Generalized Fixed Point and Weak Convergence Theorems for New Nonlinear Mappings in Hilbert Spaces

東京工業大学,慶応義塾大学 経済学部 高橋渉 (Wataru Takahashi) Tokyo Institute of Technology and Department of Economics, Keio University, Japan

Abstract. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. A mapping $T: C \to H$ is called generalized hybrid if there are $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha ||Tx - Ty||^2 + (1 - \alpha)||x - Ty||^2 \le \beta ||Tx - y||^2 + (1 - \beta)||x - y||^2$$

for all $x, y \in C$. In this article, we first deal with fundamental properties for generalized hybrid mappings in a Hilbert space. Then, we deal with fixed point theorems and weak convergence theorems for these nonlinear mappings in a Hilbert space.

1 Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let T be a mapping of C into H. Then we denote by F(T) the set of fixed points of T. A mapping $T: C \to H$ is said to be nonexpansive, nonspreading [11], and hybrid [20] if

$$||Tx - Ty|| \le ||x - y||,$$

 $2||Tx - Ty||^2 \le ||Tx - y||^2 + ||Ty - x||^2$

and

$$3||Tx - Ty||^2 \le ||x - y||^2 + ||Tx - y||^2 + ||Ty - x||^2$$

for all $x, y \in C$, respectively. These mappings are deduced from a firmly nonexpansive mapping in a Hilbert space. A mapping $F: C \to H$ is said to be firmly nonexpansive if

$$||Fx - Fy||^2 \le \langle x - y, Fx - Fy \rangle$$

for all $x, y \in C$; see, for instance, Browder [3] and Goebel and Kirk [5]. From Baillon [2], and Takahashi and Yao [22], we know the following nonlinear ergodic theorem in a Hilbert space.

Theorem 1.1. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let T be a mapping of C into itself such that F(T) is nonempty. Suppose that T satisfies one of the following:

- (i) T is nonexpansive;
- (ii) T is nonspreading;
- (iii) T is hybrid;
- $|(iv) 2||Tx Ty||^2 \le ||x y||^2 + ||Tx y||^2, \quad \forall x, y \in C.$

Then, for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to a fixed point of T.

Motivated by Theorem 1.1, Aoyama, Iemoto, Kohsaka and Takahashi [1] introduced a class of nonlinear mappings called λ -hybrid in a Hilbert space. Kocourek, Takahashi and Yao [9] also introduced a more wide class of nonlinear mappings containing the class of λ -hybrid mappings: A mapping $T: C \to H$ is called *generalized hybrid* if there are $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha ||Tx - Ty||^2 + (1 - \alpha)||x - Ty||^2 \le \beta ||Tx - y||^2 + (1 - \beta)||x - y||^2$$

for all $x, y \in C$.

In this article, we first deal with fundamental properties for generalized hybrid mappings in a Hilbert space. Then, we deal with fixed point theorems and weak convergence theorems for these nonlinear mappings in a Hilbert space.

2 Preliminaries

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a (real) Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. We denote the strong convergence and the weak convergence of $\{x_n\}$ to $x \in H$ by $x_n \to x$ and $x_n \to x$, respectively. From [19], we know the following basic equality. For $x, y \in H$ and $\lambda \in \mathbb{R}$, we have

$$\|\lambda x + (1 - \lambda)y\|^2 = \lambda \|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)\|x - y\|^2.$$
(2.1)

Furthermore, we have that for $x, y, u, v \in H$,

$$2\langle x - y, u - v \rangle = \|x - v\|^2 + \|y - u\|^2 - \|x - u\|^2 - \|y - v\|^2.$$
 (2.2)

From [13], a Hilbert space H satisfies Opial's condition, i.e., for a sequence $\{x_n\}$ of H such that $x_n \to x$ and $x \neq y$,

$$\liminf_{n \to \infty} ||x_n - x|| < \liminf_{n \to \infty} ||x_n - y||.$$
(2.3)

