ON ALMOST CONVERGENCE FOR VECTOR-VALUED FUNCTIONS AND ITS APPLICATION

HIROMICHI MIYAKE (三宅 啓道)

1. Introduction

In 1948, Lorentz [11] introduced a notion of almost convergence for bounded sequences of real numbers: Let $\{x_n\}$ be a bounded sequence of real numbers. Then, $\{x_n\}$ is said to be almost convergent if

$$\mu_n(x_n) = \nu_n(x_n)$$

for any Banach limits μ and ν . Day [6] defined a notion of almost convergence for bounded real-valued functions defined on an amenable semigroup.

On the other hand, von Neumann [15] introduced a notion of almost periodicity for bounded real-valued functions defined on a group and proved the existence of the mean values for those functions. Later, Bochner and von Neumann [3] proved the existence of the mean values for vector-valued almost periodic functions defined on a group with values in a locally convex space. Recently, Miyake and Takahashi [13, 14] proved the existence of the mean values for vector-valued almost periodic functions defined on an amenable semigroup and obtained non-linear mean ergodic theorems for transformation semigroups of various types.

In this paper, we announce some results recently obtained in studying on almost convergence for vector-valued functions defined on an amenable semigroup with values in a locally convex space. First, motivated by the work of Lorentz, we introduce a notion of almost convergence for those functions and obtain characterizations of vector-valued almost convergent functions. Next, we introduce a notion of the mean values for those functions defined on a semigroup without assumption of amenability and prove characterizations of the space of bounded real-valued functions defined on a semigroup. Finally, by study on almost convergence for commutative semigroups of non-linear mappings, we prove mean ergodic theorems for non-Lipschitzian asymptotically isometric semigroups of continuous self-mappings of a compact convex subset of a general Banach space.

2. Preliminaries

Throughout this paper, we denote by S a semigroup with identity and by E a locally convex topological vector space (or l.c.s.). We also denote by \mathbb{R}_+ and \mathbb{N}_+ the set of non-negative real numbers and the set of non-negative integers, respectively. Let $\langle E, F \rangle$ be the duality between vector spaces E and F. For each $y \in F$, we define a linear functional f_y on E by $f_y(x) = \langle x, y \rangle$. We denote by $\sigma(E, F)$ the weak topology on E generated by $\{f_y : y \in F\}$. E_{σ} denotes a l.c.s. E with the weak topology $\sigma(E, E')$. If E is a l.c.s., we denote by E the topological dual of E. We also denote by E and E the canonical bilinear form between E and E, that is, for E and E and E is the value of E and E.

We denote by $l^{\infty}(S)$ the Banach space of bounded real-valued functions on S. For each $s \in S$, we define operators l(s) and r(s) on $l^{\infty}(S)$ by

$$(l(s)f)(t) = f(st)$$
 and $(r(s)f)(t) = f(ts)$

for each $t \in S$ and $f \in l^{\infty}(S)$, respectively. A subspace X of $l^{\infty}(S)$ is said to be translation invariant if $l(s)X \subset X$ and $r(s)X \subset X$ for each $s \in S$. Let X be a subspace of $l^{\infty}(S)$ which contains constants. A linear functional μ on X is said to be a mean on X if $\|\mu\| = \mu(e) = 1$, where e(s) = 1 for each $s \in S$. We often write $\mu_s f(s)$ instead of $\mu(f)$ for each $f \in X$. For $s \in S$, we define a point evaluation δ_s by $\delta_s(f) = f(s)$ for each $f \in X$. A convex combination of point evaluations is called a finite mean on S. As is well known, μ is a mean on X if and only if

$$\inf_{s \in S} f(s) \leq \mu(f) \leq \sup_{s \in S} f(s)$$

for each $f \in X$; see Day [6] and Takahashi [22] for more details. Let X be also translation invariant. Then, a mean μ on X is said to be left (or right) invariant if $\mu(l(s)f) = \mu(f)$ (or $\mu(r(s)f) = \mu(f)$) for each $s \in S$ and $f \in X$. A mean μ on X is said to be invariant if μ is both left and right invariant. If there exists a left (or right) invariant mean on X, then X is said to be left (or right) amenable. If X is also left and right amenable, then X is said to be amenable. We know from Day [6] that if S is commutative, then X is amenable. Let $\{\mu_{\alpha}\}$ be a net of means on X. Then $\{\mu_{\alpha}\}$ is said to be asymptotically invariant (or strongly regular) if for each $s \in S$, both $l(s)'\mu_{\alpha} - \mu_{\alpha}$ and $r(s)'\mu_{\alpha} - \mu_{\alpha}$ converge to 0 in the weak topology $\sigma(X', X)$ (or the norm topology), where l(s)' and r(s)' are the adjoint operators of l(s) and r(s), respectively. Such nets were first studied by Day [6].

