0oooo0O0oooo
017610 20110 80-99 80

—i&{t Tz sine-Gordon AN DR E

Exact method of solution for the generalized sine-Gordon equation

IHORZERZFRETZMAR % 473 (Yoshimasa Matsuno)
Division of Applied Mathematical Science

Graduate School of Science and Engineering

Yamaguchi University

Abstract

We develop a direct method for solving the generalized sine-Gordon equation
Utz = (14 82) sinu. Using the bilinear transformation method, we construct exact
multisoliton solutions and investigate their properties. In particular, we show that
the equation exhibits kink and breather solutions and does not admit multi-valued
solutions like loop solitons. We also demonstrate that the equation reduces to the
short pulse and sine-Gordon equations in appropriate scaling limits. The limiting
form of the multisoliton solutions are also presented. Finally, we derive an infinite
number of conservation laws by using a novel Backlund transformation connecting
solutions of the sine-Gordon and generalized sine-Gordon equations.

1. Introduction
The generalized sine-Gordon (sG) equation
Utz = (1 4 v02) sin u, (1.1)

where u = u(z,t) is a scalar-valued function, v is a real parameter, 82 = §%/09x>
and the subscripts ¢t and z appended to u denote partial differentiation, has been
derived by Fokas [1]. In the case of ¥ = —1, its integrability was established
by constructing a Lax pair associated with it and the initial value problem was
formulated for decaying initial data by means of the inverse scattering method [2].
Quite recently, we developed a systematic method for solving equation (1.1) with
v = —1 and obtained soliton solutions in the form of parametric representation
[3].
Here, we consider equation (1.1) with » =1

utz = (1 + 8%)sin u. (1.2)

One of the remarkable features of equation (1.2) is that it does not admit multi-
valued solutions like loop solitons as obtained in the case of v = —1. The detail
of this report has been published in [4].



2. Exact method of solution

2.1. Hodograph transformation

First, we introduce the new dependent variable r in accordance with the relation
rP=1-u, (0<r<l), (2.1)

to transform equation (1.2) into the conservation law of the form
re — (r cos u), = 0. (2.2)

This expression makes it possible to define the hodograph transformation (z,t) —
(y,7) by

dy = rdz +r cos udt, dr = dt. (2.3)

The z and t derivatives are then rewritten in terms of the y and 7 derivatives as
0 0 0 0 0

- == _—= = —. 2.4

Ox TBy’ ot 8T+rcosu6y (24)

With the new variables y and 7, (2.1) and (2.2) are recast into the form

r? =1-—r%ul, (2.5)
(%) + (cos u), =0, (2.6)

respectively. Further reduction is pTossible if one defines the variable ¢ by
uy = sinh ¢, ¢ = oy, 7). (2.7)

It follows from (2.5) and (2.7) that

= cosh ¢. (2.8)

=S | =

Substituting (2.7) and (2.8) into equation (2.6), we find
¢, = sin u. (2.9)
If we eliminate the variable ¢ from (2.7) and (2.9), we obtain a single PDE for u

U = sin w. (2.10)

\/1+uy§

Similarly, elimination of the variable u gives a single PDE for ¢

oy _ sinh @. (2.11)
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By inverting the hodograph transformation (2.3) and using (2.8), the equation
that determines the inverse mapping (y,7) — (z,t) is found to be governed by the
system of linear PDEs for z = z(y, 7)

z, = cosh ¢, (2.12a)

Z,; = —COS U. (2.12b)

2.2. Bilinear formalism

Let o and ¢’ be solutions of the sG equation
oy = sin o, o=o(y,7), (2.13a)
o,, =sin o, o' =o'y, 7). (2.13b)
The solutions of the above equations can be put into the form

’ /

c=2 lnL, o =2l (2.14a,b)

f g

For soliton solutions, the tau functions f, f', g and ¢’ satisfy the following system
of bilinear equations:

‘ 1 ! ! ! ]‘ 72
DTDyf ) f = §(f2 - fz)a DT-Dyf ‘ f = §(f2 - fz), (2150, b)
1 , , 1
D,Dyg-g=5(a"~9"), D.Dyg-d =3(g" - o), (2.16a, b)

where the bilinear operators D, and D, are defined by

D:-nDng = (ar - ar’)m (ay - ay’)n f(Ta y)g(T,’ y’)|'r'='r,y’=ya (m, n = 07 11 2, )

(2.17)
Now, we seek solutions of equations (2.7) and (2.9) of the form
/ !
u=iln€,—, ¢=ln%, (2.18a,b)
where F, F',G and G’ are new tau functions. If we impose the condition
F'F=GaG, (2.19)

among these tau functions, then equations (2.7) and (2.9) can be transformed to
the following bilinear equations

iD,F' . F = %(G’Z — @), (2.20)



iD,G' -G = -;-(F"’ —~F?), (2.21)

respectively. The proposition below provides the tau functions F, F’,G and G’ in
terms of f, f',g and ¢'.

Proposition 2.1. If we impose the conditions for the tau functions f, f',g and ¢
. 1 ) 1 ,
iDyf-g'=5(fd ~f9), 1D -g=35(f'9-fd), (2.22a,b)

. 1 : 1
iDf-g=-5(fg=f9), iD.f'-d =—5(f'q - f9), (2.23a,b)
then the solutions of bilinear equations (2.20) and (2.21) subjected to the condition
(2.19) are given by
F=fg, F=fyg, (2.240)
G=7fgd, G =fy (2.24b)

2.3. Parametric representation

Proposition 2.2. cosh ¢ is given in terms of the tau functions f, f',g and ¢’ as

cosh ¢ =141 (ln %)y . (2.25)

Integrating (2.12a) with (2.25) by y yields the expression of z
!

z=y+iln % + d(7), (2.26)

where d is an integration constant which depends generally on 7. The expression

(2.26) now leads to our main result:

Theorem 2.1. The solution of equation (1.2) can be expressed by the parametric

representation
! 7

. g
u(y,7) =1ln—/—, 2.27a
(,7) 7q ( )

!
2(y,7)=y—T+iln -}%% + 1o, (2.27b)

where the tau functions f, f', g and ¢' satisfy equations (2.15), (2.16), (2.22) and
(2.23) and yo is an arbitrary constant independent of y and 7.

An interesting feature of the parametric solution (2.27) is that it never exhibits
singularities as encountered in the case of equation (1.1) with ¥ = —1. Indeed

Uy = TU, = tanh ¢, (2.28)
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showing that u, always takes a finite value.

2.4. Multisoliton solutions

Theorem 2.2. The tau-functions f, f',g and ¢’ given below satisfy both the bilin-
ear forms (2.15) and (2.16) of the gG equation and the bilinear equations (2.22)
and (2.23),

f= Z exp [Z Hj (6.1 +di+ 5 1) Z Naﬂk%k] (2.29a)

p=0,1 j=1 1<j<k<N
N T
f'= Z exp [Z Hj (€J +dj — by 1) + NJNk'YJkJ ) (2.290)
u=0,1 7=1 1<j<k<N
N v
g=Y_ exp {Z s (5:' —dit3 i) + Z ﬂjﬂk')’jkj} : (2.30a)
p=0,1 j=1 1<j<k<N
N ™
g=> exp [Z i (ﬁj —di—3 i) + Z Mj#k’m] , (2.300)
u=0,1 Jj=1 1<j<k<N
where .
& =piy+ ot &,  (G=12,..,N), (2.31a)
. pj — pk) . »
e%k = I ak_ 1a2a"')Na k ’ 231b
( Y (J J#k) (2.31b)

, 14 1ip; .
4 — | j _ _
e = I ipj’ j=12,..,N). (2.31¢)

Here, p; and o are arbitrary complex parameters satisfying the conditions p; #
+p, for j # k, i = /=1 and N is an arbitrary positive integer. The notation
Eu=o,1 implies the summation over all possible combination of uy = 0,1,y =
0,1,...,un=0,1.

