0oooo0O0oooo
0 17550 20110 139-146 139

Generalized Fixed Point and Weak Convergence Theorems
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Abstract. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. A
mapping T : C' — H is called generalized hybrid if there are ¢, 8 € R such that

a|Tz = Tyl? + (1 - a)|lz - Ty|® < BITz - y|* + (1 - B)||z — yl®

for all z,y € C. In this article, we first deal with fundamental properties for generalized hybrid
mappings in a Hilbert space. Then, we deal with fixed point theorems and weak convergence
theorems for these nonlinear mappings in a Hilbert space.

1 Introduction

Let H be a real Hilbert space and let C' be a nonempty closed convex subset of H. Let T
be a mapping of C into H. Then we denote by F(T') the set of fixed points of T. A mapping
T :C — H is said to be nonexpansive, nonspreading [11], and hybrid [20] if

1Tz — Ty|| < flz -yl
2Tz — Tyll® < 1Tz - y)|> + 1Ty — ||?

and
3Tz — Tyl? < llz — yl* + [Tz — y|* + | Ty — z||?

for all z,y € C, respectively. These mappings are deduced from a firmly nonexpansive mapping
in a Hilbert space. A mapping F : C' — H is said to be firmly nonexpansive if

|Fa — Fy|* < (z -y, Fx — Fy)
for all z,y € C; see, for instance, Browder [3] and Goebel and Kirk [5]. From Baillon [2], and
Takahashi and Yao [22], we know the following nonlinear ergodic theorem in a Hilbert space.

Theorem 1.1. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and
let T be a mapping of C into itself such that F(T') is nonempty. Suppose that T' satisfies one
of the following:
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(i) T is nonezpansive;
(i) T is nonspreading;
(ii1) T is hybrid;
() 2| Tz — Ty|]* < ||z —yl* + ITz - y|>, Vz,yeC.

Then, for any x € C,
1 n—1
Sn.’IJ = ﬁ kZ_;)TAI‘

converges weakly to a fixed point of T'.

Motivated by Theorem 1.1, Aoyama, Iemoto, Kohsaka and Takahashi [1] introduced a class
of nonlinear mappings called A-hybrid in a Hilbert space. Kocourek, Takahashi and Yao [9]
also introduced a more wide class of nonlinear mappings containing the class of A-hybrid
mappings: A mapping T : C — H is called generalized hybrid if there are o, 8 € R such that

allTz - Ty[l* + (1 - a)llz - Tyl|* < BTz ~ y|I* + (1 - B)|z ~ y]®

for all x,y € C.

In this article, we first deal with fundamental properties for generalized hybrid mappings in
a Hilbert space. Then, we deal with fixed point theorems and weak convergence theorems for
these nonlinear mappings in a Hilbert space.

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of real
numbers. Let H be a (real) Hilbert space with inner product (-, ) and norm || - ||. We denote
the strong convergence and the weak convergence of {z,} to z € H by z, — z and z, — z,
respectively. From [19], we know the following basic equality. For z,y € H and A € R, we

have
Az + (1= Nyll2 = Mlzl® + (1 = Nlyll> = A1 = M|z — |1 (2.1)

Furthermore, we have that for z,y,u,v € H,
2(z — yyu—v) = o — ol + lly — ull® - |z — ul? — iy —o]]”. 2.2)

From [13], a Hilbert space H satisfies Opial’s condition, i.e., for a sequence {z,} of H such
that z, — = and z # y,
liminf [z, — 2| < liminf |z, — y|. (2.3)
n—xo n-—00

Let C be a nonempty closed convex subset of H. A mapping T : C — H with F(T) # 0 is
called quasi-nonezrpansive if ||z — Ty|| < ||z — y|| for all z € F(T) and y € C. It is well-known
that the set F(T) of fixed points of a quasi-nonexpansive mapping T is closed and convex; see
Ito and Takahashi [8]. In fact, for proving that F(T) is closed, take a sequence {z,} C F(T)
with z, — z. Since C is weakly closed, we have z € C. Furthermore, from

Iz = Tz|| < Iz = 2all + llzn — T2 < 2|2 — 2n[| = 0,
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z is a fixed point of T and so F(T') is closed. Let us show that F(T') is convex. For z,y € F(T)
and a € [0,1], put z = az + (1 — a)y. Then, we have from (2.1) that

lz = T2|? = oz + (1 - a)y — T2|?
= aflz - Tz[® + (1 - a)ly - T2|* - a(l - a) & - y|?
<afz -2+ (1 - )y - 2|2 - a(l - @)z — yl|?
= ol - @)z — y|* = (1 - @)’z - y|> - a1 - @)z — yII?
=o(l-a)(l-a+a—1)z—y|?
= 0.