We denote by $l^{\infty}(S, E)$ the vector space of vector-valued functions defined on S with values in E such that for each $f \in l^{\infty}(S, E)$, f(S) =

 $\{f(s): s \in S\}$ is bounded. Let \mathfrak{U} is a neighborhood base of 0 in E and let $M(V) = \{f \in l^{\infty}(S, E): f(S) \subset V\}$ for each $V \in \mathfrak{U}$. A family $\mathfrak{B} = \{M(V): V \in \mathfrak{U}\}$ is a filter base in $l^{\infty}(S, E)$. Then, $l^{\infty}(S, E)$ is a l.c.s. with the topology \mathfrak{T} of uniform convergence on S that has a neighborhood base \mathfrak{B} of 0. For each $s \in S$, we define the operators R(s) and L(s) on $l^{\infty}(S, E)$ by

$$(R(s)f)(t) = f(ts)$$
 and $(L(s)f)(t) = f(st)$

for each $t \in S$ and $f \in l^{\infty}(S, E)$, respectively. Let $f \in l^{\infty}(S, E)$. We denote by $\mathcal{RO}(f)$ the right orbit of f, that is, the set $\{R(s)f\in$ $l^{\infty}(S, E): s \in S$ of right translates of f. Similarly, we also denote by $\mathcal{LO}(f)$ the left orbit of f, that is, the set $\{L(s)f \in l^{\infty}(S,E) : s \in S\}$ of left translates of f. A subspace Ξ of $l^{\infty}(S, E)$ is said to be translation invariant if $L(s)\Xi \subset \Xi$ and $R(s)\Xi \subset \Xi$ for each $s \in S$. Let Ξ be a subspace of $l^{\infty}(S, E)$ which contains constant functions. For each $s \in S$, we define a (vector-valued) point evaluation Δ_s by $\Delta_s(f) = f(s)$ for each $f \in l^{\infty}(S, E)$. A convex combination of vector-valued point evaluations is said to be a (vector-valued) finite mean. A mapping M of Ξ into E is called a vector-valued mean on Ξ if M is contained in the closure of convex hull of $\{\Delta_s : s \in S\}$ in the product space $(E_{\sigma})^{\Xi}$. Then, a vector-valued mean M on Ξ is a linear continuous mapping of Ξ into E such that (i) Mp = p for each constant function p in Ξ , and (ii) M(f) is contained in the closure of convex hull of f(S) for each $f \in \Xi$. We denote by Φ_{Ξ} the set of vector-valued means on Ξ . Let Ξ be also translation invariant. Then, a vector-valued mean M on Ξ is said to be left (or right) invariant if M(L(s)f) = M(f) (or M(R(s)f) = M(f)) for each $s \in S$ and $f \in \Xi$. A vector-valued mean M on Ξ is said to be invariant if M is both left and right invariant. Let $f \in \Xi$ and let M be a vector-valued mean on Ξ . We define a vector-valued function $M.f \in l^{\infty}(S, E)$ by (M.f)(s) = M(L(s)f) for each $s \in S$. Then, Ξ is said to be introverted if for each $f \in \Xi$ and vector-valued mean M on Ξ , M.f is contained in Ξ .

We also denote by $l_c^{\infty}(S, E)$ the subspace of $l^{\infty}(S, E)$ such that for each $f \in l_c^{\infty}(S, E)$, f(S) is relatively weakly compact in E. Let X be a subspace of $l^{\infty}(S)$ containing constants such that for each $f \in l_c^{\infty}(S, E)$ and $x' \in E'$, a function $s \mapsto \langle f(s), x' \rangle$ is contained in X. Such an X is called admissible. Let $\mu \in X'$. Then, for each $f \in l_c^{\infty}(S, E)$, we define a linear functional $\tau(\mu)f$ on E' by

$$\tau(\mu)f: x' \mapsto \mu\langle f(\cdot), x' \rangle.$$

It follows from the bipolar theorem that $\tau(\mu)f$ is contained in E. A mapping τ of X' onto $\Phi_{l_{\infty}(S,E)}$ is linear and continuous where X' is

