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C. GERARD

ABSTRACT. We study the scattering theory for charged Klein-Gordon equa-

tions:
(8 — iv(z))26(t, ) + €2(z, Dz )é(t, x) = 0,
#(0,z) = fo,
i~18¢(0,7) = fi,
where:
ez(z, Dz)= - Z (8zj —ibj(:z:)) Ajk(m) (Ox; — iby(z)) +m2(x),
1<5.k<n

describing a Klein-Gordon field minimally coupled to an external electror_z}a.g-
netic field described by the electric potential v(z) and magnetic potential b(z).
The flow of the Klein-Gordon equation preserves the energy:

WA= [ Fi@h () + Fole)eH e, De) foe) = Folav? =) ol
‘We consider the situation when the energy is not positive. In this case the flow

cannot be written as a unitary group on a Hilbert space, and the Klein-Gordon
equation may have complex eigenfrequencies.

Using the theory of definitizable operators on Krein spaces and time-dep-
endent methods, we prove the existence and completeness of wave operators,
both in the short- and long-range cases. The range of the wave operators are
characterized in terms of the spectral theory of the generator, as in the usual
Hilbert space case.

1. INTRODUCTION

1.1. Klein-Gordon equations with non-positive energy. Klein-Gordon field
equations coupled with an external electromagnetic field appear in several problems
of mathematical physics. It was realized since the forties by Schiff, Snyder and
Weinberg [SSW] that for the Klein-Gordon equation on Minkowski space:

(1.1) (8 — 1v(z))%¢(t, ) — Azd(t, ) + m2(t, z) = 0,

complex eigenfrequencies appear if the electrostatic potential becomes too large,
which causes difficulties with the quantization of this field equation. This phenom-
enon is usually called the Klein paradoz. It can be traced back to the fact that the

conserved energy
[ 1ostta)as + [ 90,007 + 0 - v*@)lo ) de
is not positive definite if |[v||s is too large.
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A related problem appear when one considers the Klein-Gordon equation on
some curved space-times of general relativity, like the Kerr space-time describing
a rotating black hole. Again the conserved energy is not positive definite. A nice
reference describing these problems is the appendix of the book by Fulling [Fu].

We describe in this report the results of [G] concerning the scattering theory for
a class of Klein-Gordon equations generalizing (1.1). In [G] we consider the charged
Klein-Gordon equation:

(a‘t - w(:r))2¢(t,x) + 62(2:, DI)¢(t1 fC) = 01
(1.2) $(0,z) = fo,
i716,¢(0,2) = f1,

in R; x R? where

(z,Dg) = — Z (8x; — ib;(2)) a?*(z) (85, — ibk(z)) + m*(z),
1<j3,k<n
describing a Klein-Gordon field minimally coupled to an external electromagnetic

field described by the electric potential v(z) and magnetic potential b(z). The
function z — m(z) corresponds to a variable mass term, incorporating for example

a scalar curvature term. .
Precise hypotheses on [a7%(z)], b(z) and m(z) are given in [G], they essentially
mean that the second order differential operator ¢? is a long-range perturbation of

~A; + m? for some m > 0.
For the sake of simplicity, in this report we will consider only the simple case

(1.1), where:
2._ 2 2
€ =D;+m* m>0.

The external electric potential v(z) is assumed to satisfy:

(A2) vke~% : § — b is compact for k = 1,2,

(A4) v(z) = vs(z) + ui(z),

where:
(1.3) u(z) € STH(R?) w > 0,
(1.4) (z)**vke™F is bounded for k = 1,2, ps > 1.

Here S°(R?) is the standard symbol class:
S5(RY) := {u € C®(RY) : 3%u(z) € O({(z)°~1®), & € N},

In analogy to the scattering theory for Schrodinger operators, the case 1 < u; (resp.
0 < w; < 1) will be called the short-range (resp. long-range) case.
The Cauchy problem (1.2) can be rewritten as

ft:e—ith’ B=-< ezgv2 211) )’ for fz = ( —i(gfzs)(t) )
The evolution e~'*8 preserves the energy:
Wt Sl [ Fo@) (@) + Fol@e fole) = Tolel*(@) fole)da

We are interested in this paper in the scattering theory, i.e. in the complete classi-
fication of the asymptotic behavior of e~*Z f for all initial data f, when ¢ — =o0.
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1.2. Scattering theory. If the energy h is positive, i.e. the electric potential is
not too large, one can use it to equip the space of initial data with a Hilbert space
structure.

