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Integrable Structure of Nonlinear Waves Built
Around the Casimir
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Graduate School of Frontier Sciences, The University of Tokyo

Abstract

We formulate a nonlinear Beltrami wave equations that describe amplitude and
pitch modulations of one-dimensional Alfvén waves propagating on a dispersive
nonilnear plasma. The well-known fact that the ideal Alfvén wave can propagate
on a homogeneous ambient magnetic field with conserving an arbitrary wave shape
of any amplitude is explained by invoking the Casimirs stemming from a “topolog-
ical defect” (or, a kernel) in the Poisson bracket operator of the ideal magnetohy-
drodynamic (MHD) system. Including the Hall term, however, the Alfvén waves
are affected by the dispersive effect, and the aforementioned simplicity of the ideal
Alfvén waves is greatly lost; an arbitrary wave can no longer propagate with a con-
stant shape. Yet, we observe an “integrable” structure in the nonlinear modulation
(induced by a compressible motion) of the Beltrami waves pertaining to the Casimirs.

1 Introduction

The word “vortex” means primarily a circulating, rotating, distorted, or, sometimes, shear-
ing mode of some vector field (fluid velocity, electromagnetic field, etc.) which is mea-
sured by the “curl” derivative (or the exterior derivative of 1-form in general dimension).
In some particular sitnation, however, we may view a vortex as a matter (or, a particle)
with a certain sustaining identity; we may “quantize” a vortex (we are not speaking of
quantum-mechanical effects; we consider quantization in a more general context). Be-
cause of the fundamental nonlinearity of the fluid or plasma system, it is, of course, not
easy to separate a vortex from other part of the system, other coupled fields, and other
scale hierarchies, thus the quantization of a vortex is not as simple as the quantization
of waves in a linear system: Vortexes in a fluid or plasma may exhibit totally chaotic
behavior.

There is yet a possibility to describe a vortex, in a rather simple system, as a “quan-
tum” which carries a fixed “charge” —in an ideal fluid or plasma system, which can be
formulated as a Hamiltonian system [1], the helicity=Casimir conserves as a constant of
motion, giving an identity to the vortex. The Casimir pertains to the topological defect of

the Lie-Poisson bracket
[F,G] := (9uF (u), £ 0.G(u)),
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or the kernel of the symplectic operator ¢ ; we call a functional C(x) a Casimir, if [C,G] =
0 for all G. If the evolution equation is written in a Hamiltonian form

%u = _F (u)d,H(u) (1)

(H(x) is the Hamiltonian), the transformation H(u) — Hy(u) = H(u) — uC(u) (i is a
constant) does not change the dynamics, thus the critical points satisfying

uHy () = u[H (u) — uC(u)] =0 )

will give fixed points. The combination of the energy H(x) and the helicity C(u) in (2)
produces an interesting vortex structure: Since both of these functionals are quadratic (as
to be shown in the following example), (2) reads as an eigenvalue problem determining
the quantized vortex.

Let us see how the helicity can produce interesting structures and phenomena in an
ideal MHD plasma. Denoting by » the number density, V" the fluid velocity, B the mag-
netic field, m the ion mass, & the molar enthalpy (which is related to the thermal energy &
by h = d(n&)/dn), the governing equations are

on=-V.(Vn),
AV ==(VxV)xV-=V(h+V2/2)+n"}(V x B) x B, 3)
&B=Vx(VxB).

The variables are normalized in the standard Alfvén units [energy densities (thermal 4;
and kinetic V2) are normalized by the magnetic energy density B3/(tono)]. The state
variables are u ='(n,mV, B). We define

2 2
H = /{n[v-?+é”(n)]+%}dx, @
0 -v. 0
F = -V -} (VxV)x n}(Vxo)xB |. &)
( 0 Vx[oxnB] 0 )

Then, the corresponding Hamilton’s equation (1) reproduces the MHD equations (3). We
find three independent Casimirs:

C = f A.Bdsx, ©)
C = / V. Bdx, ')
G = / ndx. ®)

We call C; the magnetic helicity and C; the cross helicity; Cs is the total particle number.
The generalized fixed-point equation (2) with these three Casimirs reads as

VxB-uyB-wpVxV = 0, )]

nV-ipB = 0, (10)

V2+h-p3 = 0. (11)



Notice that (11) is Bernoulli’s relation. To simplify the analysis, let us consider the so-
lutions with n = 1. Then, (10) becomes a linear equation. Combining (9) and (10), we
obtain

(1-p2)VxB-uB=0. (12)

For y; # +1, we obtain the Beltrami vortex characterized as the eigenfunctions of curl:
Denoting 4 = ; /(1 - u2),

VxB=AB, V=wB. (13)

An interesting situation is created by u, = %1: B can be arbitraryand V =+B (u; =0).
This (infinite dimension) set of stationary solutions can be connected to Alfvén waves: Let
us write this static solution as

