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Abstract

We consider the coupon bond option valuation when a short rate model has
non-Gaussian dependent innovations. Higher-order asymptotic theory enables ap-
proximate coupon bond option price formula to be obtained. Some numerical exam-
ples are presented, where the process of innovation follows a particular model. The
properties of these coupon bond options are very different from those implied by the
continuous Vasicek model. This has important implications for hedging interest-rate
risk with bond options.
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1 Introduction
The interest rates dynamics has received much attention in the finance literature because
the interest rate is a crucial input for asset pricing and a fundamental component of mon-
etary policy. The stochastic process of the short-term interest rate (short rate) influences
not only the valuation of bonds and interest rate derivatives, but also the pricing of equity
options, which rely on the term structure of the interest rate. Therefore, an understanding
of the dynamic properties of the short rate is of profound importance to policy makers
and economic agents.

Many short rate models have been developed. Among these, Vasicek (1977) and Cox
et al. (1985) consider the short rate as a diffusion process with mean reversion. Under
both these models, bond yields can be expressed as an affine function of the short rate
and thus belong to the class of affine term structure models. Duffie and Kan (1996),
Duffie and Singleton (1997), and Dai and Singleton (2000) describe the characteristics of
affine term structure models. Using these models, tremendous progress has been made in
valuing interest rate derivative securities. For option pricing, the conditional characteristic
function of an affine term structure model is known in closed form, and the prices of
zero-coupon bond options are easily computed by Fourier inversion. Option formulas for
zero-coupm bonds are discussed in Chen (1996), Nunes et al. (1999), and Duffie et al.
(2000).
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A number of studies have also examined the pricing of options on coupon bonds.
Jamshidian (1989) argues that an option on a coupon bond can be decomposed into a
portfolio of options on discount bonds. Wei (1997) develops an approximation for coupon
bond option prices based on closed-form solutions for the corresponding discount bond
options and the duration measure. Singlton and Umantsev (2002) propose an approxi-
mation of the prices of European options on coupon bonds, where the underlying short
rate is an affine combination of the CIR-type processes.

Although the Vasicek model is useful and flexible, empirical research wideIy reports
that it fails to appropriately capture the behavior of the short rate. Moreover, the nor-
mality assumption for residuals may not hold. Honda et al. (2010) extend the discretized
Vasicek model to incorporate non-Gaussian dependent innovations and derive the closed-
form formula of zero-coupon bonds and the term structure of interest rates. Shiohama
and Tamaki (2011) give the evaluation of the price of European call options on zero-
coupon bonds. These formulas are based on the Edgeworth expansion of the underlying
discretized short rates and bond price densities. This paper discusses the extension to
assess coupon bond options. Since the first four cumulants have intuitive meaning, the
direct relation between the option price and the cumulants of the underlying distribution
is appealing.

The Gram-Charlier and Edgeworth expansions have been used in many fields, in-
cluding mathematics, statistics, and physics, and Sargan (1975, 1976) introduces these
expansions to econometrics. In option pricing theory, several authors have proposed the
use of a statistical series expansion method for pricing options when the risk-neutral den-
sity is asymmetric and leptokurtic: for example, see Rubinstein (1998) and the references
therein. Jarrow and Rudd (1982) applied the log-normal Gram-Charlier series expansion
to the density of stock prices and derived a formula for pricing options. Corrado and
Su (1996) also considered the Gram-Charlier series expansion for the density of stock $\log$

returns rather than stock price itself. The Black-Scholes model is a special case of their
models. Recently, Masuda and Yoshida (2005) considered the Edgeworth expansion for
$\log$ returns of stock price in the stochastic volatility model of Barndorff-Nielsen and Shep-
hard. Their results can simultaneously explain non-Gaussianity for short-time lags and
approximated Gaussianity for long-time lags. Kumitomo and Takahashi (2001) developed
an approach called small disturbance asymptotic expansion to derive various formulae for
swaption and Asian options for interest rates. Perote and Del Br\’io (2003) investigated
the effect of skewness and kurtosis on financial time series to improve Value at Risk $(VaR)$

measures. Collin-Dufresne and Goldstein (2002) and Kawai (2003) propose approxima-
tions of the price of a swaption based on an Edgeworth expansion of the density of the
coupon bond price.

All these reports reveal that densities, based on Hermite polynomials, are accurate
and general specffications that capture the skewness and kurtosis of underlying stochastic
modeIs. However, these financial time series $aIso$ have dependent structures. Tamaki and
Tamiguchi (2007) employs Edgeworth expansions to take into account the effects of non-
Gaussianity and the dependence of stock $\log$ returns simultaneously. The methodology
that we present in this paper is analogous to Tamaki and Taniguchi (2007). We extend
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the results of Honda et al. (2010) to evaluate zero-coupon bonds, the term structure of
interest rates, and European call options on zero-coupon bond.

The remainder of this paper is organized as follows. In Section 2, a discretized method
for zero-coupon bond option is introduced. Section 3 discusses the evaluation of the zero-
coupon bond option based on the Edgeworth expansion. Section 4 derives a closed-form
formula for the approximate coupon bond option prices. In Section 5, numerical examples
are presented to demonstrate the effects of non-Gaussianity and dependence of short rates.
Section 6 offers our conclusions.

2 Discretized Expression on Bond Options
The short rate, $r_{t}$ , follows the SDE:

$dr_{t}=\kappa(\mu-r_{t})dt+\sigma dB_{t}$ , (1)

where $B_{t}$ is a standard Brownian motion. The parameter $\mu$ represents the long-term mean
of the short rate, $\kappa$ represents the rate at which the short rate reverts to its long-term
mean, and $\sigma$ represents the instantaneous volatility of the short rate. This process is
well known as the Ornstein-Uhlenbeck process and the mean-reverting structure is its
important feature. Let $C(r, 0, T, S, K)$ denote the price of a European call on a zero-
coupon bond which matures at time $S$ . The option matures at $T(T<S)$ with an exercise
price $K$ . For simplicity and without loss of generality, we assume that the current time
is $0$ . Then, the price of a European call option is evaluated with risk-neutral measure $Q$

such that

$C(r, 0, T, S, K)=E_{0}^{Q}[e^{-\int_{0}^{T}r_{t}dt}(P(T, S)-K)_{+}]$ , (2)

where $P(T, S)$ denotes the time-T price of the zero-coupon bond maturing at time $S$ .
Based on Vasicek model (1), option price (2) is given by

$C(r, 0, T, S, K)=P(0, S)\Phi(d_{1})-KP(O, T)\Phi(d_{2})$ , (3)

where $d_{1}=\log\{P(0, S)/(K(0, T))\}/\sigma_{p}+\sigma_{p}/2,$ $d_{2}=d_{1}-\sigma_{p}$ ,