Under typical assumptions one obtains the energy space £ = H(R") @ L2(R™),
and the group e~i*B becomes a strongly continuous unitary group on &£, whose
scattering theory can be studied by Hilbert space methods. We mention among
many others the papers [E, Lu, N, S, VW, W]. In this paper we are interested in
the situation when the energy is not positive. In this case the generator B may
have complex eigenvalues, or real eigenvalues with non trivial Jordan blocks.

It follows thal in general the energy norm |e~iZ f||¢ may be polynomially or
exponentially growing in ¢.

To our knowledge the only result about scattering theory in this situation is due
to Kako [K] where the case v(z) € O({z)™#), u > 2 is treated. In [K], spectral
projections 1;(B) for bounded intervals I such that =m ¢ I are constructed by
stationary arguments, and local wave operators

; itB _~itBoo - W
s~ tl}imooe e 1;(Bx) =W;
are shown to exist, for By, being the generator of the free Klein-Gordon equation
obtained for €2 = —A + m? and v(z) = 0.

Their ranges are shown to be equal to the range of 1;(B), which is a result of
local asymptotic completeness of wave operators.

In this paper we reconsider this problem using two tools:

the first tool is the theory of selfadjoint operators on Krein spaces . Krein spaces
are complete, hilbertizable vector spaces equipped with a bounded, non-degenerate
but non-positive hermitian sesquilinear form h[, -], the adjoint of a densely defined
linear operator being defined with respect to h.

The idea of using Krein space theory to study the Klein-Gordon equation with a
non-positive energy is of course not new. Equations coming from classical mechanics
(like the Klein-Gordon equation) are actually typical applications of Krein space
theory. We mention among others the papers [J2, J3, LNT1, LNT2].

Our second tool is an adaptation to the framework of definitizable selfadjoint
operators on Krein spaces of the time-dependent approach to Hilbert space scatter-
ing theory, in the version initiated by Sigal and Soffer [SS], based on propagation
estimates. The method of propagation estimates proved very powerful and flexible
to study scattering theory for Schrodinger operators, in particular for the problem
of asymptotic completeness of wave operators.

Its adaptation to the Krein space setup requires some care, because one needs
to work with two sesquilinear forms, the non-positive one defining the Krein scalar
product, and a positive one defining the hilbertizable topology, the dynamics e~1t58
preserving the first, but of course not the second.

2. DEFINITIZABLE OPERATORS ON KREIN SPACES

2.1. Krein spaces. If H is a topological complex vector space, we denote by H#
the space of continuous linear forms on H and by (w,u), for u € H, w € H* the
duality bracket between H and H*.

Definition 2.1. A Krein space K is a hilbertizable vector space H equipped with
a bounded hermitian sesquilinear form [u,v] non-degenerate in the sense that if
w € H* there exists a unigue u € H such that

[u,v] = (w,v), v € H.

If we fix a scalar product (:|-) on H endowing H with its hilbertizable topology,
then by the Riesz theorem there exists a bounded, invertible selfadjoint operator
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B such that

[u,v] = (u|Bv), u,v € H.
If A is a densely defined linear operator on H, we will denote by A* € (H) the
adjoint of A on (M, (-|-)) and by At € B(H) the adjoint of 4 on (K, [-,-]) defined by

[Aty,v] := [u, Av], u € DomA,v € DomA!.

Definition 2.2. A Krein space (K, [,-]) is a Pontryagin space if either Ig-(B) or
1+ (B) has finite rank.

Replacing [-, -] by —[-,:] we can assume that Ig- (B) has finite rank, which is the
usual convention for Pontryagin spaces.

2.2. Selfadjoint operators on Krein spaces. A densely defined operator A on
K is called selfadjoint if A = A!. Not much can be said about selfadjoint operators
on Krein spaces except for the obvious fact that o(4) = g(A). However there exists
a class of selfadjoint operators, called definitizable which share some properties of
selfadjoint operators on Hilbert spaces.

Definition 2.3. A selfadjoint operator A is definitizable if

(1) p(A) # B,
(2) there exists a real polynomial p(A) such that

[u, P(A)u] > 0, Yu € DomA*, k := degp.

A real polynomial p satisfying condition (2) above is called definitizing for A.
Definition 2.4. Let A a definitizable selfadjoint operator and p a definitizing poly-
nomial for A. The set

eo(4) = p ({0} No(4) NR
is called the set of (finite) critical points of A.

The usefulness of the notion of Pontryagin spaces in this context comes from the
following theorem.

Theorem 2.5. A selfadjoint operator A on a Pontryagin space is definitizable
with a definitizing polynomial p of even degree.

The following result is due to Langer [La).

