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Abstract
We announce some results relating vertex operator algebras and Ja-

cobi forms, and discuss some of the consequences. Proofs will be given
elsewhere.

1 Background
We would like to thank the organizers, especially Masahiko Miyamoto, for
giving us the opportunity to participate in the workshop in Kyoto.

For background conceming the Jacobi group and Jacobi forms that we use
below, see the text of Eichler and Zagier [EZ]. Our notation is standard.

$\mathbb{C}=$ complex numbers, $\mathbb{H}=$ complex upper half-plane,
$\mathbb{Q}$ $=$ rational numbers, $\mathbb{Z}=$ integers,

$q=e^{2\pi i\tau}(\tau\in \mathbb{H}),$ $\zeta=e^{2\pi iz}(z\in \mathbb{C})$ ,
$\Gamma=SL_{2}(\mathbb{Z}),$ $J=\Gamma\ltimes \mathbb{Z}^{2}$ ,

$\eta(\tau)$ $=$ $q^{1/24} \prod_{:=1}^{\infty}(1-q^{n})$ (Dedekind eta-function).

$J$ is the Jacobi group, i.e., the semidirect product of $\Gamma$ with $\mathbb{Z}^{2}$ , where $\Gamma$ acts
naturally on $\mathbb{Z}^{2}$ . Thus,

$(\gamma_{1}, U)(\gamma_{2}, V)=(\gamma_{1}\gamma_{2}, U\gamma_{2}+V))$ for $\gamma_{1},\gamma_{2}\in\Gamma,$ $U,$ $V\in \mathbb{Z}^{2}$ .

There are left group actions

$\Gamma\cross \mathbb{H}\cross \mathbb{C}arrow \mathbb{H}x\mathbb{C}$

$((\begin{array}{ll}a bc d\end{array}),\tau,$ $z) \mapsto(\frac{a\tau+b}{c\tau+d},$ $\frac{z}{c\tau+d})$ ,
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and
$\mathbb{Z}^{2}\cross \mathbb{H}\cross \mathbb{C}arrow \mathbb{H}\cross \mathbb{C}$

$((u,v),\tau, z)\mapsto(\tau, z+u\tau+v)$ .

These jointly define an action of the Jacobi group
$J\cross \mathbb{H}\cross \mathbb{C}arrow \mathbb{H}\cross \mathbb{C}$ .

Consider the space

$S=$ {holomorphic $F:\mathbb{H}\cross \mathbb{C}arrow \mathbb{C}$}.

For all integers $k,$ $m$ there are right group actions

害 $x\Gammaarrow \mathfrak{F}$,
$(F,\gamma)\mapsto F|_{k,m}\gamma$ ,

where

$\mathfrak{F}\cross \mathbb{Z}^{2}arrow S$ ,
$(F, (u,v))\mapsto F|_{m}(u,v)$ ,

$F|_{k,m}\gamma(\tau, z)$ $;=$ $(c\tau+d)^{-}.e^{-2\pi imcz^{2}/c\tau+d}F(\gamma.(\tau, z))$

$=$ $(c \tau+d)^{-k}e^{-2\pi imcz^{2}/c\tau+d}F(\frac{a\tau+b}{c\tau+d},$ $\frac{z}{c\tau+d})$

for $\gamma=(\begin{array}{ll}a bc d\end{array})$ ; and

$F|_{m}(u,v)(\tau, z)$ $:=e^{2\pi im(u^{2}\tau+2uz)}F((u,v).(\tau,z))$

$=$ $e^{2\pi im(u^{2}\tau+2uz)}F(\tau, z+u\tau+v)$ .

Again these actions can be combined into an action of the Jacobi group

害 $\cross Jarrow$ 害
$(F, (\gamma, (u, v)))\mapsto F|_{k,m}(\gamma, (u,v))$ .

2 Weak Jacobi forms
A weak Jacobi form of weight $k$ and index $m$ is an invariant of the J-action,
i.e.

$F|_{k,m}(\gamma, (u, v))=F$ for all $(\gamma, (u, v))\in J$,

which is holomorphic at the cusps. Invariance is equivalent to

$F( \gamma\tau, \frac{z}{c\tau+d})$ $=$ $(c\tau+d)^{k}e^{2\pi imcz^{2}/\sigma r+d}F(\tau, z)(\gamma=(\begin{array}{ll}a bc d\end{array})\in\Gamma)$ ,

$F(\tau, z+u\tau+v)$ $=$ $e^{-2\pi im(u\tau+2uz)}F(\tau, z)((u, v)\in \mathbb{Z}^{2})$ .
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Holomorphy at the cusps means that there is a Fourier expansion

$F( \tau, z)=\sum_{n\geq 0}\sum_{f}a(n,r)q^{n}\zeta^{r}$
.

The Fourier coefficients $a(n,r)$ of a weak Jacobi form necessarily satisfy

$a(n,r)=0$ if $r^{2}>m^{2}+4mn$.