$\sigma_{p}=\frac{\sigma}{\kappa}(1-e^{-\int\sigma(S-T)})\sqrt{\frac{1-e^{-2\kappa T}}{2\kappa}}$,

and $\Phi(\cdot)$ is the standard normal distribution function. Here, the bond price is

$P(0, T)= \exp[\{B(0,T)-T\}(\mu-\frac{\sigma^{2}}{2\kappa^{2}})-\frac{\sigma^{2}B(0,T)^{2}}{4\kappa}-B(0,T)r_{0}]$ , (4)

where $B(0, T)=(1-e^{-\kappa T})/\kappa$ .
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In this paper, we assume that the short rate $r_{t}$ is discretely sampled with interval $\Delta$

and the initial short rate $r_{0}$ is observable and fixed. Subsequently, the short rates are
discretely sampled at time $0,$ $\Delta,$ $2\Delta,$

$\ldots,$
$n_{1}\triangle(\equiv T),$ $(n_{1}+1)\Delta,$

$\ldots,$
$n\triangle(\equiv S)$ . Notice that

$S-T=(n-n_{1})\Delta\equiv n_{2}\triangle$ .
By the Euler approximation, for $j=1,2,$ $\ldots,$ $n,$ (1) is reduced to

$r_{j}-r_{j-1}=\kappa(\mu-r_{j-1})\Delta+\sigma\triangle^{1/2_{\mathcal{E}_{j}}}$ ,

where $\{\epsilon_{j}\}$ are i.i.$dN(0,1)$ random variables. Following Honda et al. (2010), we extend
the discretized Vasicek model to possess the non-Gaussian and dependent innovations.
Then the short rate model is expressed as follows:

$r_{j}-r_{j-1}=\kappa(\mu-r_{j-1})\triangle+\Delta^{1/2}X_{j}$. (5)

It is clear that this expression is motivated by the Vasicek model. Obviously, if $\{X_{j}\}$ are
i.i. $dN(0, \sigma^{2})$ random variables, the expression (5) corresponds to the discretized Vasicek
model. Empirical research shows that the processes of $\{X_{j}\}$ are highly non-Gaussian and
serially correlated.

By using similar arguments of Honda et al. (2010) and Choi and Wirganto (2007),
$P(0, T)$ can be expressed as follows:

$P(0, T)=E_{0}[e^{-\int_{0}^{T}r_{1}dt}] \approx E_{0,n_{1}-1}[\exp\{-\Delta(\frac{1}{2}r_{0}+r_{1}+\cdots+r_{n_{1}-1}+\frac{1}{2}r_{n_{1}})\}]$

$=e^{-A_{n_{1}}-B_{n}r_{0}}1AF_{n_{1},n_{1}}\equiv\tilde{P}_{0}(0, T)$, (6)

where $E_{j,k}=E_{j}E_{j+1}\cdots E_{k-1},$ $A_{j}=\mu(j\triangle-B_{j}),$ $B_{j}=(1+v)(1-v^{j})/(2\kappa)$ and

$AF_{j,k}=E_{k-j,k-1}[ \exp(-\frac{\Delta^{3/2}}{2}\sum_{i=1}^{j}a_{i}X_{k-i+1})]$ .

Here, $AF_{n_{1},n_{1}}$ can be expressed as $AF_{n_{1},n_{1}}=E_{0,n_{1}-1}[e^{-Y_{1,n_{1}}}]$ where

$Y_{1,n_{1}}= \triangle^{1/2}\sum_{i=1}^{n_{1}}b_{i}X_{n_{1}-i+1}$ and $b_{i}= \frac{1}{\kappa}\{1-\frac{1}{2}v^{i-1}(1+v)\}$ . (7)

Using recursive substitution in (5), $r_{j}$ has another representation

$r_{j}=(1- \dot{\theta})\mu+v^{j}r_{0}+\triangle^{\frac{1}{2}}\sum_{i=1}^{j}v^{i-1}X_{j-i+1}\equiv(1-\dot{\theta})\mu+v^{j}r_{0}+Y_{2,j}$ , (8)

where $v=1-\kappa\triangle$ and $Y_{2,j}= \Delta^{1/2}\sum_{i=1}^{j}v^{i-1}X_{j-i+1}$ .
Similar arguments to (6) yield that $P(T, S)$ can be expressed as follows

$P(T, S)=E_{T}[e^{-\int_{T}^{s}r_{u}du}] \approx E_{n_{1},n-1}[\exp\{-\triangle(\frac{1}{2}r_{n_{1}}+r_{n_{1}+1}+\cdots+r_{n-1}+\frac{1}{2}r_{n})\}]$

$=e^{-A_{n}-B_{n_{2}}r_{n_{1}}}2AF_{n_{2},n}\equiv\tilde{P}_{T}(T, S)$ . (9)

112



In order to evaluate (9) at the current time $t=0$ , we substitute (8) into (9), then we have

$\tilde{P}_{0}(T, S)=\exp[-A_{n2}-B_{n_{2}}\{(1-v^{n_{1}})\mu+v^{n_{1}}r_{0}+Y_{2,n_{1}}\}]AF_{n_{2},n}\equiv C_{n_{2}}e^{-B_{n_{2}}Y_{2,n}}1$ , (10)

where $AF_{n_{2},n}$ can be expressed as $AF_{n_{2},n}=E_{n_{1},n-1}[e^{-Z_{n_{2}}}]$ with $Z_{n_{2}}= \triangle^{1/2}\sum_{i=1}^{n_{2}}b_{i}X_{n-i+1}$ .
By the similar calculation to (9), we observe that

$C(r_{0},0, T, S, K)=E_{0}^{Q}[e^{-\int_{0}^{T}r_{u}du}(P(T, S)-K)_{+}]$

$\approx E_{0,n_{1}-1}[\exp\{-\triangle(\frac{1}{2}r_{0}+r_{1}+\cdots+r_{n_{1}-1}+\frac{1}{2}r_{n_{1}})\}(\tilde{P}_{0}(T, S)-K)_{+}]$

$=e^{-A_{n_{1}}-B_{n_{1}}r_{0}}E_{0,n_{1}-1}[e^{-Y_{1,n_{1}}}(\tilde{P}_{0}(T, S)-K)_{+}]\equiv\tilde{C}(r_{0},0, T, S, K)$. (11)

$\mathbb{R}om(11)$ and (10), we can evaluate the European call options on zero-coupon bonds as
follows

$\tilde{C}(r_{0},0, T, S, K)=e^{-A_{n_{1}}-B_{n_{1}}r0}E_{0,n_{1}-1}[e^{-Y_{1,n_{1}}}(C_{n_{2}}e^{-B_{n_{2}}Y_{2,n_{1}}}-K)_{+}]$ . (12)

3 Assumptions and Main Results
In this section, we evaluate the European call options on zero-coupon bond based on the
Edgeworth expansion of the joint density function of $Y_{n_{1}}=(Y_{1,n_{1}}, Y_{2,n_{1}})’$ where $Y_{1,n_{1}}$ and
$Y_{2,n_{1}}$ are defined by (7) and (8), respectively. The proofs of the lemmas and theorems
stated in this section are given in Shiohama and Tamaki (2011).