This implies Tz = 2. So, F(T) is convex.

Let I*° be the Banach space of bounded sequences with supremum norm. Let g be an
element of ({°)* (the dual space of [°). Then, we denote by u(f) the value of y at f =
(T1,2,23,...) € {°°. Sometimes, we denote by u,(z,) the value u(f). A linear functional p
on [ is called a mean if u(e) = ||u|| = 1, where e = (1,1,1,...). A mean p is called a Banach
limit on [ if pp(2p41) = pn(z,). We know that there exists a Banach limit on {*°. If p is a
Banach limit on [*°, then for f = (z;,22,23,...) € [*°,

liminf z,, < py,(z,) < limsupx,.

n-—=00 n—o0o
In particular, if f = (z1,z2,23,...) € [* and z, — a € R, then we have u(f) = pun(z,) = a.
For a proof of existence of a Banach limit and its other elementary properties; see [16]. Using
Banach limits, Takahashi and Yao [22] proved the following fixed point theorem.

Theorem 2.1. Let H be a Hilbert space, let C be a nonempty closed convez subset of H and
let T be a mapping of C into itself. Suppose that there exists an element x € C such that
{T"z} is bounded and

pnl Tz = Tyll* < pn|| Tz — yl*, VyeC

for some Banach limit u. Then, T has a fized point in C.

Let C be a nonempty closed convex subset of H and x € H. Then, we know that there
exists a unique nearest point z € C such that ||z — z|| = infyec ||z — y||. We denote such a
correspondence by z = Pox. Pc is called the metric projection of H onto C. It is known that

Pc is nonexpansive and
(x — Pox,Pcx —u) >0

for all z € H and u € C; see [19] for more details. We also know the following lemma.

Lemma 2.2 (Takahashi and Toyoda [21]). Let F' be a nonempty closed convex subset of a
Hilbert space H, let P be the metric projection of H onto F and let {z,} be a sequence in H
such that ||xn+1 — ul] < ||zn — u|| for allu € F and n € N. Then {Pz,} converges strongly.
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3 Nonlinear Mappings and Fixed Point Theorems

Let H be a Hilbert space. Let C be a nonempty closed convex subset of H and let A € R.
Then a mapping T: C — H is said to be A-hybrid [1] if

ITz — Ty))* < |z = y|* + 2(1 = N)(z — Tz,y — Ty) (3.1)
or equivalently
2Tz - Tyl < ||lz — Ty|® + lly — Tz||* — 2X\(x — Tz,y — Ty) (3.2)

for all z,y € C. A mapping T : C — H is called generalized hybrid [9] if there are o, 8 € R
such that

afTz = Ty|* + (1 - a)l|z = Ty|* < BTz - yl|* + (1 - B)llz — ol (3.3)
for all z,y € C. We call such a mapping an (o, B)-generalized hybrid mapping. Hojo,
Takahashi and Yao [6] proved the following result.

Lemma 3.1. Let H be a Hilbert space and let C' be a nonempty closed conver subset of H.
Let o and 3 be in R. Then, a mapping T : C — H is («, (3)-generalized hybrid if and only if
it satisfies that

1Tz - Tyll* < (a - B)llz - ylI?
+2(a —1)(z - Tz,y - Ty) ~ (a = = V)|ly - Tz|]?
forallz,y e C.

We can prove that a A-hybrid mapping is generalized hybrid. In fact, suppose that T is
A-hybrid, i.e.,
1Tz = Ty|* < |l - yl|* + 2(1 = A)(z — Tz,y — Ty) (3.4)

for all z,y € C. Then, we have from (2.2) that
ITz ~ Ty|* < |lz = yl* + (1 = A)(llz = Tyl® + Tz — yl|® - |l - y|* - Tz - Ty[?)
and hence (2 — \)||Tz - Ty||?> < Mlz -yl + (1 =) |lz — Ty|? + (1 — V)| Tz — y||2. So, we have
2= NTz = TylI> + (A = 1)z = TylI> < 1 = M| Tz — y||> + Az — y|%.