Let C be a nonempty closed convex subset of H. A mapping $T: C \to H$ with $F(T) \neq \emptyset$ is called *quasi-nonexpansive* if $||x - Ty|| \leq ||x - y||$ for all $x \in F(T)$ and $y \in C$. It is well-known that the set F(T) of fixed points of a quasi-nonexpansive mapping T is closed and convex; see Ito and Takahashi [8]. In fact, for proving that F(T) is closed, take a sequence $\{z_n\} \subset F(T)$ with $z_n \to z$. Since C is weakly closed, we have $z \in C$. Furthermore, from

$$||z - Tz|| \le ||z - z_n|| + ||z_n - Tz|| \le 2||z - z_n|| \to 0$$

z is a fixed point of T and so F(T) is closed. Let us show that F(T) is convex. For $x, y \in F(T)$ and $\alpha \in [0, 1]$, put $z = \alpha x + (1 - \alpha)y$. Then, we have from (2.1) that

$$||z - Tz||^{2} = ||\alpha x + (1 - \alpha)y - Tz||^{2}$$

$$= \alpha ||x - Tz||^{2} + (1 - \alpha)||y - Tz||^{2} - \alpha(1 - \alpha)||x - y||^{2}$$

$$\leq \alpha ||x - z||^{2} + (1 - \alpha)||y - z||^{2} - \alpha(1 - \alpha)||x - y||^{2}$$

$$= \alpha(1 - \alpha)^{2}||x - y||^{2} + (1 - \alpha)\alpha^{2}||x - y||^{2} - \alpha(1 - \alpha)||x - y||^{2}$$

$$= \alpha(1 - \alpha)(1 - \alpha + \alpha - 1)||x - y||^{2}$$

$$= 0.$$

This implies Tz = z. So, F(T) is convex.

Let l^{∞} be the Banach space of bounded sequences with supremum norm. Let μ be an element of $(l^{\infty})^*$ (the dual space of l^{∞}). Then, we denote by $\mu(f)$ the value of μ at $f = (x_1, x_2, x_3, \dots) \in l^{\infty}$. Sometimes, we denote by $\mu_n(x_n)$ the value $\mu(f)$. A linear functional μ on l^{∞} is called a mean if $\mu(e) = \|\mu\| = 1$, where $e = (1, 1, 1, \dots)$. A mean μ is called a Banach limit on l^{∞} if $\mu_n(x_{n+1}) = \mu_n(x_n)$. We know that there exists a Banach limit on l^{∞} . If μ is a Banach limit on l^{∞} , then for $f = (x_1, x_2, x_3, \dots) \in l^{\infty}$,

$$\liminf_{n \to \infty} x_n \le \mu_n(x_n) \le \limsup_{n \to \infty} x_n.$$

In particular, if $f = (x_1, x_2, x_3, ...) \in l^{\infty}$ and $x_n \to a \in \mathbb{R}$, then we have $\mu(f) = \mu_n(x_n) = a$. For a proof of existence of a Banach limit and its other elementary properties; see [16]. Using Banach limits, Takahashi and Yao [22] proved the following fixed point theorem.

Theorem 2.1. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let T be a mapping of C into itself. Suppose that there exists an element $x \in C$ such that $\{T^nx\}$ is bounded and

$$\|\mu_n\|T^n x - Ty\|^2 \le \mu_n\|T^n x - y\|^2, \quad \forall y \in C$$

for some Banach limit μ . Then, T has a fixed point in C.

Let C be a nonempty closed convex subset of H and $x \in H$. Then, we know that there exists a unique nearest point $z \in C$ such that $||x - z|| = \inf_{y \in C} ||x - y||$. We denote such a correspondence by $z = P_C x$. P_C is called the metric projection of H onto C. It is known that P_C is nonexpansive and

$$\langle x - P_C x, P_C x - u \rangle > 0$$

for all $x \in H$ and $u \in C$; see [19] for more details. We also know the following lemma.

Lemma 2.2 (Takahashi and Toyoda [21]). Let F be a nonempty closed convex subset of a Hilbert space H, let P be the metric projection of H onto F and let $\{x_n\}$ be a sequence in H such that $||x_{n+1} - u|| \le ||x_n - u||$ for all $u \in F$ and $n \in \mathbb{N}$. Then $\{Px_n\}$ converges strongly.

3 Nonlinear Mappings and Fixed Point Theorems

Let H be a Hilbert space. Let C be a nonempty closed convex subset of H and let $\lambda \in \mathbb{R}$. Then a mapping $T: C \to H$ is said to be λ -hybrid [1] if

$$||Tx - Ty||^2 \le ||x - y||^2 + 2(1 - \lambda)\langle x - Tx, y - Ty\rangle$$
(3.1)

or equivalently

$$2\|Tx - Ty\|^{2} \le \|x - Ty\|^{2} + \|y - Tx\|^{2} - 2\lambda\langle x - Tx, y - Ty\rangle$$
(3.2)

for all $x, y \in C$. A mapping $T: C \to H$ is called *generalized hybrid* [9] if there are $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha ||Tx - Ty||^2 + (1 - \alpha)||x - Ty||^2 \le \beta ||Tx - y||^2 + (1 - \beta)||x - y||^2$$
(3.3)

for all $x, y \in C$. We call such a mapping an (α, β) -generalized hybrid mapping. Hojo, Takahashi and Yao [6] proved the following result.