First, we make some assumptions on $\{X_{j}\}$ .
Assumption 1. The processes of $\{X_{j}\}$ are fourth-order stationary in the sense that

1. $E[X_{j}]=0$ ,

2. cum$(X_{j}, X_{j+u})=c_{X,2}(u)$ ,

3. cum$(X_{j}, X_{j+u_{1}}, X_{j+u_{2}})=c_{X,3}(u_{1}, u_{2})$ ,

4. $cum(X_{j}, X_{j+u_{1}}, X_{j+u2}, X_{j+u3})=c_{X,4}(u_{1}, u_{2}, u_{3})$ .
Assumption 2. The cumulants $c_{X,k}(u_{1}, \ldots, u_{k-1})$ for $k=2,3,4$ satisfy

$\sum_{u_{1},\cdots,u_{k-1}=-\infty}^{\infty}$ $|c_{X,k}(u_{1}, \ldots, u_{k-1})|<\infty$ .

Assumptions 1 and 2 are satisfied by a wide class of time series models which contain
the usual ARMA and GARCH processes. The following lemma gives the evaluation of
the cumulants of $Y_{n_{1}}$ .

Lemma 1. Under Assumptions 1 and 2, the cumulants of $Y_{n_{1}}$ are evaluated as follows:
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1. $E[Y_{n_{1}}]=0$ ,

2. Cov $[Y_{n_{1}}]=\Sigma_{n_{1}}+o(n_{1}^{-1})$ , where

$\Sigma_{n_{1}}=(_{\sigma_{21}^{(n_{1}}}^{\sigma_{1,n}^{2}};$ $\sigma_{12)}^{(n_{1})}\sigma_{2,n1}^{2}$ .

3. cuni$(Y_{i,n_{1}}, Y_{j,n_{1}} , Y_{k,n_{1}})=n_{1}^{-1/2}C_{ijk}^{(n_{1})}+o(n_{1}^{-1})$ ,

4. $cum(Y_{i,n_{1}}, Y_{j,n_{1}}, Y_{k,n_{1}}, Y_{\ell,n_{1}})=n_{1}^{-1}C_{ijk\ell}^{(n_{1})}+o(n_{1}^{-1})$,

for $i,j,$ $k,$ $\ell\in\{1,2\}$ .

In order to derive the Edgeworth expansion of $Y_{n_{1}}$ and $Z_{n2}$ , we need the following
assumption.

Assumption 3. J-th order $(J\geq 5)$ cumulants of $Y_{n_{1}}$ and $Z_{n_{2}}$ are of order $O(n_{1}^{-J/2+1})$

and $O(n_{2}^{-J/2+1})$ , respectively.

For simplicity, let $Y=(Y_{1}, Y_{2})’=(Y_{1,n_{1}}/\sigma_{1,n_{1}}, Y_{2,n_{1}}/\sigma_{2,n_{1}})’$ . From Lemma 1, the
covariance matrix $\Sigma$ of $Y$ is reduced to

$\Sigma=(\begin{array}{ll}1 \rho\rho 1\end{array})$

where $\rho$ is the correlation coefficient of $Y_{1}$ and $Y_{2}$ . Then, we obtain the following theorem.

Theorem 1. Under Assumptions 1-3, the third-order Edgeworth expansion of the joint
density function of $Y$ is given by

$g(y)= \phi_{\Sigma}(y)\{1+\frac{1}{6\sqrt{n_{1}}}\tilde{C}_{ijk}^{(n_{1})}H_{\Sigma}^{ijk}(y)+\frac{1}{24n_{1}}\tilde{C}_{ijk\ell}^{(n_{1})}H_{\Sigma}^{ijkl}(y)$

$+ \frac{1}{72n_{1}}\tilde{C}_{ijk}^{(n_{1})}\tilde{C}_{ij’k}^{(n_{1})},H_{\Sigma}^{ijki’j’k’}(y)\}+o(n_{1}^{-1})$, (13)

where $\tilde{C}_{i_{1}\cdot\cdot i_{j}}^{(n_{1}.)}=C_{i_{1}\cdot\cdot i_{j}}^{(n_{1}.)}/(\sigma_{i_{1},n_{1}}\cdots\sigma_{i_{j},n_{1}}),$ $\phi_{\Sigma}(y)$ is the bivariate nomal density function with

mean zero and covawiance matrix $\Sigma$ and $H_{\Sigma}^{i_{1}\cdots i_{j}}(y)$ is the Hermite polynomials with $\phi_{\Sigma}(y)$ ,

$H_{\Sigma}^{i_{1}\cdots\dot{\iota}_{j}}(y)= \frac{(-1)^{j}\theta}{\phi_{\Sigma}(y)\partial y_{i_{1}}\cdots\partial y_{i_{j}}}\phi_{\Sigma}(y)$ .

Remark 1. Throughout the paper, we use the Einstein notation. Indices appearing twice
in a single term, once as a superscript and once as a subscript, are interpreted as summuing
over all of its possible values, as in, for example, $C_{ijk}^{(n_{1})}H_{\Sigma}^{ijk}(y)= \sum_{i,j}^{2},{}_{k=1}C_{ijk}^{(n_{1})}H_{\Sigma}^{ijk}(y)$ .

The following lemma is useful for calculating the expectation of (12) based on the
density function (13).
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Lemma 2. For any constants $c_{1},$ $c_{2}$ , and $d$ , and $i_{1},$
$\ldots,$

$i_{j}\in\{1,2\}$ ,

1.

$\int_{-\infty}^{\infty}\int_{-\infty}^{d}e^{-c_{1}y_{1}-c_{2}y_{2}}\phi_{\Sigma}(y)dy=\exp\{\frac{1}{2}(c_{1}^{2}+2\rho c_{1}c_{2}+c_{2}^{2})\}\Phi(d+\rho c_{1}+c_{2})$ .

2.