The parametric solution (2.27) with (2.29) and (2.30) is characterized by the 2N
complex parameters p; and &, (j = 1,2, ..., N). It produces in general the complex-
valued solutions. The real-valued solutions are obtainable if one imposes certain
conditions on these parameters. Actually, there arise various type of solutions
depending on values of the parameters. These solutions include kinks, antikinks
and breathers. Among them, we consider following three types:

Type 1: Kink solution



First, let p; and & (j = 1,2, ..., N) be real quantities. Then f' = g* and ¢’ = f*
and (2.27) becomes

[Ty . f7g
u(y,7) =1iln , oy, 7) =y —7+iln = +yo. 2.32a,b
(y,7) Fa (y,7) g T o ( )

Type 2: Breather solution

We put N = 2M where M is a positive integer, and specify the parameters p; and
fj,O (] = 1325 72M) as

P2j-1 =P;j, §2j-1,0 = 551’,01 (J=12,..,M). (2.33)

It turns out that f' = g* and ¢’ = f*. Then, the solution can be written in the
same form as (2.32).

Type 3: Kink-breather solution
Let N = 2M + M’ where M and M’ are positive integers. In addition to the
parameterization given by (2.33), the 2M’ parameters p;(> 0) and o (j = 2M +
1,2M + 2,...,2M + M') are chosen to be real. Then, the parameteric solution
(2.32) represents the solution describing the interaction among M breathers and
M’ kinks. The antikink-breather solution can be constructed similarly.

For the above three types of solutions, ¢ from (2.18b) and u, from (2.28) can
be given explicitly in terms of the tau functions f,g and their complex conjugate
as

¢:m?3, (2.34)
_(g9* - (" f)? (2.35)

u:c -_— .
(g°9)% + (f*f)?
Note that (2.34) provides real solutions of equation (2.11).

3. Properties of solutions

8.1. 1-soliton solutions

The tau-functions for the 1-soliton solutions are given by (2.29) and (2.30) with
N=1:
f=1+iehtd g=1+ie""4, (3.1a,b)

&1 Ply+p1 + &0, e Vl—ipl' (3.1¢)

The real parameters p; and £, are related to the amplitude and phase of the
soliton, respectively and &; is the phase variable characterizing the solution. The
parametric representation of the solution (2.32) can be written in the form

u=2tan"? (\/1 + p? sinh §1> +, (3.2a)
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z=y—7+2tan"!(p; tanh &) + 2 tan~' p; + . (3.2b)

Figure 1 shows a typical profile of the kink solution as a function of X together
with the corresponding profile of v = u,.

e

u,v

N WA OO0 N

Figure 1 The profile of a kink u (solid line) and corresponding profile of v = uyx
(broken line). The parameter p; is set to 0.4 and the parameter y, is chosen such
that the center position of ux is at X = 0. Here, X =z +cit + o, c; = 1/p2 + 1.

3.2. 2-soliton solutions

The tau-functions for the 2-soliton solutions read from (2.29) and (2.30) with
N =2 in the form

= i (o€1+d1 §2+d2 __ 5o61t€e+di+dz — i (ef1—d1 §2—d2) _ §of1té2—di—d2
f=1+i(e +e%2t%) e , g=1+i(e +e¥ %) —je ,
(3.3a,b)

T d /1 +ip; . (p1 — p2)?
= py 4+ — + £, % = [ —2 =1,2), 0= ——=. (3.3c
5.] by P; EJO 1— ip; (.7 ) (pl + p2)2 ( )

The parametric solution (2.32) with (3.3) represents three types of solutions, de-
pending on values of the parameters p; and &; (j = 1,2), i.e., kink-kink, kink-
antikink and breather solutions.