B=By+B=e,+8B, (14)

where e, = Vz is the unit vector parallel to the coordinate z. We interpret that By is the
homogeneous ambient magnetic field. The coupled flow velocity is, then,

V=V+V =x(e,+ B). (15)

Galilean boost z — { =z F¢ yields a “propagating wave” with wave fields B(x,y,) and
V(x,59,§) = £B(x,y,{) on the ambient magnetic field By = e,, which solves the fully
nonlinear equations (3) on the frame (x,y,{): In fact, substituting (14) and (15) into (3),
we obtain

@+ V- V)n==V.(Vn),
(@+Vo- V)V ==(VxV)xV=V(h+V2/2)+n~ (VX B) x B, (16)
(3 +Vp-V)B=Vx(V x B).

For a boosted quantity f(7,{) (with 7 =7 and { = z—Vyt = zF¢), we may write (J; + Vp -
V) = ;. Therefore, the foregoing static solution appears as a propagating wave on the
boosted frame, which solves (3) with transformingt = 7 =1¢,z — {=zFt,and V — V.

Since B is arbitrary, perturbations of any shape and any amplitude propagate, with
conserving the wave form, at the constant velocity =1 (the Alfvén velocity) in the direc-
tion of By = e, —this is the well-know non-dispersive property of the nonlinear Alfvén
waves on a homogeneous ambient magnetic field.

Foregoing analysis elucidates the fundamental relation between the topological defect
of the MHD system and the strikingly robust property of the nonlinear Alfvén waves;
the Alfvén wave is the “quantized vortex” at the singularity (U, = =+1) of the criticality
condition (2).

In the present paper, we will analyze the Hall-MHD equations which includes the
(nonlinear) dispersive effect. Despite the dispersion, we will find that nonlinear propa-
gating waves exist; they stem in the topological defect of the Hall-MHD system. We will
study an integrable structure in the perturbation (nonlinear modulation) of the “quantized”
(Beltrami) waves. A non-constant n will play an essential role in the nonlinear modulation
(which we neglected in the foregoing discussion).
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2 Model of Hall MHD

2.1 Hall MHD system
We consider a Hall MHD plasma governed by

AP -V x(VxP)=—§V (¢ +hi+V?/2), (17)
GA-V,x(VxA)=-6V(¢—h.), (18)
an+V-(Vn) =0, (19)

where P=§V + A, V, =V - §n"'V x (V x A), hi(n) and h.(n) are the ion and
electron enthalpy. The variables are normalized in the standard Alfvén units. The ion
skin depth §; = (c/@pi)/L (L is the system size) is a small scale parameter.

Remark 1. Subtracting (18) from (17) yields the
AV -V x(VxV)+n{(Vx B)x B=-V(h+V?/2), (20)

where h = h; + h.. On the other hand, the curl of (18) yields
AB-Vx[(V-8&n"1VxB)xB]=0. (21)

The Hall term 87~V x B acts as a singular perturbation connecting different (smaller)
scale hierarchies, and yielding dispersive effect [2].

Remark 2. For ion acoustic waves, it is often assumed that 4 ; ~ 0 (cold ions to avoid
ion Landau damping) and Vh =~ Vh, = T,Vlogn, = V¢, i.c., the Boltzmann distribution
n. = e*/Te with a constant electron temperature 7, (in the normalized unit, T, is the half
of the electron beta ratio). Then, we replace h on the right-hand side of (20) by ¢, and

involve the Poisson equation
V29 = /% . (22)

Let us cast the Hall MHD system (19), (17) and (21) in a Hamiltonian form. The state
variables are u =*(n, P, B). We define

H = /{n [(P—z_a;‘—t)—z-+¢+£(n)] +B?2}dx, 23)
0 -V 0

F =6 ( -V —-n~}(Vx P)x ] ) . (24)
0 0 Vx [(B/n) x (V x0)]

Then, we have

onH V2/2+¢+h
oyH=| dpH | = nV/§; ,
( dpH ) ( B—cull™ (nV/&) )



and Hamilton’s equation (1) is equivalent to the system (19), (17) and (21). The sym-
plectic operator _# has three independent Casimirs: the magnetic helicity (6), the total
particle number (8) and, in the pace of the cross helicity (7), the ion canonical helicity

c, = / P-(Vx P, (25)

The generalized fixed-point equation (2) with these three Casimirs reads as

VxB-nV/&§-mB = 0, (26)
nV/&—-wm(VxV/§+B) = 0, 27
V 2+ ¢+h—pu3 = O. (28)

In the next subsection, we will derive the same set of equations, the Beltrami-Bernoulli
conditions, from a more succinct consideration [3, 4].