$\int_{-\infty}^{\infty}\int_{-\infty}^{d}e^{-c_{1}y_{1}-c_{2}y_{2}}H_{\Sigma}^{i_{1}\cdots i_{j}}(y)\phi_{\Sigma}(y)dy$

$= \exp\{\frac{1}{2}(c_{1}^{2}+2\rho c_{1}c_{2}+c_{2}^{2})\}(-1)^{j}d_{1}^{-j(2)}(c_{2}+D)^{j(2)}\Phi(d+\rho c_{1}+c_{2})$ ,

where $j(2)$ is the number of $i_{k}s$ equal to 2 among $i_{1},$
$\ldots$ , $i_{j}$ and $D=d/dx$ .

We then obtain the following theorem.

Theorem 2. Under Assumptions 1-3, the European call options on the zero-coupon bond
is expressed as follows:

$\tilde{C}(r_{0},0, T, S, K)=\tilde{P}_{G}(0, S)ND_{0}D_{1}\Phi(\tilde{d}_{1})-K\tilde{P}_{G}(0, T)D_{2}\Phi(\tilde{d}_{2})+o(\min(n_{1}, n_{2})^{-1})$, (14)

where $\tilde{P}_{G}(0, T)=\exp(-A_{n_{1}}-B_{n_{1}}r_{0}+\sigma_{1,n_{1}}^{2}/2),\tilde{P}_{G}(0, S)=\exp(-A_{n}-B_{n}r_{O}+\sigma_{1,n}^{2}/2)$ ,

$N= \exp\{\frac{1}{2}(\sigma_{1,n_{1}}^{2}+\sigma_{1,n_{2}}^{2}-\sigma_{1,n}^{2}+2B_{n_{2}}\sigma_{12}^{(n_{1})}+B_{n_{2}}^{2}\sigma_{2,n_{1}}^{2})\}$ ,

$D_{0}=1- \frac{C_{111}^{(n_{2})}}{6\sqrt{n_{2}}}+\frac{C_{1111}^{(n_{2})}}{24n_{2}}+\frac{(C_{111}^{(n)}2)^{2}}{72n_{2}}$,

$D_{\alpha}=1- \frac{1}{6\sqrt{n_{1}}}C_{ijk}^{(n_{1})}D_{\alpha}^{ijk}+\frac{1}{24n_{1}}C_{ijk\ell}^{(n_{1})}D_{\alpha}^{ijk\ell}+\frac{1}{72n_{1}}C_{ijk}^{(n_{1})}C_{ij’k}^{(n_{1})},D_{\alpha}^{ijki’j’k’}$

for $\alpha=1,2$ , are the polynomials of $D_{1}^{i_{1}\cdots i_{j}}=(B_{n_{2}}+D/\sigma_{2,n_{1}})^{j(2)}$ and $D_{2}^{i_{1}\cdots i_{j}}=(D/\sigma_{2,n_{1}})^{j(2)}$ ,

$\tilde{d}_{1}=\frac{1}{B_{n_{2}}\sigma_{2,n_{1}}}\log\frac{\tilde{P}_{G}(0,S)ND_{0}}{K\tilde{P}_{G}(0,T)}+\frac{1}{2}B_{n2}\sigma_{2,n_{1}}$ and $\tilde{d}_{2}=\tilde{d}_{1}-B_{n_{2}}\sigma_{2,n_{1}}$ .

The following theorem shows that if $\{X_{j}\}$ are i.i. $d$ . $N(0, \sigma^{2})$ , then as $\trianglearrow 0$ , approx-
imate bond option formula (14) converges to the price of that of Vasicek (1977).

Theorem 3. Suppose that $\{X_{j}\}$ are independent and identically distributed norm$al$ ran-
dom variables with mean $0$ and variance $\sigma^{2}$ . Then, (14) corresponds to Vasicek (1977).

$\tilde{C}(r_{0},0, T, S, K)arrow P(0, S)\Phi(d_{1})-KP(0, T)\Phi(d_{2})$ , as $\trianglearrow 0$ ,

where $d_{1},$ $d_{2}$ and $P(0, T)$ are defined in (3).
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4 Asymptotic Valuation
Prices

for Coupon Bond Option

The difficulty of pricing coupon bond options is that the exercise region is defined im-
plicitly and its probability is often difficult to compute. Because a coupon bond is just a
portfolio of discount bonds of different maturities, the value of any riskless coupon bond
can be expressed as a weighted sum of discount bond prices. Let $S,$ $M$ and $\delta$ be the
bond maturity, the number of coupon payments, and the cashflow frequency, respectively.
Then $M=S/\delta$ . The price of a coupon bond with coupon rate $\alpha$ is given by

$\sum_{i=1}^{M}\alpha_{i}\tilde{P}_{0}(0, S_{i})$

where $\tilde{P}_{0}(0, S_{i})$ is given by (6). Most coupon bonds have semi-annual coupons, and swaps
have either annual or semi-annual cashflows. As an example, consider a 10-year 10% bond
with a face amount of 100 and coupons are paid annually. In this case, $M=10$ since
the bond makes annual coupon payments of 10 as well as a final payment of 110, that is
$\alpha_{1}=\cdots=\alpha_{9}=10$ and $\alpha_{10}=110$ . In addition, $S_{1}=1,$ $S_{2}=2,$

$\ldots,$
$S_{10}=10$ .

Let $n_{1,i}=(S_{i}-T)/\Delta+n_{1}$ and $n_{2,i}=n_{1,i}-n_{1}$ . The payoff function for a T-maturity
European call on a bond with strike price $K$ is

$\max(0,\sum_{i=1}^{(S-T)/\delta}\alpha_{i}\tilde{P}_{0}(T, S_{i})-K)$ , (15)

where $\tilde{P}_{0}(T, S_{i})$ is given by (10). Since $\tilde{P}_{0}(T, S_{i})$ is a monotonic function of $r_{0}$ for $aU$

$S_{i}$ , there is a critical interest rate $r^{*}$ such that the call is exercised if $0\leq r_{0}<r^{*}$ of
its expiration date. This critical interest rate is easily found by solving the following
expression for $r^{*}$ .

$\sum_{i=1}^{(S-T)/\delta}\alpha_{i}\tilde{P}_{0}(r^{*}, T, S_{i})=K$, (16)

where

$\tilde{P}_{0}(r^{*},T, S_{i})=\exp[-A_{n_{2,i}}-B_{n_{2,i}}\{(1-v^{n_{1,i}})\mu+v^{n_{1,i}}r^{*}Y_{2,n_{1,i}}\}]AF_{n_{2,i},n}$ .