3.2.1. Kink-kink solution

If we specify p; and p; be positive and &y; and £y, be real, then the kink-kink
solution is obtained. The solution represents the so-called 47 kink. In figure 2a-
c, we depict a typical profile of v(= u,) instead of u for three different times.
It represents the interaction of two solitons with the amplitudes 4; = 0.38 and
Az = 0.75.
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Figure 2 a-c The profile of a two-soliton solution v = u, for three different times,

a: t =0, b: t =2, ¢ t =4. The parameters are chosen as p; = 0.2, p2 =
0.5, &0 = —8, &0 =0.
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The formula for the phase shift arising from the interaction of two solitons is
given as follows:

2 2
- 1 -
A = —iln (m p2) + 4 tan~! p,, Ay =—1In (u) — 4 tan"!p;.
D1 D1+ D2 D2 D1+ D2
(3.4a,b)

It can be verified from (3.4) that A; > 0 and A; < 0 for 0 < p; < p2. In the
present example, formula (3.4) yields A; = 10.3 and A, = —4.2.

8.2.2. Breather solution

The breather solution can be constructed following the parameterization given by
(2.33). For M =1, let

p1 = a + ib, p2 = a — ib = pj, (a >0, b>0), (3.5a)

€10 = A +iy, €0 =A—ip =& (3.5b)
Then, f and g from (2.29) and (2.30) become

2
f=1+i(e* +e479%) + (g) ghtiithi—di (3.6a)
b 2
g= 1+ i(eﬁl—dl + e§f+d'1‘) + (_) e€1+EI—d1+di‘, (366)
a
where
& =0 +ix, (3.6¢)
1
0=a<y+mr)+/\, (36d)
1
x=5b V- a e’ + u, (3.6¢e)
1—a?— b+ 2ia .
ed1=1} Z T (=) = ae®. (3.6f)

Figure 3 shows a profile of u for three different times.
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Figure 3 a-c The profile of a breather solution for three different times, a:
t=0, b: t =35, c: t =10. The parameters are chosen as p; = 0.3 + 0.5, p, =

p’{ =03-05 i, 510 = 550 =0.
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3.8. N-soliton solutions
3.8.1. N-kink solution

Let the velocity of the jth kink be ¢; = (1/p?)+1 (p; > 0) and order the magnitude
of the velocity of each kink as ¢; > ¢ > ... > cy. We observe the interaction of N
kinks in a moving frame with a constant velocity ¢,. We take the limit ¢ — —o0
with the phase variable £, being fixed. Then

u~ 2 tan™? [\/ 1 + p2 sinh (&, + 6,2'))] +, (3.7a)

N
z ~y—7+2 tan"! [p, tanh (& +657)]+4 D tan~!p;+2 tan”! pa+yo. (3.70)
j=n+1

As t — +00, the expressions corresponding to (3.7) are given by

u~ 2tan”! [\/l + p2 sinh (&, + 5,(1*'))] + M, (3.8a)

n—1
z ~y—T7+2tan™! [p,tanh (& + (V)] +4 z tan™' p; +2 tan"' p, +yo. (3.8b)

j=1

where )
5 =Y In ( ) , 3.8¢c
]Zl Pn + Dj ( )
Z 2
60 = In ( ) : (3.8d)
j=n+1 PntPj

b = & p") . (3.8€)

n+1<j<k<N (p, + e

Let z. be the center position of the nth kink in the (z,t) coordinate system. As
t— —00
1 N
Te+ Cnt + Tpo ~ ——67) + 4 Z tan™ p; + o, (3.9)
n Jj=n+1
where Tng = &no/pn — 2 tan™! p,. Ast — +00, on the other hand, the correspond-
ing expression turns out to be

n—1

Te + Cut + Tno ~ ———5(+) +4 Z tan™! p; + yo. (3.10)

n =

If we take into account the fact that all kinks propagate to the left, we can define
the phase shift of the nth kink as

A, = z(t = —00) — z(t = +00). (3.11)