Lemma 3.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let α and β be in \mathbb{R} . Then, a mapping $T:C\to H$ is (α,β) -generalized hybrid if and only if it satisfies that

$$||Tx - Ty||^{2} \le (\alpha - \beta)||x - y||^{2} + 2(\alpha - 1)\langle x - Tx, y - Ty \rangle - (\alpha - \beta - 1)||y - Tx||^{2}$$

for all $x, y \in C$.

We can prove that a λ -hybrid mapping is generalized hybrid. In fact, suppose that T is λ -hybrid, i.e.,

$$||Tx - Ty||^2 \le ||x - y||^2 + 2(1 - \lambda)\langle x - Tx, y - Ty\rangle$$
 (3.4)

for all $x, y \in C$. Then, we have from (2.2) that

$$||Tx - Ty||^2 \le ||x - y||^2 + (1 - \lambda)(||x - Ty||^2 + ||Tx - y||^2 - ||x - y||^2 - ||Tx - Ty||^2)$$

and hence $(2-\lambda)\|Tx-Ty\|^2 \le \lambda \|x-y\|^2 + (1-\lambda)\|x-Ty\|^2 + (1-\lambda)\|Tx-y\|^2$. So, we have

$$(2-\lambda)\|Tx - Ty\|^2 + (\lambda - 1)\|x - Ty\|^2 \le (1-\lambda)\|Tx - y\|^2 + \lambda\|x - y\|^2.$$

This implies that a λ -hybrid mapping is $(2 - \lambda, 1 - \lambda)$ -generalized hybrid. Putting x = Tx in (3.3), we have that for any $y \in C$,

$$\|\alpha \|x - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|x - y\|^2 + (1 - \beta)\|x - y\|^2$$

and hence $||x - Ty|| \le ||x - y||$. This means that an (α, β) -generalized hybrid mapping with a fixed point is quasi-nonexpansive. Using Theorem 2.1 and Banach limits, we can prove the following fixed point theorem for generalized hybrid mappings in a Hilbert space.

Theorem 3.2 (Kocourek, Takahashi and Yao [9]). Let C be a nonempty closed convex subset of a Hilbert space H and let $T: C \to C$ be a generalized hybrid mapping. Then T has a fixed point in C if and only if $\{T^nz\}$ is bounded for some $z \in C$.

Let C be a nonempty closed convex subset of a Hilbert space H and let α , β and γ be real numbers. According to Hojo, Takahashi and Yao [6], a mapping $U: C \to H$ is called (α, β, γ) -extended hybrid if

$$\alpha(1+\gamma)\|Ux - Uy\|^{2} + (1-\alpha(1+\gamma))\|x - Uy\|^{2}$$

$$\leq (\beta + \alpha\gamma)\|Ux - y\|^{2} + (1-(\beta + \alpha\gamma))\|x - y\|^{2}$$

$$- (\alpha - \beta)\gamma\|x - Ux\|^{2} - \gamma\|y - Uy\|^{2}$$

for all $x, y \in C$. They proved the following theorem.

Theorem 3.3. Let C be a nonempty closed convex subset of a Hilbert space H and let α , β and γ be real numbers with $\gamma \neq -1$. Let T and U be mappings of C into H such that $U = \frac{1}{1+\gamma}T + \frac{\gamma}{1+\gamma}I$, where Ix = x for all $x \in H$. Then, for $1+\gamma > 0$, $T: C \to H$ is (α, β) -generalized hybrid if and only if $U: C \to H$ is (α, β, γ) -extended hybrid.

Using Theorem 3.3, they proved the following fixed point theorem for generalized hybrid non-self mappings in a Hilbert space.

Theorem 3.4. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let α and β be real numbers. Let T be an (α, β) -generalized hybrid mapping with $\alpha - \beta \geq 0$ of C into H. Suppose that there exists m > 1 such that for any $x \in C$, Tx = x + t(y - x) for some $y \in C$ and t with $1 \leq t \leq m$. Then, T has a fixed point in C.

4 Weak Convergence Theorems

In this section, we first deal with a nonlinear ergodic theorem of Baillon's type [2] for generalized hybrid mappings in a Hilbert space. Before proving it, we need three lemmas. The first lemma is due to Takahashi, Yao and Kocourek [23].

