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Intertwining operator and Ca-cofiniteness of modules
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Abstract

Let V be a vertex operator algebra and 7" a V-module. We show that if there
are Ca-cofinite V-modules U and W and a surjective (logarithmic) intertwining
operator Y of type (;; TW), then T is also Cy-cofinite. So, when V is simple and
V' 2 V| then if one of V-modules is Co-cofinite, then so is V.

1 Introduction

A vertex algebra was introduced by axiomatizing the concept of a Chiral algebra in
conformal field theory by Borcherds [1]. It is a triple (V,Y,1) satisfying the several
axioms, where V is a graded vector space V = @;czV; over the complex number field C,
Y(v,2) = Y czvmz ™ ' € End(V)[[2, 27']] denotes a vertex operator of v € V on V,
1 € V} is a specified element called the vacuum. When V has another specified element
w € V, and V has a lower bound of weights and all homogeneous subspaces are of finite
dimensional, then we call V' a vertex operator algebra. Weset Y (w, z) = 3, <z L(n)z™"".

For a VOA V-module W, we define Co(W) = {v_ou | v,u € V,wt(v) > 1}. When
Cy(W) has a finite co-dimension in W, W is called to be Cs-cofinite. A concept of
Cy-cofiniteness is originally introduced by Zhu [8] as a technical assumption to prove a
modular invariance property of the space of the trace functions on modules. However, we
are now recognizing the real meaning and the importance of Cy-cofiniteness. For example,
V is Cy-cofinite if and only if all V-modules are N-gradable. (See [2] and [7] for the proof.)
We will use this fact frequently in this paper.

Our main result in this paper is the following:

Theorem 1 Let U be a vertex operator algebra of CFT-type. Let A, B, C be simple N-
graded U-modules and T a surjective (formal power series) intertwining operator of type

(,€ ). If both of A and B are Cy-cofinite as U-modules for h = 1,2, then so is C.
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2 Preliminary

From the axiom of VOAs, for v € V; and u € V,, we have v,,u € V,_,,—14. Hence there
is an integer N such that v,u = 0 for any s > N. This property is called a truncation
property. In this paper, we will say that “v is truncated at v” to simplify the terminology,
Set V* = Hom(V, C) and define a pairing (-,-) on V* x V by (&, v) = £(v) for £ € V*
and v € V. For T C V, Annh(T) denotes an annihilator of 7', that is, Annh(T) = {{ €
V*| (& t)=0forallt € T}. For v € V and m € Z, an action v}, on V* is defined by

Zv* -m— 1 <£, ( L“)’(—z'2)L(°)v,z'1)w)

meZ
for w € V and £ € Hom(V,C), where Y*(v,2) = 3, 552" ™! is called an adjoint
operator of v. An important fact is that (®mezHom(V;,, C), Y*) becomes a V-module as
they proved in [3]. This module is called a restricted dual of V' and denoted by V'. In
particular, Y*(-, 2) satisfy the Borcherds identity:

Z( )(u‘r—f-z m+n— lf Z ( ){ur+m : n+1,§ (—1 rv:-f-n—iu:n+i€} (21)
1=0

for any m,n,r € Z, v,u € V, £ € V'. We note V' = @pezVp and V* = [] .z Vo
Therefore we can express £ € V* by [[, & with &, € Hom(V,,C). We call that { € V*
is “L(0)-free” if dim C[L(0))¢ = oo, that is, &n # O for infinitely many m. We note that
any N-gradable module does not contain any L(0)-free elements.

Let go back to (2.1). If ¢ € Hom(V;, C), then all terms in (2.1) have the same weight
wt(a) + wt(b) —r — m — n — 2 + t and so the Borcherds’ identity is also well-defined on
V*, as Li has pointed out in {5]. However, V* is not a V-module because of failure of
truncation properties. In order to find a V-module in V*, we will start our arguments
from one point £ in V*.

Lemma 2 If u and v are truncated at £, then v,u is also truncated at & for any m.
In particular, if all elements in Q of V are truncated at £ and < Q >ya= V, then all

elements in V are truncated at &, where (Q)y 4 denotes a vertex subalgebra generated by
Q.

[Proof] By the assumption, there is an integer N such that u,é = v, = u,v =0
for n > N. We assert that for s € N and n > 2N + s, we have (uy—,v),& = 0. Suppose
false and let s be a minimal counterexample. Substituting r = N —s, n = N + s+ p,
m = N + ¢ in (2.1) with p,q > 0, we have

[LeftSide] = -2, (N:'q) (UN—s+i¥)2N+q+s+p-i€ = D ig (Nj N (UN~—(s—i)V)2N+s—i+p+a

= (UN—s'U)2N+s+p+q€

by the minimality of s. On the other hand, we have:

[RightSide] = 300, (—1)¢ (N *) (Uan—stg-iVN+s4p4i€ — (—1)N "*vaN—gipitintqiil = 0,



which contradicts the choice of s. 1
Since vpumé = Umvp€ + Y o (’;) (Vi) ntm—-i€, the above lemma also implies:

Lemma 3 If v and u are truncated at &, then v is truncated at un€ for any m. In
particular, if all elements of V are truncated at &, then < u}, -+ uk &|u' € Vim; € Z >¢
is a V-module.