Using (3.8c), (3.8d), (3.9) and (3.10), we find that

2 N P =\ 2
E :1 _ In _"__l)
pn { (pn +p_7) ].;'_1 (pn + p; }

j=1

+4 Z tan~ pJ-—4Ztan pj, (n=1,2,.,N). (3.12)

j=n+1

3.8.2. M-breather solution

We specify the parameters in (2.29) and (2.30) for the tau-functions f and g as
D2j-1 = p;j =a; + ibj, a; > 0, bj > 0, (] =1,2,.., M), (313&)

§j-10 =850 =N +ip;, (1=1,2,..,M). (3.13b)

Then, the phase variables 251 and &,; are written as
fzj_l = 6j+in, (j = 1,2,...,M), (314@)

b =0;,—ix;, (=1,2,.,M), (3.14b)

with the real phase variables

6j =aj(y+cj7')+/\j, (j‘—‘ 1,2,...,M), (3140)
X; =b—-cr)+u, (G=12..,M), (3.14d)
1
= 53 = vy M. 3.14
G a§+b§’ (.7 172’ ’ ) ( 6)

The parametric solution (2.32) with (3.13) and (3.14) describes multiple colli-
sions of M breathers.

3.8.8 Kink-breather solution

We take a 3-soliton solution with parameters p; and &; (j = 1,2,3). If one
impose the conditions that ps = p}, &2 = £}, as already specified for the breather
solution and p3(> 0), &p3 real for the kink solution, then the expression of u would
represent a solution describing the interaction between a kink and a breather. The
tau functions f and g now become

1 .. b\’ s .
f=1+i (sle£1 + —efi + 336‘53) + <—) “letit

b\ 2 s;s
_5133183661+§3 (5* _e€1+§3 +1i ( ) 1°3 e£1+51+63 (3.15(1)
s1 a s1

91



92

. ]. E * E* 1 g( b 28; £+£‘
g=14+i|—et+set +—e* )+ -] —e™™
S1 83

a $1
613 S; * b 2 SI *
____eEH-Es _ 5;3_efl+£s +i (_) 6136;3651+61+§3. (3_15b)
8183 83 a 5183
where
1—b+ia 1 1+ ips a—ps+ib\?
—_— =, 83 = T 3= | ——mF% = 523-
1-b—ia s} 1—ips a+p3+idb
(3.15¢)

Figure 4a-c shows a typical profile of v = u, for three different times. We see
that the soliton overtakes the breather whereby it suffers a phase shift. Actually,
one has for p2 < a? + b?

2 (ps + a)2 + b2 . %2,
A= p_3 In m + 4 tan m, (316a)
and for a? + b* < p?
2 (p3 + a)® + b? 9 2
A=—"In==2 —~+~ 4 __ 2 166
ps (p3—a)?+¥b? tan 1—aZ— b2 (3.16b)

In the present example, formula (3.16a) gives A = 7.7.

a: t=0

o
el I\
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b:t=15
05+
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X
1 T
c: =30
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Figure 4 a-c The profile of v = u, for three different times which represents the
interaction between a soliton and a breather, a: ¢t =0, b: ¢t =15, ¢: t = 30. The
parameters are chosen as p; = 0.2+ 0.4, p; = p} = 0.2 — 0.41, ps = 0.3, & =
20 =0, &30 = —30.

3.8.4 Breather-breather solution

The breather-breather (or 2-breather) solution is reduced from a 4-soliton solution.
Figure 5a-c shows a typical profile of u for three different times. It represents a
typical feature common to the interaction of solitons, i.e., each breather recovers
its profile after collision.
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Figure 5a-c The profile of a breather-breather solution u for three different times,
a:t =0, b: t =15, c: t = 30. The parameters are chosen as p; = 0.1 +0.2i,p, =
pi‘ =01- O.2i,p3 = 0.15 + 031, Py = p§ =0.15 — 031, £m = ESO = —15, 530 =
€0 =0.