Lemma 4.1 (Takahashi, Yao and Kocourek [23]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T:C\to H$ be a generalized hybrid mapping. Then, I-T is demiclosed, i.e., $x_n \rightharpoonup z$ and $x_n-Tx_n\to 0$ imply $z\in F(T)$.

Using the technique developed by Takahashi [14], we can also prove the following lemma.

Lemma 4.2 (Hojo, Tahahashi and Yao [6]). Let C be a nonempty closed convex subset of a Hilbert space H. Let T be a generalized hybrid mapping from C into itself. Suppose that $\{T^nx\}$ is bounded for some $x \in C$. Define $S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$. Then, $\lim_{n\to\infty} \|S_n x - TS_n x\| = 0$. In particular, if C is bounded, then

$$\lim_{n\to\infty} \sup_{x\in C} \|S_n x - T S_n x\| = 0.$$

Aoyama, Iemoto, Kohsaka and Takahashi [1] proved the following lemma.

Lemma 4.3 (Aoyama, Iemoto, Kohsaka and Takahashi [1]). Let H be a Hilbert space, let C be a nonempty closed convex subset of H, let $T: C \to C$ be a quasi-nonexpansive mapping, let F(T) be the set of fixed points of T, let P be the metric projection of H onto F(T), let $x \in C$,

and let $\{S_n x\}$ be a sequence in C defined by

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

for $n \in \mathbb{N}$. If each weak cluster point of $\{S_n x\}$ belongs to F(T), then $\{S_n x\}$ converges weakly to the strong limit of $\{PT^n x\}$.

Using Lemmas 4.1, 4.2 and 4.3, we can prove the following mean convergence theorem of Baillon's type [2] for generalized hybrid mappings in a Hilbert space.

Theorem 4.4 (Kocourek, Takahashi and Yao [9]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let α and β be real numbers and let $T: C \to C$ be an (α, β) -generalized hybrid mapping with $F(T) \neq \emptyset$ and let P be the mertic projection of H onto F(T). Then, for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to $z \in F(S)$, where $z = \lim_{n \to \infty} PT^n x$.

Proof. Since $T: C \to C$ be an (α, β) -generalized hybrid mapping with $F(S) \neq \emptyset$, T is quasi-nonexpansive. Fix $x \in C$. Then, we have that for any $z \in F(T)$,

$$||T^{n+1}x - z|| \le ||T^nx - z||$$

for all $n \in \mathbb{N}$. From Lemma 2.2, we have that $\{PT^nx\}$ converges strongly to an element $z \in F(T)$. Since $\{T^nx\}$ is bounded, $\{S_nx\}$ is bounded. So, there exists a subsequence $\{S_{n_i}x\}$ of $\{S_nx\}$ such that $S_n, x \to v$. From Lemmas 4.1 and 4.2, we have $v \in F(T)$. So, we have from Lemma 4.3 that $\{S_nx\}$ converges weakly to $z \in F(S)$, where $z = \lim_{n \to \infty} PT^nx$.

Next, using Lemma 4.1, we can also prove a weak convergence theorem of Mann's type [12] generalized hybrid mappings in a Hilbert space.

Theorem 4.5 (Kocourek, Takahashi and Yao [9]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T: C \to C$ be a generalized hybrid mapping with $F(T) \neq \emptyset$ and let P be the mertic projection of H onto F(T). Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \leq \alpha_n \leq 1$ and $\liminf_{n \to \infty} \alpha_n (1 - \alpha_n) > 0$. Suppose $\{x_n\}$ is the sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \quad n = 1, 2, \dots$$

Then, the sequence $\{x_n\}$ converges weakly to an element v of F(T), where $v = \lim_{n \to \infty} Px_n$. Proof. Let $z \in F(T)$. Since T is quasi-nonexpansive, we have

$$||x_{n+1} - z||^2 = ||\alpha_n x_n + (1 - \alpha_n) T x_n - z||^2$$

$$\leq \alpha_n ||x_n - z||^2 + (1 - \alpha_n) ||T x_n - z||^2$$

$$\leq \alpha_n ||x_n - z||^2 + (1 - \alpha_n) ||x_n - z||^2$$

$$= ||x_n - z||^2$$

for all $n \in \mathbb{N}$. Hence, $\lim_{n\to\infty} ||x_n - z||^2$ exists. So, we have that $\{x_n\}$ is bounded. We also have from (2.1) that