A Jacobi $fom$ of weight $k$ and index $m$ is a weak Jacobi form of weight $k$ and
index $m$ such that the Fourier coefficients $satis\phi$ the stronger condition

$a(n,r)=0$ if $r^{2}>4mn$ .

One may modify the definition of (weak) $J_{\mathfrak{X}}bi$ form in various ways, e.g.,
by considering forms $F(\tau,z)$ invariant only under a subgroup of finite index
in $J$ , by taking $m\in \mathbb{Q}$, or by allowing poles at the cusps. (However, we shall
never $en\infty unter$ forms with poles in $\mathbb{H}.$)

$\frac{Examp1es}{1.E_{4,1}(\tau},$

$z)=1+(\zeta^{2}+56\zeta+126+56\zeta^{-1}+\zeta^{-2})q+(126\zeta^{2}+576\zeta+756+$

$576\zeta^{-1}+126\zeta^{-2})q^{2}+\ldots$ is the Jacobi Eisenstein series with $k=4,m=1$ . It
is a Jacobi form on the full group $J$.
2. Suppose that $F(\tau,z)$ is a (weak) Jacobi fom of weight $k$ and index $m$

on $J$. If we take $z=z_{0}\in \mathbb{Q}$ then $F(\tau,z_{0})$ is a holomorphic modular form of
weight $k$ on a congruence subgroup of $\Gamma$ . In particular, if $z=0$ then $F(\tau,0)$ is
a holomorphic modular form of weight $k$ on $\Gamma$ . Eg., $E_{4,1}(\tau,0)=1+240q+\ldots$

is the weight 4 Eisenstein series on $\Gamma$ .
3. Suppose that $L$ is a positive-definite even lattice of even rank $2l$ with inner
product $($ , $)$ . Let $\beta\in L$ with $m=(\beta,\beta)/2$ . The theta function of $L$ , defined
by $\theta_{L,\beta}(\tau, z):=\sum_{\alpha\in L}q^{(\alpha,\alpha)/2}\zeta^{(a,\beta)}$ , is a Jacobi form of weight $l$ and index $m$

(on a subgroup of $J$). $\theta_{L,\beta}(\tau, 0)=\theta_{L}(\tau)$ is the usual theta function, a modular
form of weight $l$ on a congruence subgroup of $\Gamma$ . E.g., $E_{4,1}(\tau, z)$ is the theta
function of the $R$ root lattice with $\beta$ taken to be a root of the lattice.

3 Statement of Main Results
We deal with simple vertex operator algebras $V$ of central charge $c$ which
are regular (i.e. rational and $C_{2}$-cofinite) and of strong CFT-type (i.e. $V=$

$\mathbb{C}1\oplus V_{1}\oplus\ldots$ and $V$ is self-dual as V-module.) Let $M^{1},$ $\ldots,M^{p}$ be the distinct
irreducible V-modules.
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Theorem 3.1. Suppose that $h\in V_{1}$ has the following properties:

$(a)h(O)$ is semisimple with eigenvalues in $\mathbb{Z}$

$(b)1/2h(1)h=m1$ and $m\in \mathbb{Z}$ .

For a V-module $M_{f}$ set

$J_{M,h}(\tau, z)$ $=$ $\mathcal{T}k_{M}q^{L(0)-c/24}\zeta^{h(0)}$ .

Then the linear space spanned by the functions $J_{M^{l},h}(\tau, z)(1\leq i\leq p)$ is a J-
module with respect to the $action|_{0,m}$ . In other words, $(J_{M^{1},h}(\tau, z), \ldots),$ $J_{Mp,h}(\tau, z))^{t}$

is a vector-valued weak Jacobi $fom$ of weight $0$ and index $m$ . Each $J_{M^{i},h}(\tau, z)$

is holomorphic in $\mathbb{H}\cross \mathbb{C}$ , but genemlly has poles at the cusps.

As usual, if $V$ is holomorphic (so that $V$ is the unique irreducible V-module)
we get a more precise result.

Theorem 3.2. Suppose that $V$ is holomorphic, and let $h$ be as in Theorem
3.1. Then $Z_{V,h}(\tau,z)$ is a weak Jacobi $fom$ on $J$ of weight $0$ and index $m$ .
Altematively, $\eta(\tau)^{c}Z_{V,h}(\tau, z)$ is a holomorphic weak Jacobi form of weight $c/2$

and index $m$ . If $1\leq m\leq 4$ then $\eta(\tau)^{c}Z_{V,h}(\tau, z)$ is a Jacobi form of weight $c/2$

and index $m$ , ($i.e$. the adjective ‘weak ‘ may be dropped).