Proposition 2.6. Let A be a definitizable selfadjoint operator with definitizing

polynomial p. Then: _

(1) o(A)/R is the union of pairs {\:, A\i} of eigenvalues of finite algebraic multi-
plicity;

(2) Let I C R be a compact interval with dINcy(A) =0, and k(I) be the mazimal
multiplicity of critical points of A in I (as roots of p(A\)). Then there exist
constants C(I), 8(I) such that:

(A = 2)7Y|| < C(D)|Imz|~2~*) | uniformly for Rez € I, 0 < |Imz| < §(J)
(3) Set now

Eo = > E\A)+EQRA), Ko = EK,
A€g(A4), ImA>0

where E(z, A) is the Riesz spectral projection on an isolated eigenvalue z € C
of A. Then Ey is an orthogonal projector, hence Ko is a Krein space and

/C=’C0@’C6L =: Ko K;.
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2.3. Functional calculus for definitizable operators. Because of the power-
like growth of its resolvent near the real axis, a definitizable operator admits a
smooth functional calculus. A convenient way to construct it is through almost
analytic extensions.

Proposition 2.7 (Smooth functional calculus). (1) let f € SP(R) for p < 0 if
degp is even and p < ~1 if degp is odd. Then the integral:

2.5) (4) = —/Q(z )=ldz A dz

is norm convergent in B(H) and independent on the choice of the almost an-
alytic extension f;
(2) For p as in (1), the map SP(R) 3 f — f(A) € B(H) is a homomorphism of
algebras with:
f(A) = f(4),
IF (AN < | fllm, for some m € N.

Here f(z) is an almost analytic extension of f (see eg [HS], [D]) equal to f on
the real line.

Due to the positivity hidden in the definition of definitizability, it is possible to
extend the functional calculus to a class of Borel functions (see the survey paper
by Langer [La]). If J C R is a finite union of disjoints intervals, we denote by
B.(J) the *—algebra of bounded Borel functions on J which are locally constant
near c,(A).

Proposition 2.8 (Borel functional calculus). (1) Let J C R a finite union of dis-
Jjoint bounded intervals I such that &I Nc,(A) = 0. Then the map C(R) >
f > f(A) € B(H) can be eztended to an homomorphism of *~ algebras:

Bc(J) 2 f— f(A) € B(H),

with f(A) = f1(A) for all f € B(J);
(2) Let Ag € R\cp(A). Then:
Ieaoy (4) = s— Ling By e 10+ (A)
equals the orthogonal projection on Ker(A — Ao);

(3) Let I a bounded interval with I N ¢,(A) = 0. Then there erists Cr > 0 such
that

IF (AN < Crliflleos f € Be();

(4) Assume that p is of even degree. Then the above map ertends to all f € B.(R)
with the same properties. In particular statement (3) eztends to all intervals
I with I N ¢,(A) = 0. Moreover one has:

1(A) + Ey = 1,
where the projection Eq is defined in Prop. 2.6.

3. SCATTERING THEORY FOR KLEIN-GORDON EQUATIONS

3.1. Properties of eigenvalues and critical points. The essential spectrum of
B is very easy to describe:

Lemma 3.1. One has:
Oess(B) ==] — 00, =m] U [m, +oo|.



C. GERARD

Proposition 3.2. Assume that v = v; + v2 where:
(B1) { 82v; € O({x)~#~1el), Jo| < 2,
vy has compact support, v, € L4(RY).
Then op(B) NR C [-m,m).
The proposition follows from the observation that Bf = Af iff p(A) fo = Efo for
p(A) =p — v — 2xv, E =72 - m?.
and well known results on absence of strictly positive eigenvalues for Schrédinger

operators.
We introduce now an important implicit condition, stating that +m are not

critical points:

(B2) £ m ¢ cp(B).
For this condition to hold it suffices that there are no eigenstates of B for the eigen-
values +m with negative energy. Elementary computations (which can certainly be
improved) yield the following result:

Lemma 3.3. If either
”v"OO < \/im:

or
v has constant sign, {|v|le < 2m,

then (B2) holds.

3.2. Spectrum of B. We first summarize what we know about the spectrum of
B. We set 0S,(B) = app(B)\R, oR,(B) = opp(B)NR.

Proposition 3.4. Assume hypotheses (A), (B). Then:

(1) Oess(B) =) — 00, —m] U [m, +00[;
(2) agp(B) = U;Vzl{zj,ij}, where z;, Z; are eigenvalues of finite algebraic multi-
plicities;

(3) agp(B) C [-m,m] is a (finite or infinite) sequence (A;)ien of eigenvalues which
can accumulate only at +m, the eigenvalues in | — m, m[ have finite algebraic
multiplicities;

(4) op,/cp(B) have trivial Jordan blocks.