This implies that a A-hybrid mapping is (2 — A, 1 — X)-generalized hybrid. Putting z = Tz in
(3.3), we have that for any y € C,

allz — Tyl* + (1 - a)|lz — Tyl* < Bllz - y|* + (1 - B)|l= — y|?

and hence ||z — Ty|| < ||z — y||. This means that an («a, ()-generalized hybrid mapping with
a fixed point is quasi-nonexpansive. Using Theorem 2.1 and Banach limits, we can prove the
following fixed point theorem for generalized hybrid mappings in a Hilbert space.

Theorem 3.2 (Kocourek, Takahashi and Yao [9]). Let C be a nonempty closed convex subset
of a Hilbert space H and let T : C — C be a generalized hybrid mapping. Then T has a fized
point in C if and only if {T™z2} is bounded for some z € C.
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Let C be a nonempty closed convex subset of a Hilbert space H and let o, B and v be real
numbers. According to Hojo, Takahashi and Yao [6], a mapping U : C — H is called (a, 8,
v)-extended hybrid if

a(1+)Uz = Uyl + (1 - o(1 + 7)) ||z — Uy]|?
<(B+a)lUz —yl?+ (1 - (B+ay))|z - y|?
~ (= B)ylz — Uzl> —~lly — Uy|?

for all z,y € C. They proved the following theorem.

Theorem 3.3. Let C be a nonempty closed convex subset of a Hilbert space H and let a,
B and 7y be real numbers with v # —1. Let T and U be mappings of C into H such that
U= Ti“—?T’*'I?Z'«;I’ where Iz = x for allx € H. Then, for 1+~v >0, T : C — H is
(o, B)-generalized hybrid if and only if U :C — H is (o, B, v )-extended hybrid.

Using Theorem 3.3, they proved the following fixed point theorem for generalized hybrid
non-self mappings in a Hilbert space.

Theorem 3.4. Let C be a nonempty bounded closed convex subset of a Hilbert space H and
let a and 3 be real numbers. Let T be an (o, B)-generalized hybrid mapping with a — 3 > 0 of
C into H. Suppose that there exists m > 1 such that for any z € C, Tz = z + tly — x) for
somey € C andt with 1 <t <m. Then, T has a fized point in C.

4 Weak Convergence Theorems

In this section, we first deal with a nonlinear ergodic theorem of Baillon’s type [2] for
generalized hybrid mappings in a Hilbert space. Before proving it, we need three lemmas.
The first lemma is due to Takahashi, Yao and Kocourek [23].

Lemma 4.1 (Takahashi, Yao and Kocourek [23]). Let H be o Hilbert space and let C be a
nonempty closed convex subset of H. Let T : C — H be a generalized hybrid mapping. Then,
I —T is demiclosed, i.e., x, — z and z,, — Tz, — 0 imply z € F(T).

Using the technique developed by Takahashi [14], we can also prove the following lemma.

Lemma 4.2 (Hojo, Tahahashi and Yao [6]). Let C be a nonempty closed convex subset of a
Hilbert space H. Let T be a generalized hybrid mapping from C into itself. Suppose that {Trz}
is bounded for some x € C. Define S,z = %ZZ;& T*z. Then, limy,_ o ||Spnz — TSpz| = 0.
In particular, if C is bounded, then

nN—0c

lim sup ||Spz — TS,z| = 0.
zeC

Aoyama, Temoto, Kohsaka and Takahashi [1] proved the following lemma.

Lemma 4.3 (Aoyama, Iemoto, Kohsaka and Takahashi [1]). Let H be o Hilbert space, let C
be a nonempty closed convex subset of H, let T: C — C be a quasi-nonezpansive mapping, let
F(T) be the set of fized points of T, let P be the metric projection of H onto F(T), letx e C,
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and let {Sp,x} be a sequence in C defined by

1n—l
_ = k
Spxr = - ;}T z

for n € N. If each weak cluster point of {Spx} belongs to F(T), then {Spz} converges weakly
to the strong limit of {PT"x}.

Using Lemmas 4.1, 4.2 and 4.3, we can prove the following mean convergence theorem of
Baillon’s type [2] for generalized hybrid mappings in a Hilbert space.