$$||x_{n+1} - z||^2 = ||\alpha_n x_n + (1 - \alpha_n) T x_n - z||^2$$

$$= \alpha_n ||x_n - z||^2 + (1 - \alpha_n) ||T x_n - z||^2 - \alpha_n (1 - \alpha_n) ||T x_n - x_n||^2$$

$$\leq \alpha_n ||x_n - z||^2 + (1 - \alpha_n) ||x_n - z||^2 - \alpha_n (1 - \alpha_n) ||T x_n - x_n||^2$$

$$= ||x_n - z||^2 - \alpha_n (1 - \alpha_n) ||T x_n - x_n||^2.$$

So, we have

$$\alpha_n(1-\alpha_n)\|Tx_n-x_n\|^2 \le \|x_n-z\|^2 - \|x_{n+1}-z\|^2$$

Since $\lim_{n\to\infty}\|x_n-z\|^2$ exists and $\liminf_{n\to\infty}\alpha_n(1-\alpha_n)>0$, we have $\|Tx_n-x_n\|^2\to 0$. Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i}\to v$. By Lemma 4.1, we obtain $v\in F(T)$. Let $\{x_{n_i}\}$ and $\{x_{n_j}\}$ be two subsequences of $\{x_n\}$ such that $x_{n_i}\to v_1$ and $x_{n_j}\to v_2$. To complete the proof, we show $v_1=v_2$. We know $v_1,v_2\in F(T)$ and hence $\lim_{n\to\infty}\|x_n-v_1\|$ and $\lim_{n\to\infty}\|x_n-v_2\|$ exist. Suppose $v_1\neq v_2$. Since H satisfies Opial's condition, we have that

$$\lim_{n \to \infty} ||x_n - v_1|| = \lim_{i \to \infty} ||x_{n_i} - v_1||$$

$$< \lim_{i \to \infty} ||x_{n_i} - v_2||$$

$$= \lim_{n \to \infty} ||x_n - v_2||$$

$$= \lim_{j \to \infty} ||x_{n_j} - v_2||$$

$$< \lim_{j \to \infty} ||x_{n_j} - v_1||$$

$$= \lim_{n \to \infty} ||x_n - v_1||.$$

This is a contradiction. So, we have $v_1 = v_2$. This implies that $\{x_n\}$ converges weakly to some point v of F(T). Since $||x_{n+1} - z|| \le ||x_n - z||$ for all $z \in F(T)$ and $n \in \mathbb{N}$, we obtain from Lemma 2.2 that $\{Px_n\}$ converges strongly to an element p of F(T). On the other hand, we have from the property of P that

$$\langle x_n - Px_n, Px_n - u \rangle \ge 0$$

for all $u \in F(T)$ and $n \in \mathbb{N}$. Since $x_n \to v$ and $Px_n \to p$, we obtain

$$\langle v - p, p - u \rangle > 0$$

for all $u \in F(T)$. Putting u = v, we obtain $-\|p - v\|^2 \ge 0$ and hence p = v. This means $v = \lim_{n \to \infty} Px_n$. This completes the proof.

References

[1] K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theorems for λ -hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 335–343.

- [2] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511-1514.
- [3] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225.
- [4] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA 54 (1965), 1041-1044.
- [5] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [6] M. Hojo, W. Takahashi and J.-C. Yao, Weak and strong mean convergence theorems for super hybrid mappings in Hilbert spaces, Fixed Point Theory, to appear.
- [7] S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal. 71 (2009), 2082–2089.
- [8] S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math. 79 (1978), 493-508.
- [9] P. Kocourek, W. Takahashi and J. -C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497–2511.
- [10] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J. Optim. 19 (2008), 824-835.
- [11] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166–177.
- [12] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- [13] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- [14] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256.
- [15] W. Takahashi, Iterative methods for approximation of fixed points and their applications, J. Oper. Res. Soc. Japan 43 (2000), 87–108.
- [16] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [17] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese).
- [18] W. Takahashi, Viscosity approximation methods for resolvents of accretive operators in Banach spaces, J. Fixed Point Theory Appl. 1 (2007), 135-147.
- [19] W. Takahashi, *Introduction to Nonlinear and Convex Analysis*, Yokohama Publishers, Yokohama, 2009.
- [20] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinea Convex Anal. 11 (2010), 79–88.
- [21] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.
- [22] W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math., to appear.
- [23] W. Takahashi, J.-C. Yao and P. Kocourek, Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), to appear.