4 Applications
Theorems 3.1 and 3.2 find a number of applications. We discuss some of them.
I$)$ . If we take $z=0$ the trace function $J_{M,h}(\tau, z)$ becomes the usual partition
function $Tr_{M}q^{L(0)-c/24}$ . Then Theorem 3.1 reduces to the modular-invariance
of the space of partition functions of the irreducible V-modules, and Theorem
3.2 says that in the holomorphic case the partition function of $V$ is a modular
function of weight $0$ on $\Gamma$ (possibly with character). These results are due to
Zhu [Z]. Generally, our results may be regarded as an extension of Zhu’s theory
(loc. cit.) from the case of modular forms to that of Jacobi forms. However,
some of Zhu’s results (conceming n-point functions) are no longer true in the
more general setting.
II). In a similar vein, the representation of the Jacobi group $J$ on the trace
functions $J_{M^{i},\hslash}(\tau, z)$ restricts to a representation of $\Gamma$ that is the same as the
representation $\rho$ of $\Gamma$ on the space of partition functions $Tr_{M^{i}}q^{L(0)-c/24}$ . Thus
the conjecture that each $J_{Mh}:,(\tau, z)$ is a (weak) Jacobi form on a congruence
subgroup is equivalent to the well-known conjecture that each $Tr_{M^{i}}q^{L(0)-c/24}$

is a modular form on a congruence subgroup of F.

On the other hand, if it is known that $\rho$ factors through a congmence
subgroup for a given $V$ , then it follows that each $J_{M^{l},h}(\tau, z)$ is indeed a (weak)
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Jacobi form on a congruence subgroup. This is the case, for example, for
lattice theories and for VOAs based on an affine Lie algebra. Theorem 3.1 in
this stronger form was proved for lattice theories by Dong-Liu-Ma [DLMa] and
for affine algebras it is a consequence of the Kac-Peterson theory [KP], [K].
III). One can generally find a large supply of states $h$ satisfying (a) and (b) of
Theorem 3.1 as follows. There is a deoomposition $V_{1}=\mathfrak{U}\oplus 6_{1,m1}\oplus\ldots\oplus\otimes_{r\cdot,m_{r}}$

where $\mathfrak{U}$ is abelian and $\otimes_{i,m}$: is a simple Lie algebra of positive integral level
$m_{i}(1\leq i\leq r)$ ([DMl], [DM2]). Let $h:=h_{\alpha}\in\otimes_{i}$ where $\alpha$ is long root
element normalized so that $\kappa_{i}(h, h)=2$ ( $\kappa_{i}$ $:=$ Killing form of $e_{i}$ ). By Lie
theory one knows that $h(O)$ has integer eigenvalues on any finite-dimensional
$\otimes_{i}$-module, in particular $h(O)$ has integer eigenvalues on each homogeneous
space $V_{n}$ . Moreover the definition of level implies that $h(1)h=2m_{i}$ .
IV). Assume now that $V$ is holomorphic, and let $h=h$. be chosen as in III).
We already pointed out in Section 2, Example 2 that $J_{V,h}(\tau, z_{0})$ is a modular
form on a congruence subgroup of $\Gamma$ whenever $z_{0}\in \mathbb{Q}$ . Note that $J_{V,h}(\tau, z_{0})=$

Tr$vq^{L(0)-c/24}e^{2\pi iz0h(0)}$ is the trace function of the finite order automorphis$m$

$e^{2\pi izh(0)}0$ of $V$ . Conversely, if $L$ is the group of linear automorphism of $V$ , i.e.
the Lie group obtained by exponentiating elements of $L:=\otimes_{1,m_{1}}\oplus\ldots\oplus\otimes_{r,m_{\Gamma}}$

in the usual way, and if $g\in L$ is an element of finite order, then we may choose
a Chevalley basis of $L$ so that $g=e^{2\pi iz0h(0)}$ as above for suitable $h$ . In this
way we obtain
Theorem 4.1. Suppose that $V$ is holomorphic and that $g\in L$ is a linear auto-
morphism offinite order. Then the tmce function $R_{V}q^{L(0)-c/24}g$ is a modular
function of weight zero on a congruence subgroup of $\Gamma$ .

For many holomorphic VOAs (e.g. the lattice theory based on the $E_{8}$ root
lattice), the full automorphism group Aut$V$ coincides with $L$ . In these cases,
Theorem 4.1 establishes the conjectured modular-invariance of trace functions
of all finite order automorphisms. See [DLM] for more on this subject.
V$)$ . It is a simple arithmetic result from the theory of Jacobi forms that any
weak (holomorphic) Jacobi form of index $m\leq 4$ with Fourier series expansion
of the form $1+O(q)$ is, in fact, a Jacobi form. This is why the ‘weak’ condition
is not needed in Theorem 3.2 when $m\leq 4$ . It seems likely that (as for affine
Lie algebra theories) the adjective ‘weak’ can always be dropped from the
assumptions of Theorem 3.1 and 3.2. On the other hand, for general index $m$

there are plenty of weak Jacobi forms which are not true Jacobi forms.
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