X
b s
X
1®x ® X ox —
o Tess(B)
® critical points X x
X

x eigenvalues

FIGURE 1. The spectrum of B
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3.3. Bound and scattering states. We set
c
]lpp(B) = ZZGUED(B) E(Z, B)’

]llgp(B) = Z)\EJSF(B) H{)‘} (B)’
Ipp(B) = 1S,(B) + I3(B).

Here E(2, B) for z € agp(B) is the Riesz spectral projectionon z. If A € agp(B)\cp(B),
then 17);(B) is defined in Prop. 2.8. If A € ¢;(B) then 11x1(B) = Ijs_eatq(B)
for all € > 0 small enough.

Note that the first sum is finite, the second strongly convergent, since +m are

not critical points of B.
We set:

Eop(B) 1= Ipp(B)E, € =: Epp(B) et Escatt (B).
The properties of £,5(B) and Egcayy (B) are summarized in the following proposition:

Proposition 3.5. (1) &,p(B) and Escatt(B) are Krein subspaces of €, invariant
under (e~18),cr;
(2) Epp(B) and Escart (B) are closed symplectic subspaces of € and are symplecti-
cally orthogonal;
(3) Let u € Exp(B). Then

e By = Z e “BE(z, B)u + Z e itB 1153 (B)u,

z€05,(B) A€ok, (B)
where the sum is strongly convergent, uniformly for t € R;
(4) one has
Escart (B) = Egcars(B) o g:(-:att(B)’
for

gs:a.tt(B) = ﬂ]—oo,—m[(B)g: gstatt(B) = ﬂlm,+oo[(B)£;
The space Escart (B) will be called the space of scattering states for B.

Remark 3.6. Since the projections E(z, B) and 1(,}(B) are finite rank, it follows
from Prop. 3.5 (8) that e~*By for u € £,p(B) can be explicitly computed modulo
an error of size € > 0, uniformly in t € R.

3.4. Existence and completeness of short-range wave operators. In this
subsection we assume hypotheses (A1) for uo > 1, (A2), (A3), (A4) for v; =0, and
(B). In other words we are in the short-range case. We set £ := H*(R%) @ L2(R%),
equipped with the usual energy scalar product:

hoolf, f] = (filf1) + (fole? fo),

so that £ = £ as topological spaces. We set also

0 1
Bm'__(ez 0)’

which is the generator of the free Klein-Gordon evolution with mass m.

Theorem 3.7. Assume hypotheses (A1) for po > 1, (A2), (A3), (A4) for vy =0,
and (B). Then:
(1) for all f € Ex there exist unique f € Egcary(B) such that

e B fE _ o~itBef .0, t— too.
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(2) Let us define the short-range wave operators Q% :

0 - Exn  — Escatt(B),
s [ [t
Then: ’
(i) QF are bounded symplectic transformations,
(ii) NFe~itB= =¢7itBOE t R,
(i3) QF are unitary from (Exo, hool's ) t0 (Escate(B), Al -]).

3.5. Existence and completeness of long-range wave operators. We assume
now hypotheses (A), (B), i.e. we are in the long-range case. As in the case of
Schrédinger operators, it is necessary to introduce a modified free dynamics to
define the wave operators. We choose to use time-independent modifiers analogous
to those introduced by Isozaki-Kitada for Schrédinger operators [IK]. It turns out
that it is necessary to assume that the long-range potential v; is of constant sign
near infinity. This is not a serious restriction from the point of view of physical
applications. Hence we introduce the hypothesis

(C) £u(z)>0for |z|>1.

Let us now define the time-independent modifiers. As in [IK] we construct solutions
o+ (x, &) of the eikonal equations:

£ (10:02 (2,012 + m?) ¥ = u(z) = £(€ + mH)},

in some outgoing and incoming regions. We denote by j+ the associated Fourier
integral operators defined as:

jau(z) = (2m) / 0= (2O (y)dyde,

which are bounded operators on L?(R¢) and H'(RY).
Definition 3.8. The time-independent modifier T is defined as
1( ja—je  —(e+i-)e? )
T:=%- ; ; . . ,
2 ( U+ +3-)e  Jy -
where we use the + sign according to the sign of v, in (C).

Theorem 3.9. Assume hypotheses (A), (B) and (C). Then:
(1) for all f € Ex there exist unique f* € Egcary(B) such that

e Bt _ Te~itBeef _, () t — to0.
(2) Let us define the long-range wave operators Qf :

Soo — Escatt (B),

Qli: T oot

Then:
) Q?‘ are bounded, symplectic transformations,
(i1) QfeitBe = HBQFE, teR,

(23) Qf are unitary from (Eoo, hoo[s-]) 10 (Escatt (B), h[-|]).
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