Theorem 4.4 (Kocourek, Takahashi and Yao [9]). Let H be a Hilbert space and let C be a
nonempty closed convex subset of H. Let a and B be real numbers and let T : C — C be an
(o, B)-generalized hybrid mapping with F(T) # 0 and let P be the mertic projection of H onto
F(T). Then, for any z € C,

n—1
1
Spz=—Y T*
T le__o xT

converges weakly to z € F(S), where z = limy_.oo PT"x.
Proof. Since T : C — C be an (a, (3)-generalized hybrid mapping with F(S) # 0, T is
quasi-nonexpansive. Fix £ € C. Then, we have that for any z € F(T),

IT"* 2 — 2| < |T"z - 2|

for all n € N. From Lemma 2.2, we have that {PT™z} converges strongly to an element
z € F(T). Since {T"z} is bounded, {S,z} is bounded. So, there exists a subsequence {Sn,z}
of {Spx} such that S, z — v. From Lemmas 4.1 and 4.2, we have v € F(T). So, we have
from Lemma 4.3 that {S,z} converges weakly to z € F(S), where z = lim,_.. PT"zx. O

Next, using Lemma 4.1, we can also prove a weak convergence theorem of Mann’s type [12]
generalized hybrid mappings in a Hilbert space.

Theorem 4.5 (Kocourek, Takahashi and Yao [9]). Let H be a Hilbert space and let C be a
nonempty closed conver subset of H. Let T : C — C be a generalized hybrid mapping with
F(T) # 0 and let P be the mertic projection of H onto F(T). Let {a,} be a sequence of real
numbers such that 0 < ap < 1 and liminf, o an(1 — a,) > 0. Suppose {z,} is the sequence
generated by 1 = x € C and

Tn41 =a’nmn+(1—an)Txn, n=12,....

Then, the sequence {z,} converges weakly to an element v of F(T), where v = limp oo PTn.
Proof. Let z € F(T). Since T is quasi-nonexpansive, we have
| Znt+1 — z“2 = lantn + (1 — an)Tzn — zHZ
< anllzn = 2| + (1 = an)[[Tzn — 2”
< anlln — 2l* + (1 — an)l|lzn — 2|12

= HTn - 2”2
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for all n € N. Hence, limy_. {2, — z||? exists. So, we have that {x,} is bounded. We also
have from (2.1) that

[E 3”2 = H”nxn + (1= an)Tx, — 2”2

= apflzy, — 2| + (1 — @) || Ten — 2| — an(l — o) || Tz, — T

IA

Ty, — zHZ + (1 - an)|lzn — 2”2 — an(l = an)||Tx, — anz
= ||lzn — ZH2 —an(l = an)|| Tz, — mnHQ-

So, we have .
an(l — o) Tz, — xn”z < lzn = 2“2 — [ Zn41 — Z”Z-

Since limp .o ||z, — 2||? exists and liminf, o an(1 ~ ;) > 0, we have | Tz, — z,|/2 — 0.
Since {z,} is bounded, there exists a subsequence {z,,} of {z,} such that z,, — v. By
Lemma 4.1, we obtain v € F(T). Let {x,,} and {z,, } be two subsequences of {z,} such that
ZTn, = v; and z,, — vp. To complete the proof, we show v; = v,. We know vy, v5 € F(T)
and hence lim, . ||z, —v1|| and lim, o ||z, — v2|| exist. Suppose v; # v,. Since H satisfies
Opial’s condition, we have that

lim |lz, — v = lim ||z, — v
n—oc 1—0oC
< lim ||zn, — v2|
11—
= lim [z, — va|
n—oo
= lim |[z,, — vz
j—oo
< lim ||z, — v
j—oo
= lim ||z, — v1].
n—oco
This is a contradiction. So, we have v; = v,. This implies that {r,} converges weakly to
some point v of F(T). Since ||zn4+1 — 2|| < ||zn — 2|| for all 2 € F(T) and n € N, we obtain

from Lemma 2.2 that {Pz,} converges strongly to an element p of F(T). On the other hand,
we have from the property of P that

(xn, — Pxp, Pz, —u) >0
for all u € F(T) and n € N. Since z,, — v and Pz, — p, we obtain
(v—p,p—u) >0

for all v € F(T). Putting u = v, we obtain —||p — v||2 > 0 and hence p = v. This means
v = lim, o Pz,. This completes the proof. O
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