unique point zo of E such that
u{T(-)z,z') = (xo, ') for each ' € E’. We denote such a point z, by
T(p)z. Note that if p is a mean on X, then for each z € C, T(u)z is
contained in the closure of convex hull of the orbit O(z) of  under S.

3. ON ALMOST CONVERGENCE FOR VECTOR-VALUED FUNCTIONS

Motivated by the work of Lorentz [11], we introduce a notion of al-
most convergence for vector-valued functions defined on a left amenable
semigroup with values in a locally convex space and also obtain char-
acterizations of almost convergence for those functions.

Definition 1. Let S be left amenable and let f € I2°(S, E). Then, f
is said to be almost convergent in the sense of Lorentz if

) f =1(W)f
for any left invariant means y and v on [*°(S). Note that f is almost

convergent in the sense of Lorentz if and only if M(f) = N(f) for any
left invariant vector-valued means on M and N on (S, E).

Theorem 1. Let S be left amenable and let f € I°(S, E). Then, the
following are equivalent:

(i) f is almost convergent in the sense of Lorentz;
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(ii) the closure K of convez hull of RO(f) contains ezactly one
constant function in the topology T, of weakly pointwise con-
vergence on S;

(iii) for each function g € K, the T,yp-closure of convez hull of RO(g)
contains ezactly one constant function.

Theorem 2. Let S be commutative, let f € I2°(S, E) and let X be a
closed, translation invariant and admissible subspace of [°(S) contain-
ing constant functions. Then, the following are equivalent:

(i) f is almost convergent in the sense of Lorentz;

(ii) there exists a strongly regular net {\,} of finite means such
that {7()\a).f} converges in the topology 7., of weakly uniform
convergence on S,

(iii) for each strongly regular net {u.} of means on X, {7(pa)-f}
converges in the topology Ty..

Next, we introduce a notion of the mean value for bounded vector-
valued functions defined on a semigroup without assumption of amen-
ability and also obtain characterizations of the space of bounded real-
valued functions defined on a semigroup which have the mean values.

Definition 2. Let f € [*°(S, E) and let K be the closure of convex
hull of RO(f) in the topology 7y, of weakly pointwise convergence on
S. If for each function g in K, the 7,,-closure of convex hull of RO(g)
contains exactly one constant function with value p, then p is said to
be the mean value of f; see also von Neumann [15], Bochner and von
Neumann [3] and Miyake and Takahashi [13]. In particular, if S is
commutative, then it follows from Theorem 1 that f € I3°(S, F) has
the mean value if and only if the 7,,-closure of convex hull of RO(f)
contains exactly one constant function. We denote by AC(S) the set
of bounded real-valued functions defined on S with the mean values.

As in similar arguments of Lemma 1 (the localization theorem) in [9],
we obtain some characterizations of the space of bounded real-valued
functions defined on a semigroup with the mean values.

Proposition 1. AC(S) is a translation invariant and introverted sub-
space of 1°(S) containing constant functions.

Note that it follows from Theorem 1 that if S is left amenable, then
AC(S) is the subspace of [*°(S) consisting of bounded real-valued func-
tions defined on S which are almost convergent in the sense of Lorentz.

Theorem 3. AC(S) is amenable and has a unigue invariant mean .
In this case, p is also a unique left invariant mean on AC(S).



Theorem 4. AC(S) is a mazimum translation invariant and intro-
verted subspace of [°(S) containing constant functions which has a
unique left invariant mean, ordered by set inclusion.

Theorem 5. If S is commutative, then AC(S) is a mazimum trans-
lation invariant subspace of I°(S) containing constant functions which
has a unique invariant mean, ordered by set inclusion.

4. APPLICATIONS

By studying on almost convergence in the sense of Lorentz for com-
mutative semigroups of non-linear mappings, we prove mean ergodic
theorems for non-Lipschitzian asymptotically isometric semigroups of
continuous mappings in general Banach spaces. The following lemma
is crucial for proving our results.

Lemma 1. Let S be commutative and let f € I2°(S, E). If the closure
of convex hull of RO(f) contains a constant function with value p in
the topology of uniform convergence on S, then f is almost convergent
in the sense of Lorentz (equivalently, f has the mean value p.)

Definition 3. Let S be commutative and let S = {T'(s) : s € S} be a
representation of S as continuous mappings of a closed convex subset
C of a Banach space E into itself. Then, S is said to be asymptotically
1sometric on C if, for each z € C,

1161151 |T(s+ k)x — T(s+ h)z|| exists uniformly in k,h € S.

See Bruck [4] and Kada and Takahashi [10].

Definition 4. Let S be left amenable and let S = {T(s) : s € S}
be a representation of S as continuous mappings of a weakly compact
convex subset C' of E into itself and define a mapping ¢s of C into
I(S, E) by (¢s(z))(s) = T(s)z for each s € S. Then, a representation
S is said to be almost convergent in the sense of Lorentz if, for each
z € C, ¢s(z) has the mean value p,. Such a point p, is also said to be
the mean value of z under S.

Theorem 6. Let S be commutative, let C be a compact convex subset
of a Banach space E, let S = {T(s) : s € S} be an asymptotically iso-
metric representation of S as continuous mappings of C into itself, let
X be a closed, translation invariant and admissible subspace of [°(S)
containing constants and let {uy} be a strongly regular net of means on
X. Then, S is almost convergent in the sense of Lorentz, that is, for
each x € C, {T(l(h) pa)z} converges to the mean value p, of x under
S in C uniformly in h € S. In this case, p = T(u)x for each invariant
mean u on X.
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Remark 1. Note that the mean value T'(u)z of x under S is not always
a common fixed point for S. It is known in [19] that there exists a
nonexpansive mapping T of C into itself such that for some z € C, its
Cesaro means {1/n Zz;é T*z} converge, but its limit point is not a
fixed point of T'; see also Edelstein [7], Bruck [5], Atsushiba and Taka-
hashi [1], Atsushiba, Lau and Takahashi [2], Miyake and Takahashi [13]
and Miyake and Takahashi [14]. We conjecture in Theorem 6 that if a
Banach space F is strictly convex, then the mean value p, of z under
S is a common fixed point for S, that is, T'(s)p, = p, for each s € S.

For example, the following corollaries are the case when S is a set of
the non-negative integers or real numbers.

Corollary 1. Let C be a compact convez subset of a Banach space, let
T be a continuous mapping of C into itself such that lim,_,o, ||T™ %z —
T™+hz|| exists uniformly in k,h € N,. Then, for each x € C, the

Cesaro means
1 n—1
- § :Tz—f-hw
n =0

converge to the mean value of x under T in C uniformly in h € N,..

Corollary 2. Let C be a compact convez subset of a Banach space and
let S = {T(t) : t € R} be an asymptotically isometric one-parameter
semigroup of continuous mappings of C into itself. Then, for each
z € C, the Bohr means

¢
! / T(t+ h)z dt
t Jo

converge to the mean value of x under S in C uniformly in h € R, as
t — +o0.

Corollary 3. Let C be a compact convex subset of a Banach space and
let S = {T(t) :t € R.} be an asymptotically isometric one-parameter
semigroup of continuous mappings of C into itself. Then, for each
z € C, the Abel means

o0
r / exp(—rt)T(t + h)x dt
0

converge to the mean value of t under S in C uniformly in h € R, as
T — +00.
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