equipped with the weak topology $\sigma(X',X)$. Then, for each mean μ on X, $\tau(\mu)$ is a vector-valued mean on $l_c^{\infty}(S,E)$ (generated by μ). Conversely, every vector-valued mean on $l_c^{\infty}(S,E)$ is also a vector-valued mean in the sense of Goldberg and Irwin [8], that is, for each $M \in \Phi_{l_c^{\infty}(S,E)}$, there exists a mean μ on X such that $\tau(\mu) = M$. Note that $\Phi_{l_c^{\infty}(S,E)}$ is compact and convex in $(E_{\sigma})^{l_c^{\infty}(S,E)}$; see also Day [6], Takahashi [20, 22] and Kada and Takahashi [10]. Let X be also translation invariant and amenable. If μ is a left (or right) invariant mean on X, then $\tau(\mu)$ is also left (or right) invariant. Conversely, if M is a left (or right) invariant vector-valued mean on $l_c^{\infty}(S,E)$, then there exists a left (or right) invariant mean μ on X such that $\tau(\mu) = M$.

Let C be a closed convex subset of a l.c.s. E and let $\mathfrak F$ be the semi-group of continuous self-mappings of C under operator multiplication. If T is a semigroup homomorphism of S into $\mathfrak F$, then T is said to be a representation of S as continuous self-mappings of C. Let $S = \{T(s) : s \in S\}$ be a representation of S as continuous self-mappings of C such that for each $x \in C$, the orbit $\mathcal O(x) = \{T(s)x : s \in S\}$ of x under S is relatively weakly compact in C and let X be a subspace of $l^{\infty}(S)$ containing constants such that for each $x \in C$ and $x' \in E'$, a function $s \mapsto \langle T(s)x, x' \rangle$ is contained in X. Such an X is called admissible with respect to S. If no confusion will occur, then X is simply called admissible. Let $\mu \in X'$. Then, there exists a unique point x_0 of E such that $\mu\langle T(\cdot)x, x' \rangle = \langle x_0, x' \rangle$ for each $x' \in E'$. We denote such a point x_0 by $T(\mu)x$. Note that if μ is a mean on X, then for each $x \in C$, $T(\mu)x$ is contained in the closure of convex hull of the orbit $\mathcal O(x)$ of x under S.

3. On almost convergence for vector-valued functions

Motivated by the work of Lorentz [11], we introduce a notion of almost convergence for vector-valued functions defined on a left amenable semigroup with values in a locally convex space and also obtain characterizations of almost convergence for those functions.

Definition 1. Let S be left amenable and let $f \in l_c^{\infty}(S, E)$. Then, f is said to be almost convergent in the sense of Lorentz if

$$\tau(\mu)f = \tau(\nu)f$$

for any left invariant means μ and ν on $l^{\infty}(S)$. Note that f is almost convergent in the sense of Lorentz if and only if M(f) = N(f) for any left invariant vector-valued means on M and N on $l^{\infty}_{c}(S, E)$.

Theorem 1. Let S be left amenable and let $f \in l_c^{\infty}(S, E)$. Then, the following are equivalent:

(i) f is almost convergent in the sense of Lorentz;

- (ii) the closure K of convex hull of $\mathcal{RO}(f)$ contains exactly one constant function in the topology τ_{wp} of weakly pointwise convergence on S;
- (iii) for each function $g \in \mathcal{K}$, the τ_{wp} -closure of convex hull of $\mathcal{RO}(g)$ contains exactly one constant function.

Theorem 2. Let S be commutative, let $f \in l_c^{\infty}(S, E)$ and let X be a closed, translation invariant and admissible subspace of $l^{\infty}(S)$ containing constant functions. Then, the following are equivalent:

- (i) f is almost convergent in the sense of Lorentz;
- (ii) there exists a strongly regular net $\{\lambda_{\alpha}\}$ of finite means such that $\{\tau(\lambda_{\alpha}).f\}$ converges in the topology τ_{wu} of weakly uniform convergence on S;
- (iii) for each strongly regular net $\{\mu_{\alpha}\}$ of means on X, $\{\tau(\mu_{\alpha}).f\}$ converges in the topology τ_{wu} .

Next, we introduce a notion of the mean value for bounded vectorvalued functions defined on a semigroup without assumption of amenability and also obtain characterizations of the space of bounded realvalued functions defined on a semigroup which have the mean values.