The critical interest rate can be determined by solving (16) numerically. Having specffied
critical interest rate $r^{*}$ , the strike price $K$ is decomposed as follows

$K= \sum_{i=1}^{(S-T)/\delta}\tilde{P}_{0}(r^{*}, 0, S_{i})\equiv\sum_{i=1}^{(s-T)/\delta}K_{i}$ ,
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see, for example, Jamshidian (1989). Then the coupon bond option price is expressed as
follows

$\tilde{C}_{\alpha}=\sum_{i=1}^{(S-T)/\delta}\tilde{C}(r_{0},0, T, S_{i}, K_{i})$,

where the function $\tilde{C}(r_{0},0, T, S_{i}, K_{i})$ is defined by (12). Using the results of Theorem 2,
The price of European option on this coupon with the strike $K$ and the maturity $T$ is
given by

$\tilde{C}_{\alpha}$

$=$ $\sum_{i=1}^{(S-T)/\delta}\alpha_{i}\tilde{P}_{G}(0, S_{i})N_{i}D_{0,i}D_{1,i}\Phi(\tilde{d}_{1,i})-K\tilde{P}_{G}(0, T)D_{2}\Phi(\tilde{d}_{2})$

$+o( \{\min_{i}\min(n_{1,i},$ $n_{2,i})\}^{-1})$

where

$\tilde{d}_{1,i}=\frac{1}{B_{n_{2,i}}\sigma_{2,n_{1,i}}}\log\frac{\tilde{P}_{G}(0,S_{i})N_{i}D_{0,\iota}}{K_{i}\tilde{P}_{G}(0,T)}+\frac{1}{2}B_{n_{2,i}}\sigma_{2,n_{1,i}}$ ,

$N_{i}= \exp\{\frac{1}{2}(\sigma_{1,n_{1,i}}^{2}+\sigma_{1,n_{2,i}}^{2}-\sigma_{1,n}^{2}+2B_{n_{2,i}}\sigma_{12}^{(n_{1,i})}+B_{n_{2,i}}^{2}\sigma_{2,n_{1,i}}^{2})\}$ ,

$D_{0,i}=1- \frac{C_{111}^{(n_{2,i})}}{6\sqrt{n_{2i}}}+\frac{C_{1111}^{(n_{2,i})}}{24n_{2,i}}+\frac{(C_{111}^{(n_{2,i})})^{2}}{72n_{2,i}}$ ,

and

$D_{1,i}=1- \frac{1}{6\sqrt{n_{1i}}}C_{jk\ell}^{(n_{1,i})}f\dot{fl}_{1,i}^{kl}+\frac{1}{24n_{1,i}}c_{jklm}^{(n_{1,i})}\dot{\sigma}_{1,i}^{k\ell m}+\frac{1}{72n_{1,i}}C_{jkp}^{(n_{1,i})}C_{jkl}^{(n_{1,i})}\dot{\Pi}_{1,i}^{klj’k’p\prime}$ .

Here $D_{1,i}^{i_{1}\cdots i_{j}}=(B_{n_{2,i}}+D/\sigma_{2,n_{1,i}})^{j(2)}$ .

5 Numerical Examples
The closed-form expressions for coupon bond option prices allow us to examine the com-
parative statics properties of these contingent claims directly. First, we consider the
relation between coupon bond option prices and the riskless interest rate with different
values of $\triangle$ . The innovation density is assumed to be normal distribution. The parameter
values of interest rate models are as follows:

$\mu=0.085$ , $\sigma=0.02$ , $\kappa=0.20$ .

The option is a call with a maturity of five years, written on a 15-year coupon bond with
a face value of 100 and a coupon rate of 10%. Coupons are paid annually. These coupon
bond option valuation settings are the same as those investigated by (Wei (1997), p.139,
Table I). The results are summarized in Table 1 and Figure 1.
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Table 1: Continuous Vasicek versus Discretely Observed Vasicek Option Prices
$r_{0}$ $\Delta=1/12$ $\Delta=1/52$ $\triangle=1/252$ $\Delta=1/1000$ Vasicek

0.04 12.4634 12.5060 12.516112.5181125161125181 125188
0.06 9.8300 9.8465 9.8505 9.8512 9.8515
0.08 7.5978 7.5943 7.5935 7.5933 7.5933
0.10 5.7386 5.7209 5.7166 5.7158 5.7155
0.12 4.2231 4.1965 4.1901 4.1889 4.1885
0.14 3.0193 2.9884 2.9811 2.9797 2.9792
0.16 2.0910 2.0599 2.0526 2.0512 2.0507
0.18 1.3989 1.3705 1.3638 1.3625 1.3620
0.20 0.9018 0.8777 0.8721 0.8710 0.8706
0.22 0.5588 0.5398 0.5353 0.5345 0.5342
0.24 0.3321 0.3181 0.3148 0.3142 0.3139
0.26 0.1889 0.1792 0.1769 0.1765 0.1764
0.28 0.1027 0.0963 0.0949 0.0946 0.0945
0.30 0.0532 0.0494 0.0485 0.0483 0.0483

Rom Table 1 and Figure 1, it is seen that the discretely sampled Vasicek option prices
converge to the continuous Vasicek option prices for all levels of interest rates as $\Delta$ tends
to zero.

Next, we consider the cases when the underlying innovation processes are non-Gaussian
and dependent. For this, we consider the following three models:

1. Skewed student t-distribution,

2. Gaussian GARCH(I,I) processes: $X_{j}=h_{j}^{1/2}\epsilon_{j}$ , with

$h_{j}=\alpha_{0}+\alpha_{1}X_{j-1}^{2}+\beta_{1}h_{j-1}$ ,

3. Gaussian AR(1) processes: $X_{j}=\phi X_{j-1}+\epsilon_{j}$ .

For a skewed student t-distribution of (Hansen, 1994), the innovation density is given by

$g(x|\eta, \lambda)=\{\begin{array}{ll}bc(1+\frac{1}{\eta-2}(\frac{bx+a}{1-\lambda})^{2})^{-(\eta+1)/2}, if x<-a/b,bc(1+\frac{1}{\eta-2}(\frac{bx+a}{1+\lambda})^{2})^{-(\eta+1)/2}, if x\geq-a/b,\end{array}$

where-l $<\lambda<1,$ $\eta>2$ and

$a=4 \lambda c\frac{\eta-2}{\eta-1}$ , $b^{2}=1+3\lambda^{2}-a^{2}$ , $c= \frac{\Gamma((\eta+1)/2)}{\sqrt{\pi(\eta-2)}\Gamma(\eta/2)}$ ,
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Figure 1: Relationship between $r_{0}$ and the option prices differences between the discretized
and continuous Vasicek models, with $\triangle=1/12,1/52$ , 1/252, and 1/1000. Option values
are computed for 5 year call on a 15 year 10% coupon bond with a face value of 100.
Selected parameter values are $\kappa=0.20,$ $\mu=0.085$ , and $\sigma=0.02$ .

with zero mean and unit variance, and where $\Gamma(\cdot)$ is a gamma function. Suppose $\eta>4$ ,
Jondeau and Rockinger (2003) show that skewness and kurtosis of $X_{j}$ are