As Buhl has shown in [2], if V' is Co-cofinite, then all V-modules are N-gradable and
so there are no L(0)-free elements at which all elements in V' are truncated. Namely, we
have proved the following, which we will frequently use. ‘

Lemma 4 Let V be a Cy-cofinite vertex operator algebra and £ € V*. If Q C V generates
V' as a vertex subalgebra and all elements of ) are truncated on &, then £ is not L(0)-free.

For A, B C V, we will often use the notation A, B to denote a subspace spanned by
{amb | a € A, b€ B}. We note that if A is a C[L(—1)]-module, then A(—2-m)B C A_3B
for m € N since (L(—1)a)_mb = ma_pm_1b for a € A and b € B. Not only V, we use
this notation for a pair (U, W) of a VOA U and its module W. For example, we set
Co(W) = U(+_2)W, where Ut = @2 ,U;. We also set Cy(W) = U(+_1)W. We say that W is
Ch-cofinite as a U-module if dim W/C, (W) < oo for h = 1,2. We note any VOA U is C;-
cofinite as a U-module and so this definition is not equal to the ordinary Cj-cofiniteness.

We start the proof of Theorem 1. Namely, we will prove:

Theorem 1 Let U be a vertex operator algebra of CFT-type. Let A, B, C be simple
N-graded U-modules and I a surjective (formal power series) intertwining operator of type
(A CB). If both of A and B are Ci-cofinite as U-modules for h = 1,2, then so is C.

We note that if U is of CFT-type and an N-graded U-module A = ®L A, is C)-
cofinite, then dim A4, < oo for any k since A, N C1(A) = zl_:;ll(Us)—lAr+k—s has a
finite codimension in A, 4.

In the remainder part of this section, we assume the hypotheses of Theorem 1. Since
A and B are Cy-cofinite, there are finite dimensional subspaces F! C A and F? C B
such that A = UT(_yA + F' and B = Ut (_pB + F?. Let ¢4 and cp be conformal
weights of A and B, respectively. We may assume that there is an integer N such that
F' =@} (Ac,+x and F? = @ B, . Fix bases {p' | i € I} of F! and {¢’ | j € J} of
F2. In order to prove Theorem 1, we prove the following lemma by applying an idea in
[4] to (C/U(th)C)*.

Lemma 5 Forpe A, g€ B and 0 € Annh(U('*_h)C’) nc,
F(6,p,q;2) = (0.Z(p, z)q)

is a linear combination of {F(0,p',¢’;2) | i € I,j € J} with coefficients in C[z,27!] and
we may choose these coefficients independentlly of the choice of 0.
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[Proof] We will prove the assertion by the induction on the total weight wt(p)+wt(g).
If wt(p) > N + cg, then p = ¥, uk,a* for some u¥F € U and a*¥ € A. We note this
expression does not depend on the choice of 8. So we may assume p = u_pa with u € U
and a € A. Then for 6 € Annh(U[",C), we have:

(9’ I(pa Z)Q) = (0’I(u—ha’ z)Q)
= (0, Y~ (L(-1)""'u,2)Z(a, z)g + L(a, 2)Y *(L(-1)*""u, 2)q)
= <0’I(a’ Z)Y+(L(_1)h_lu,z)Q>a

where Y~ (v,2) = 37, qvmz ™ ' and Y*(v,2) = 3, vmz~™". This is a reduction on
the sum of weights because Y+ (L(—1)""'u,2)q is a sum of finite terms and all weights of

the coefficients are less than wt(u) + wt(g).
Similarly, if wt(q) > N + cp, then we may assume ¢ = u_pb with u € U and b € B

and
<9,I(p, z)‘]) = (0, I(p, z)u_pb

= {0,u_nZ(p, 2)b) + 3320 (2T (wip, 2)b)

= T2 ()26, I(wip, 2)b).
Again, these process do not depend on the choice of 8 and this is also a reduction on the
weights because wt(u;p) + wt(b) < wt(u_pb) + wt(p) for ¢ > 0. Therefore, (6,Z(p, z)q) is
a linear combination of {{8,Z(p,2)¢’) | i € I,j € J} with coefficients in C[z,2"!]. We
note the coefficients do not depend on the choice of 6. 1

Now we are able to prove Theorem 1. By the proof of the above lemma,
L F(6,0",7) = P(6, L(-1)p",¢52)

is a linear combination of {F(0,p',¢’;2) | i € I,j € J} with coefficients in C[z, 27] for
any s € I,t € J and all coefficients do not depend on the choice of §. Therefore, there
is a differential linear equation such that F(8,p°, ¢*) are all its solutions for any s € I,
t € J and 6. Furthermore, since {Z(p,2)q | p € A,q € B,z € Z} spans C modulo
U(th)C and (#,Y(p,z)q) are a linear sum of (8,Z(p%,z)¢’), @ € C'N Annh(U(“L_2)C) —
[lic1,jes(6, Z(#, 2)¢°) is injective. Therefore, we have dim C/U(_)C < oo.

This completes the proof of Theorem 1.
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