Definition 2. Let $f \in l^{\infty}(S, E)$ and let \mathcal{K} be the closure of convex hull of $\mathcal{RO}(f)$ in the topology τ_{wp} of weakly pointwise convergence on S. If for each function g in \mathcal{K} , the τ_{wp} -closure of convex hull of $\mathcal{RO}(g)$ contains exactly one constant function with value p, then p is said to be the mean value of f; see also von Neumann [15], Bochner and von Neumann [3] and Miyake and Takahashi [13]. In particular, if S is commutative, then it follows from Theorem 1 that $f \in l_c^{\infty}(S, E)$ has the mean value if and only if the τ_{wp} -closure of convex hull of $\mathcal{RO}(f)$ contains exactly one constant function. We denote by AC(S) the set of bounded real-valued functions defined on S with the mean values.

As in similar arguments of Lemma 1 (the localization theorem) in [9], we obtain some characterizations of the space of bounded real-valued functions defined on a semigroup with the mean values.

Proposition 1. AC(S) is a translation invariant and introverted subspace of $l^{\infty}(S)$ containing constant functions.

Note that it follows from Theorem 1 that if S is left amenable, then AC(S) is the subspace of $l^{\infty}(S)$ consisting of bounded real-valued functions defined on S which are almost convergent in the sense of Lorentz.

Theorem 3. AC(S) is amenable and has a unique invariant mean μ . In this case, μ is also a unique left invariant mean on AC(S).

Theorem 4. AC(S) is a maximum translation invariant and introverted subspace of $l^{\infty}(S)$ containing constant functions which has a unique left invariant mean, ordered by set inclusion.

Theorem 5. If S is commutative, then AC(S) is a maximum translation invariant subspace of $l^{\infty}(S)$ containing constant functions which has a unique invariant mean, ordered by set inclusion.

4. APPLICATIONS

By studying on almost convergence in the sense of Lorentz for commutative semigroups of non-linear mappings, we prove mean ergodic theorems for non-Lipschitzian asymptotically isometric semigroups of continuous mappings in general Banach spaces. The following lemma is crucial for proving our results.

Lemma 1. Let S be commutative and let $f \in l_c^{\infty}(S, E)$. If the closure of convex hull of $\mathcal{RO}(f)$ contains a constant function with value p in the topology of uniform convergence on S, then f is almost convergent in the sense of Lorentz (equivalently, f has the mean value p.)

Definition 3. Let S be commutative and let $S = \{T(s) : s \in S\}$ be a representation of S as continuous mappings of a closed convex subset C of a Banach space E into itself. Then, S is said to be asymptotically isometric on C if, for each $x \in C$,

 $\lim_{s \in S} ||T(s+k)x - T(s+h)x|| \quad \text{exists uniformly in } k, h \in S.$

See Bruck [4] and Kada and Takahashi [10].

Definition 4. Let S be left amenable and let $S = \{T(s) : s \in S\}$ be a representation of S as continuous mappings of a weakly compact convex subset C of E into itself and define a mapping ϕ_S of C into $l_c^{\infty}(S, E)$ by $(\phi_S(x))(s) = T(s)x$ for each $s \in S$. Then, a representation S is said to be almost convergent in the sense of Lorentz if, for each $x \in C$, $\phi_S(x)$ has the mean value p_x . Such a point p_x is also said to be the mean value of x under S.

Theorem 6. Let S be commutative, let C be a compact convex subset of a Banach space E, let $S = \{T(s) : s \in S\}$ be an asymptotically isometric representation of S as continuous mappings of C into itself, let X be a closed, translation invariant and admissible subspace of $l^{\infty}(S)$ containing constants and let $\{\mu_{\alpha}\}$ be a strongly regular net of means on X. Then, S is almost convergent in the sense of Lorentz, that is, for each $x \in C$, $\{T(l(h)'\mu_{\alpha})x\}$ converges to the mean value p_x of x under S in C uniformly in $h \in S$. In this case, $p = T(\mu)x$ for each invariant mean μ on X.

Remark 1. Note that the mean value $T(\mu)x$ of x under S is not always a common fixed point for S. It is known in [19] that there exists a nonexpansive mapping T of C into itself such that for some $x \in C$, its Cesàro means $\{1/n\sum_{k=0}^{n-1}T^kx\}$ converge, but its limit point is not a fixed point of T; see also Edelstein [7], Bruck [5], Atsushiba and Takahashi [1], Atsushiba, Lau and Takahashi [2], Miyake and Takahashi [13] and Miyake and Takahashi [14]. We conjecture in Theorem 6 that if a Banach space E is strictly convex, then the mean value p_x of x under S is a common fixed point for S, that is, $T(s)p_x = p_x$ for each $s \in S$.