$\gamma_{1,ST}=\frac{m_{3}-3am_{2}+2a^{3}}{b^{3}}$ and $\gamma_{2,ST}=\frac{m_{4}-4am_{3}+6a^{3}m_{2}-3a^{4}}{b^{4}}$ ,

respectively, where $m_{2}=1+3\lambda^{2},$ $m_{3}=16c\lambda(1+\lambda^{2})(\eta-2)^{2}/[(\eta-1)(\eta-3)],$ $m_{4}=$

$3(\eta-2)(1+10\lambda^{2}+5\lambda^{4})/(\eta-4)$ . Hereafter, we consider the process $\{\sigma_{ST}X_{j}\}$ . The
covariances $\sigma_{i_{1}}\sigma_{i_{2}}$ are given by

$\sigma_{i_{1}}\sigma_{i_{2}}=\frac{T}{n_{1}}\sum_{k=1}^{n_{1}}b_{k}^{\rho_{2}}v^{(k-1)(2-p_{2})}\sigma_{ST}^{2}$ . (17)

The third- and fourth-order joint cumulants of $Y_{n_{1}}$ are evaluated as

cum $(Y_{i_{1},n_{1}}, Y_{i_{2},n_{1}}, Y_{i_{3},n_{1}})=, \frac{(T\sigma_{ST}^{2})^{3/2}}{\sqrt{n_{1}}}(\frac{1}{n_{1}}n\sum_{k=1}^{1}b_{k}^{\rho_{3}}v^{(k-1)(3-p_{3})})\gamma_{1,ST}$, (18)

and

cum $(Y_{i_{1},n_{1}}, Y_{i_{2},n_{1}}, Y_{i_{3},n_{1}}, Y_{i_{4},n1})= \frac{(T\sigma_{ST}^{2})^{2}}{n_{1}}(\frac{1}{n_{1}}\sum_{k=1}^{n_{1}}b_{k}^{\rho_{4}}v^{(k-1)(4-p_{4})})(\gamma_{2,ST}-3)$ , (19)

respectively.
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Next, we consider the evaluation of third- and fourth-order cumulants of GARCH(I,I)
process. Let $\{X_{j}\}$ be a GARCH(I,I) process (Bollerslev, 1986), given by

$X_{j}=h_{j}^{1/2}\epsilon_{j},$ $h_{j}=\alpha_{0}+\alpha_{1}X_{j-1}^{2}+\beta_{1}h_{j-1}$ ,

where $\{\epsilon_{j}\}$ is a sequence of i.i. $d$ . normal random variables, each with mean zero and
variance one. The parameter values must satisfy $\alpha_{0}>0,$ $\alpha_{1},$ $\beta_{1}\geq 0,$ $\alpha_{1}+\beta_{1}<1$ and
$1-2\alpha_{1}^{2}-(\alpha_{1}+\beta_{1})^{2}>0$ . Then, we obtain

$\sigma_{i_{1}}\sigma_{i_{2}}=\frac{\alpha_{0}1}{1-\alpha_{1}-\beta_{1}n_{1}}\sum_{k=1}^{n_{1}}b_{k}^{p_{2}}v^{(k-1)(2-p_{2})}$ , and cum $(Y_{1},n_{1}, Y_{2},n_{1}, Y_{3},n_{1})=0$ . (20)

The fourth-order cumulants are evaluated as follows:

cum $(Y_{i_{1},n_{1}}, Y_{i_{2},n_{1}}, Y_{i_{3},n_{1}}, Y_{i_{4},n_{1}})$

$= \frac{3}{n_{1}}[\int_{-\pi}^{\pi}\frac{1}{n_{1}}\sum_{k=1}^{n_{1}}\sum_{\ell=1}^{n_{1}}b_{k}^{P2}v^{(k-1)(2-p_{2})}b_{l}^{p_{2}’}v^{(p-1)(2-p_{2}’)}e^{i(k-\ell)\lambda}f_{X^{2}}(\lambda)d\lambda$

$-( \frac{2\alpha_{0}^{2}(1+\alpha_{1}+\beta_{1})}{(1-(\alpha_{1}+\beta_{1}))(1-2\alpha_{1}^{2}-(\alpha_{1}+\beta_{1})^{2})})\frac{2}{n_{1}}\sum_{k=1}^{n_{1}}h^{(k-1)p_{4}}b_{k}^{4-p_{4}}]$ , (21)

where

$f_{X^{2}}( \lambda)=\frac{\sigma_{x^{2}}^{2}}{2\pi}\frac{1+\beta_{1}^{2}-2\beta_{1}\cos(\lambda)}{1+(\alpha_{1}+\beta_{1})^{2}-2(\alpha_{1}+\beta_{1})\cos(\lambda)}$,

$\sigma_{x^{2}}^{2}=\frac{2\alpha_{0}^{2}(1+\alpha_{1}+\beta_{1})}{(1-(\alpha_{1}+\beta_{1}))(1-2\alpha_{1}^{2}-(\alpha_{1}+\beta_{1})^{2})}$ .

Finally, we evaluate the second-order cumulant of Gaussian AR(1) process. Let $\{X_{j}\}$

be the Gaussian AR(1) process,

$X_{j}=\phi X_{j-1}+\epsilon_{j}$ ,

where $|\phi|<1$ and $\{\epsilon_{j}\}$ is a sequence of $i$ .i.d. $N(0, \sigma_{AR}^{2})$ random variables. Since $\epsilon_{j}$ is a
Gaussian random variable, we observe that for $i_{1},$ $i_{2},$ $i_{3},$ $i_{4}\in\{1,2\}$ ,

cum $(Y_{i_{1},n_{1}}, Y_{i_{2},n_{1}}, Y_{i_{3},n_{1}})=$ cum $(Y_{i_{1},n_{1}}, Y_{i_{2},n_{1}}, Y_{i_{3},n_{1}}, Y_{i_{4},n_{1}})=0$. (22)

The covariance of $Y_{n_{1}}$ can be evaluated as follows:

$\sigma_{i_{1}}\sigma_{i_{2}}=\frac{T}{n_{1}}\sum_{k,p=1}^{n1}b_{k}^{p_{2}}v^{(p-1)(2-p_{2})}R(k-\ell)$ , (23)
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where $R(j)$ is the autocovariance function of $X_{t}$ at lag $j$ ; that is, $R(j)=\sigma_{AR}^{2}\dot{\psi}(1-\phi^{2})^{-1}$ .
After some extensive calculations, (23) becomes

$\sigma_{1,n_{1}}^{2}=\frac{\sigma_{AR}^{2}\beta(\phi v)(1-v^{2n_{1}})}{\kappa(1-\phi^{2})(1+v)}+o(n_{1}^{-1})$ , (24)