4. Reduction to the short pulse and sG equations

We write the short pulse equation in the form

Uiz = U — ‘g(u3)zza (41)

where u = u(z,t) represents the magnitude of the electric field and v is a real
constant. The short pulse equation (4.1) with v = —1 was proposed as a model
nonlinear equation describing the propagation of ultra-short optical pulses in non-
linear media [5]. Quite recently, equation (4.1) with v =1

Uiz = U — %(us)xm (42)

was shown to model the evolution of ultra-short pulses in the band gap of nonlinear
metamaterials [6]. See [7] for a review on exact solutions of the short pulse equation
and related topics.

4.1. Reduction to the short pulse equation
4.1.1. Scaling limit of the generalized sG equation

Let us first introduce new variables with bar according to the relations

1 )
==, I==(z+1), F=2 =2, f=e, F=er
€ € € €
pi=epj,  &o=&o  (1=12..,N), (4.3)

where € is a small parameter and the quantities with bar are assumed to be order
1. Rewriting equation (1.2) in terms of the new variables and expanding sin €% in
an infinite series with respect to ¢ and comparing terms of order € on both sides,
we obtain equation (4.2) written by the new variables.

Under the scaling (4.3), expression (2.7) is invariant and hence we put ¢ = ¢ to

give

iy = sinh ¢. (4.4)
Equation (2.9) then reduces to
&f = U. (4.5)
Equations (2.10) and (2.11) now become
Uzg _
s 4.6
Jiva " (46)
¢-5 = sinh @, (4.7)

respectively. Equation (4.7) is known as the sinh-Gordon equation.
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4.1.2. Scaling limit of the N-soliton solution

The expansion of the tau function f is given by

F=> (1 - lfz u;) exp [Z wi (& + i) Z ik | + O(€?)
p=0,1 1<j<k<N
=f—iefs + O(e )s (4.8a)
where
Z exp {Z pj (& + i) Z ,ujuki/jk] , (4.8b)
§=0,1 1<j<k<N
& =D+ 5 +£_j01 (j=12,..,N), (4.8¢)
5. pJ Pk . .
elk = , ,k=1,2,...,N; k). 4.8d
(B32), ¢ i) (480
Similarly

f = g—ieg-+0(e?), g = g+iegs+0(€%), g = f+iefr+0(€?), (4.9a,b,c¢)

with N :
1= X o [Subt T . 480
p=0,1 =1 1<j<k<N
The parametric solution of the short pulse equation (4.2) in terms of the tau
functions f and § is given as follows:

F

=2 (ln %—) , z=7-2(n f3); + Zo. (4.10a, b)
4.2. Reduction to the sG equation
If we introduce the following new scaled variables

t

=
Il

4= u, T = ez, 7= ey, t=

L

p_j = %a gjO = §j0, (.7 - 1,21 seny N)a (411)

then in the limit of ¢ — 0, we can deduce the generalized sG equation (1.2) to the
sG equation
Uz = sin . (4.12)



The scaling limit of (2.27b) now leads to the expression § = Z which, combined

with the obvious relation 7 = ¢, yields the limiting form of the tau functions (2.29)
and (2.30)

f=f f=f 9=f d=7, (4.13a)

where

T N
f= Z exp Zﬂj (-g+ gl) + Z ujﬂk'—)’ij ; (4.13b)

u=0,1 | j= 1<j<k<N
- [N — T
f= Z exp I (fj - 'Q'i) + Z lf'j,Uk:ijjI ; (4.13¢)
5=0,1 | j=1 1<j<k<N
13 =p,-f+5 + o, (j=12,..,N), (4.13d)
J
=\’
et = (’—ﬁ) . Gk=1,2,.,N;j #k). (4.13¢)
Dj + Dk

The parametric solution (2.27) with the tau functions (2.29) and (2.30) reduces to
the usual form of the N-soliton solution of the sG equation i.e.,
£