For example, the following corollaries are the case when S is a set of the non-negative integers or real numbers.

Corollary 1. Let C be a compact convex subset of a Banach space, let T be a continuous mapping of C into itself such that $\lim_{n\to\infty} \|T^{n+k}x - T^{n+h}x\|$ exists uniformly in $k,h \in \mathbb{N}_+$. Then, for each $x \in C$, the Cesàro means

$$\frac{1}{n}\sum_{i=0}^{n-1}T^{i+h}x$$

converge to the mean value of x under T in C uniformly in $h \in \mathbb{N}_+$.

Corollary 2. Let C be a compact convex subset of a Banach space and let $S = \{T(t) : t \in \mathbb{R}_+\}$ be an asymptotically isometric one-parameter semigroup of continuous mappings of C into itself. Then, for each $x \in C$, the Bohr means

$$\frac{1}{t} \int_0^t T(t+h)x \ dt$$

converge to the mean value of x under S in C uniformly in $h \in \mathbb{R}_+$ as $t \to +\infty$.

Corollary 3. Let C be a compact convex subset of a Banach space and let $S = \{T(t) : t \in \mathbb{R}_+\}$ be an asymptotically isometric one-parameter semigroup of continuous mappings of C into itself. Then, for each $x \in C$, the Abel means

$$r \int_0^\infty \exp(-rt)T(t+h)x \ dt$$

converge to the mean value of x under S in C uniformly in $h \in \mathbb{R}_+$ as $r \to +\infty$.

REFERENCES

[1] S. Atsushiba and W. Takahashi, A nonlinear strong ergodic theorem for nonexpansive mappings with compact domain, Math. Japonica, 52 (2000), 183-195.

- [2] S. Atsushiba, A. T. Lau and W. Takahashi, Nonlinear strong ergodic theorems for commutative nonexpansive semigroups on strictly convex Banach spaces, J. Nonlinear Convex Anal., 1 (2000), 213-231.
- [3] S. Bochner and J. von Neumann, Almost periodic functions in groups. II, Trans. Amer. Math. Soc., 37 (1935), 21–50.
- [4] R. E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set, Israel J. Math., 29 (1978), 1-16.
- [5] R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., 32 (1979), 107-116.
- [6] M. M. Day, Amenable semigroup, Illinois J. Math., 1 (1957), 509-544.
- [7] M. Edelstein, On non-expansive mappings of Banach spaces, Proc. Camb. Phil. Soc., 60 (1964), 439-447.
- [8] S. Goldberg and P. Irwin, Weakly almost periodic vector-valued functions, Dissertationes Math. (Rozprawy Mat.), 157 (1979), 1-42.
- [9] E. Granirer and A. T. Lau, Invariant means on locally compact groups, Illinois J. Math., 15 (1971), 249-257.
- [10] O. Kada and W. Takahashi, Strong convergence and nonlinear ergodic theorems for commutative semigroups of nonexpansive mappings, Nonlinear Anal., 28 (1997), 495-511.
- [11] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta. Math., 80 (1948), 167-190.
- [12] H. Miyake and W. Takahashi, Nonlinear mean ergodic theorems for nonexpansive semigroups in Banach spaces, J. Fixed Point Theory Appl., 2 (2007), 369-382.
- [13] H. Miyake and W. Takahashi, Vector-valued weakly almost periodic functions and mean ergodic theorems in Banach spaces, J. Nonlinear Convex Anal., 9 (2008), 255-272.
- [14] H. Miyake and W. Takahashi, Mean ergodic theorems for almost periodic semigroups, Taiwanese J. Math., 14 (2010), 1079-1091.
- [15] J. von Neumann, Almost periodic functions in a group, I, Trans. Amer. Math. Soc., 36 (1934), 445-492.
- [16] G. Rodé, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl., 85 (1982), 172-178.
- [17] W. M. Ruess and W. H. Summers, Weak almost periodicity and the strong ergodic limit theorem for contraction semigroups, Israel J. Math., 64 (1988), 139-157.
- [18] H. H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, 1971.
- [19] T. Suzuki and W. Takahashi, Weak and strong convergence theorems for non-expansive mappings in Banach spaces, Nonlinear Anal., 47 (2001), 2805-2815.
- [20] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81 (1981), 253-256.
- [21] W. Takahashi, Fixed point theorem and nonlinear ergodic theorem for nonexpansive semigroups without convexity, Canad. J. Math., 44 (1992), 880-887.
- [22] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.