$\sigma_{2,n_{1}}^{2}=\frac{\sigma_{AR}^{2}}{\kappa^{2}(1-\phi^{2})}[\triangle n_{1}\beta(\phi)-\frac{2\triangle\phi}{(1-\phi)^{2}}$

$- \frac{1+v}{4\kappa}\{2(\beta(\phi)+\beta(\phi v))(1-v^{n_{1}})-\beta(\phi v)(1-v^{2n_{1}})\}]+o(n_{1}^{-1})$ , (25)

and

$\sigma_{12}^{(n_{1})}=\frac{\sigma_{AR}^{2}}{2\kappa^{2}(1-\phi^{2})}[\{\beta(\phi)+\beta(\phi v)\}(1-v^{n_{1}})-\beta(\phi v)(1-v^{2n_{1}})]+o(n_{1}^{-1})$ , (26)

where $\beta(x)=(1+x)/(1-x)$ .
Table 2 reports the prices of the coupon bond options with three different innovation

models for 5-year call on a 15-year 10% coupon bond with face value 100. The time
interval $\Delta$ is fixed at $\triangle=1/12$ and the parameters of the short rates are the same as
those in Table 1. The skewed t-distributed option prices are calculated with $\eta=4.5$ and
$\lambda=-0.8,0,0.8$ . When $\lambda=0$ , which corresponds to the standardized t-distribution, the
option prices become higher than those obtained by using Gaussian distribution, (see,
second column of Table 1). When $\lambda$ is negative, and $r_{0}$ is less than 0.18, the option
prices get larger than those with $\lambda=0$ , and when $r_{0}$ is greater than 0.20, the option
prices become smaller than those with $\lambda=0$ , due to the asymmetry of the underlying
innovation distribution. When $\lambda$ is positive, the results are vice versa.

As for the AR(1) distributed call options, when the autoregressive coefficient is $0$

$(\phi=0)$ and which corresponds to the i.i. $d$ . Gaussian case, the option prices obtained are
the same as those in Table 1 with $\Delta=1/12$ . For negative $\phi$ , the option prices become
lower, and for positive $\phi$ , the option prices become higher. The option prices are much
more sensitive to the positive autocorrelation than the negative autocorrelation.

As for the GARCH(I,I) distributed call options, the option prices obtained with the
parameters $\alpha_{0}=0.00036,$ $\alpha_{1}=0.1$ and $\beta_{1}=0$ are the same as those obtained for Gaussian
case, because the unconditional variance is $\alpha_{1}/(1-\alpha_{1}-\beta_{1})=0.02^{2}$ . As $\beta_{1}$ increases, the
option values become to be large.

Figure 2 shows plots of the price of European call options on coupon bond as a
function of $\beta_{1}$ , with $\alpha_{1}=0.01,0.03,0.05,0.08,0.1$ . We set $\kappa=0.20,$ $\mu=0.05,$ $r_{0}=0.05$ ,
and $\triangle=1/12$ . The option with a maturity of 1 year and a strike price of 100 are written
on a 5 year coupon bond with a face value of 100 and coupon rate of 5%. Coupons are
paid semianmually. The parameter $\sigma^{2}$ is changed to the corresponding GARCH variance
such that $\sigma^{2}=\alpha_{0}/(1-\alpha_{1}-\beta_{1})$ , and $\alpha_{0}$ is fixed at $0.01^{2}$ . As shown in the figures, option
prices increase as $\beta_{1}$ increases, because large values of $\beta_{1}$ indicate that the second- and
the fourth-order cumulants tend to be large.
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Figure 2: The option prices for GARCH(I,I) process. We set $\kappa=0.20,$ $\mu=0.05,$ $r_{0}=$

0.05, and $\Delta=1/12$ . The bond is 5 year bond with a face value of 100 and a coupon rate
of 5%. Coupons are paid semiannually. The option is 1 year option with a strike price
of 100. The parameter $\alpha_{0}$ is fixed at $0.01^{2}$ . An unconditional variance of GARCH(I,I)
model is $\alpha_{0}/(1-\alpha_{1}-\beta_{1})$ .

Figure 3 and 4 plot the price and the price difference between continuous Vasicek and
AR(1) process of European call options on a coupon bond as a function of $\phi$ . We set
$\kappa=0.20,$ $\mu=0.05,$ $r_{0}=0.05$ , and $\triangle=1/12$ . The bond is 5 year bond with a face value
of 100 and a coupon rate of 5%. Coupons are paid semiannually. The option is 1 year
option with a strike price of 100. The parameter $\sigma_{AR}^{2}$ is chosen such that the long-run
variance $\sigma_{AR}^{2}/(1-\phi^{2})$ corresponds to $0.01^{2}$ . As shown in figure, when $|\phi|$ approaches 1,
option prices increase.

Figure 5 illustrates the coupon bond price of AR(1) distributed options (14) as a
function of $K$ . The parameter $\sigma_{AR}^{2}$ is chosen such that the long-run variance $\sigma_{AR}^{2}/(1-\phi^{2})$

is equal to $0.01^{2}$ . The rest of the parameters are the same as those investigated by using
GARCH(I,I) distributed options. From Figure 5, we can observe that the effects of first-
order dependence are significant for at-the-money call options. A negative autocorrelation
results in lower option prices, while a positive autocorrelation leads to higher option prices.
These findings can also be confirmed via Figure 6. As the values of $|\phi|$ increases, the price
differences tend to be large, and these differences are significant for the at-the-money call
options.
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Figure 3: The option price for AR(1) process as a function of $\phi$ in the domain $[-0.99,0.9]$ .
We set $\kappa=0.20,$ $\mu=0.05,$ $r_{0}=0.05$ , and $\triangle=1/12$ . The bond is 5 year bond with a
face value of 100 and a coupon rate of 5%. Coupons are paid semiannually. The option
is 1 year option with a strike price of 100. The parameter $\sigma_{AR}^{2}$ is chosen such that the
long-run variance $\sigma_{AR}^{2}/(1-\phi^{2})$ corresponds to $0.01^{2}$ .
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Figure 4: The option price difference for AR(1) process as a function of $\phi$ in the domain
$[-0.99,0.9]$ . We set $\kappa=0.20,$ $\mu=0.05,$ $r_{0}=0.05$ , and $\Delta=1/12$ . The bond is 5 year
bond with a face value of 100 and a coupon rate of 5%. Coupons are paid semiannually.
The option is 1 year option with a strike price of 100. The parameter $\sigma_{AR}^{2}$ is chosen such
that the long-run variance $\sigma_{AR}^{2}/(1-\phi^{2})$ corresponds to $0.01^{2}$ .
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Figure 5: Relationship between $K$ and the option prices for AR(1) process, with $\phi=$