#(z,t) =2i In 7 (4.14)

5. Conservation laws
First, let
o =u—1isinh™u,. (5.1)

By direct substitution, we find the relation

oTy—sincrz{(lﬁ-ug)%—iaﬁy} {ﬁ%——sinu}. (6.2)
v

Thus, if u is a solution of equation (2.10), then o given by (5.1) satisfies the sG
equation (2.13a). First, note that the sG equation (2.13a) admits local conserva-
tion laws of the form

[

P.r =Qny, (n=0,1,2,...), (5.3)

where P, and @, are polynomials of o and its y-derivatives. Rewriting this relation
in terms of the original variables z and ¢ by (2.4) and using equation (2.2), we can
recast (5.3) to the form

(rP,): = (rPycos u+ Qy)s. (5.4)
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The quantities
[o.¢}
I = / rPodz,  (n=0,1,2,..), (5.5)
-0
then become the conservation laws of equation (1.2) upon substitution of (5.1).
We present the first three of them. The corresponding P, for the sG equation may
be written as

1 1
Py =1 - cos o, P = 505, P,= Zog — azy. (5.6)
It follows from (5.5), (5.6) and the relations 7, = —uzUzz/T, (Us/T)zs = Ugg/T°
which stem from (2.1) that
Iy = / (r — cos u)dz, (5.7a)
—00

1 [ (u2 2,

=) 4 2 7 4 4
I =/ [_1_1_12 + 3 tay + T-l., (u2 _ 2 ) +lsm ﬁh] dr.  (5.7c)

oo 4T3 27 w2 rd 4 rl
The conservation laws generated by the procedure outlined above reduce to
those of the short pulse and sG equations in the scaling limits described in section
4. In particular, the first three conservation laws of the short pulse equation (4.2)
read

I = / (r — 1)dz, (5.8a)
1 [ u2,
I1 = —5 [_oo _7-5—dz’ (58b)
oo u’:z2:z:.1: 7“3::: 35 u;z
I2 = /_Oo (—77- + 9 - Zm) dx. (580)

6. Conclusion

1. We have developed a systematic procedure for solving the generalized sG equa-
tion (1.2). The structure of solutions was found to differ substantially from that
of the generalized sG equation (1.1) with v = -1

2. We have obtained three types of solutions, i.e., kink, breather and kink-breather
solutions and investigated their properties.

3. We have shown that the generalized sG equation reduces to the short pulse and
sG equations in appropriate scaling limits.



4. We have obtained an infinite number of conservation laws by using a novel
Bécklund transformation connecting solutions of the sG and generalized sG equa-
tions.

Acknowledgement
This work was partially supported by the Grant-in-Aid for Scientific Research (C)
No. 22540228 from Japan Society for the Promotion of Science.

References

[1] Fokas AS 1995 On a class of physically important integrable equations Phys.
D 87 145

[2] Lenells J and Fokas AS 2010 On a novel integrable generalization of the sine-
Gordon equation J. Math. Phys. 51 023519

[3] Matsuno Y 2010 A direct method for solving the generalized sine-Gordon
equation J. Phys. A: Math. Theor. 43 105204 (28pp)

[4] Matsuno Y 2010 A direct method for solving the generalized sine-Gordon
equation II J. Phys. A: Math. Theor. 43 375201 (24pp)

[5] Shéffer T and Wayne CE 2004 Propagation of ultra-short optical pulses in
cubic nonlinear media Phys. D 196 90

(6] Tsitsas NL, Horikis TP, Shen Y, Kevrekidis PG, Whitaker N and Frantzeskakis
DJ 2010 Short pulse equations and localized structures in frequency band gaps
of nonlinear metamaterials Phys. Lett. A 374 1384

[7] Matsuno Y 2009 Soliton and periodic solutions of the short pulse model equa-
tion in Handbook of Solitons: Research, Technology and Applications ed SP
Lang and SH Bedore (New York: Nova) Chapter 15

99