$-0.8$ , -0.4,0,0.4, and 0.8. We set $\kappa=0.20,$ $\mu=0.05,$ $r_{0}=0.05$ , and $\triangle=1/12$ . The
option maturity is 1. The bond is 5 year bond with a face value of 100 and a coupon
rate of 5%. Coupons are paid semiannually. The parameter $\sigma_{AR}^{2}$ is chosen such that the
long-run variance $\sigma_{AR}^{2}/(1-\phi^{2})$ corresponds to $0.01^{2}$ .
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Figure 6: Relationship between $K$ and the option prices differences between continuous
Vasicek models and AR(1) process, with $\phi=-0.8,$ $-0.4,0,0.4$ , and 0.8. We set $\kappa=$

0.20, $\mu=0.05,$ $r_{0}=0.05$ , and $\triangle=1/12$ . The option maturity is 1. The bond is 5 year
bond with a face value of 100 and a coupon rate of 5%. Coupons are paid semiannually.
The parameter $\sigma_{AR}^{2}$ is chosen such that the long-run variance $\sigma_{AR}^{2}/(1-\phi^{2})$ corresponds
to $0.01^{2}$ .
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6 Conclusion
In this paper, we provide closed-form expressions for European call options on zero-
coupon bonds and coupon bonds in a discretized Vasicek model where the innovations
are non-Gaussian and dependent. The resulting bond and option pricing formulas reveal
the relationship between these prices and the cumulants of the underlying innovation
distribution. We present some numerical examples and demonstrate the effects on the
bond and option prices. Option values are sensitive to the skewness and the kurtosis of
the assumed innovation processes of the short rates for at-the-money options. The findings
in this study strongly suggest the importance of incorporating the non-Gaussianity and
dependency of the short rate models to hedge the interest rate risk and price the bonds
and options adequately.

Acknowledgements
This study was supported by Norinchukin Bank and the Nochu Information System En-
dowed Chair of Financial Engineering in the Department of Management Science, Tokyo
University of Science. The authors are grateful to Masafumi Akahira, Ken-ichi Koike
and the participants of the seminar at Kyoto University for their useful and constructive
comments.

References
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Joumal

of Econometrics, 31, 307-327.

Chen, L. (1996). Stochastic mean and stochastic volatility- a three factor model of the
term structure of interest rates and its application to the pricing of interest rate deriva-
tives. Financial Markets, Institutions & Instruments, 5, 1-88.

Choi, Y., & Wirjanto, S. T. (2007). An analytic approximation formula for pricing zero-
coupon bonds. Finance Research Letters, 4, 116-126.

Collin-Duhesne, P., & Goldstein, R. (2002). Pricing swaption in an affine framework.
Joumal of Derivatives, 19, 9-26.

Corrado, C. J., & Su, T. (1996). Skewness and kurtosis in S&P 500 index returns implied
by option prices. The Joumal of Financial Research, 19, 175-192.

Cox, C., Ingersoll, J., & Ross, S. A. (1985). A theory of the term structure of interest
rates. Econometrica, 53, 385-407.

Dai, Q., & Singleton, K. (2000). Specification analysis of affine term structure models.
Joumal of Finance, 50, 1943-1978.

126



Duffie, D., & Kan, R. (1996). A yield factor model of interest rates. Mathematical Finance,
6, 379-406.

Duffie, D., & Singleton, K. (1997). An econometric model of the term structure of interest
rate swap yields. Joumal of Finance, 52, 1287-1321.

Duffie, D., Pan, J., & Singleton, K. (2000). Ransform analysis and asset pricing for affine
jump-diffusions. Econometri $ca,$ $68,1343-1376$ .

Hansen, B. E. (1994). Autoregressive conditional density estimation. Intemational Eco-
nomic Review, 35, 705-730.

Honda, T., Tamaki, K., & Shiohama, T. (2010). Higher order asymptotic bond price
valuation for interest rates with non-Gaussian dependent innovations. Finance Research
Letters, 7, 60-69.

Jamshidian, F. (1989). An exact bond option formula. Joumal of Finance, 44, 205-209.

Jarrow, R., & Andrew, R. (1982). Approximate option valuation for arbitrary stochastic
processes. Joumal of Financial Economics, 10, 347-369.

Jondeau, E., & Rockinger, M. (2003). Conditional volatility, skewness, and kurtosis: ex-
istence, persistence, and comovements. Joumal of Econometric Dynamics and Control,
27, 1699-1737.

Kawai, A. (2003). A new approximate swaption formula in the LIBOR market model: An
asymptotic expansion approach. Applied Mathematical Finance, 10, 49-74.

Kunitomo, N., & Takahashi, A. (2001). The asymptotic expansion approach to the valu-
ation of interest rate contingent claims. Mathematical Finance, 11, 117-151.

Nunes, J., Clewlow, L., & Hodges, S. (1999). Interest rate derivatives in a Duffie and Kan
model with stochastic volatility: An Arrow-Debreu approach. Review of Derivatives
Research, 3, 5-56.

Masuda, H., & Yoshida, N. (2005). Asymptotic expansion for Barndorff-Nielsen and Shep-
hard $s$ stochastic volatility model. Stochastic Processes and their Applications, 115,
1167-1186.

Petote, J., & Del Br\’io, E. (2003). Measuring value-at-risk under the conditional
Edgeworth-Sargan distributions. Finance Letters, 1, 23-40.

Rubinstein, M. (1998). Edgeworth binomial trees. Joumal of Derivatives, 5, 20-27.

Sargan, J. D. (1975). Gram-Charlier approximations applied to ratios of k-class estimators.
Econometr $ca,$ $43,327-347$.

127



Sargan, J. D. (1976). Econometric estimators and Edgeworth approximations. Economet-
rica, 44, 421-448.

Shiohama, T., & Tamaki, K. (2011). Asymptotic expansion for interest rates with non-
Gaussian dependent innovations. forthcoming in Interest Rates: Term Structure Models,
Monetary Policy, and Prediction (ed. Nishiyama, Y.), Nova Science Publishers, New
York.

Singleton, K. J., & Umantsev, L. (2002). Pricing coupon-bond options and swaptions in
affine term structure models. Mathematical Finance, 12, 427-446.

Tamaki, K., & Taniguchi, M. (2007). Higher order asymptotic option valuation for non-
Gaussian dependent returns. Joumal of Statistical Planning and Inference, 137, 1043-
1058.

Vasicek, O. (1977). An equilibrium characterization of the term structure. Joumal of
Financial Economics, 5, 177-188.

Wei, J. (1997). A simple approach to bond option pricing. Joumal of Futures Markets,
17, 131-160.

128