2.2 Beltrami-Bernoulli solutions

We may write the momentum equations (17) and (18) in a symmetric form
oP;-U;jxQj==-Vo; (j=i,e) (29)

with defining the canonical momenta (P;), vortices (2; = V x P;), flows (U;) and energy
densities (@;) of the ion (j = i) and electron (j = ¢) fluids as

P=P=§V+A  P=A
Q=§VxV+B, Q. =B, (30)
U=V, U, =V-8n~'VxB,
¢i=6i(¢+hi+vz/2), ‘Pe=6i(¢_h€)‘
Taking the curl of (29), we obtain a symmetric vortex dynamic system
&Qj——Vx(ijQj)zo (j=i,e). (31

The Beltrami condition demands the generators of the vortex dynamics to vanish under
the relation
Uj=u;Q}; (j=ie), (32
where y; (j = i,e) are certain constants. This system of equations is nothing but the
generalized fixed-point equations (26)-(27). Solving this set of equations for V' and B,
we obtain Beltrami fields. To satisfy the equilibrium condition, the Beltrami condition
demands the energy densities @; (j = i, €) to satisfy the Bernoulli conditions

Vo;=0 (j=i,e). (33)
Adding @, and ¢, (33) yields (28).
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23 Linear Beltrami condition

In what follows, we set §; = 1 by normalizing the length scale by the ion skin depth. The
Beltrami condition demands V to be incompressible (V- V' = 0), and hence, a constant
density n satisfies the static mass conservation law (19). With a constant n (= 1), the
Beltrami conditions reduce into a linear system of equations

V =u;(VxV+B), 34)
V-VxB=yuB. 395)
Combining (34) and (35), we obtain an equation governing both u = B and V'
VxVxu+(pe—p)Vxu+(1-p/w)u=0, (36)
which may be rewritten as
(curl — Ag)(curl - A;)u =0, 37
where the “eigenvalues” A; and A are determined by
Ao+A=p = ey Aody =1-pe/li. (38)

A general solution of (37) is given by a linear combination of two Beltrami eigenfunc-
tions [3, 4] (eigenfunctions of the curl operator [S]): with G such that (curl — A¢)G¢ =0
and arbitrary constants C¢ (£ = 0,1),

B = CGy+CiGy, (39)
V = Cy(ho+He)Go+Ci{A + 1e)Gh. (40)

24 Beltrami waves (stationary waveform)

Here, we are interested in a special class of Beltrami solutions where one of the Beltrami
eigenvalues is zero (A9 = 0), which implies that the corresponding Beltrami eigenfunction
is a harmonic field (see Appendix A for the reason of choosing Ao = 0). In the entire space,
a harmonic field is just a constant vector field. Assuming that this harmonic field is an
“ambient field”, the other component may be viewed as a “wave field” propagating on the
ambient field. From (38), we see that this occurs when

Me = i (= ). 41)

Then, the other eigenvalue becomes A1 = =1 — .

Let us see how the wave component propagates. We set Ap =0, Go =e€; and Cp = 1
(i.e., we normalize B by the ambient magnetic field). The corresponding ambient flow is
Vb = pe,. Now, we Galilean-boost the coordinates:

x32) = (63 8) = x,yz—pt). 42)
In this frame, the flow field appears as
V=V -V =Ci(A + )G,



which is nothing but the wave component of V' (we interpret that the original frame is
moving with the wave, so that the wave component is static, while the matter moves at
the velocity V). The phase velocity is given by  that may be written as a function of the
Beltrami eigenvalue A; = u~! — u:

u =-;—(/11i \/xg+4). 43)

When A is viewed as the wave number, (43) agrees with the dispersion relation of the
circularly polarized Alfvén waves. Indeed, the Beltrami eigenfunction corresponding to

the eigenvalue A, is
Siﬂ(l] ; )
Gi={ cos(Ail) |.
0

Because V2 = V02 + V2 = constant, the Bernoulli conditions (33) are satisfied (on the
rest frame) by Vh; = Vh, = 0 (consistent to the homogeneous density 7 = 1) and E, :=
—3,Az - az¢ = O.

Notice that this solution may have any amplitude —it is an exact solution of the fully
nonlinear system of equations. The reader is refereed to Ref. [6] for the application of
Beltrami eigenfunctions in the description of circularly polarized waves. A more general
eigenfunctions are given by three-dimensional ABC map. However, the corresponding
solution does not satisfy the Bernoulli conditions, if we do not invoke the incompressible
model to decouple the conservation law and the pressure terms.

In what follows, we consider a one-dimensional system with inhomogeneous density
n, and discuss nonlinear modulation of the Beltrami waves.

3 Nonlinear Beltrami fields and modulated waves

3.1 Beltrami-Bernoulli conditions in 1D geometry

In this section, we will generalize the Beltrami-Bernoulli conditions to introduce com-
pressibility, inhomogeneous density and nonlinear evolution of the wave field.

We consider a one-dimensional system where all fields are functions of only z (in the
(x,y,z) Cartesian coordinates) and ¢ (time). We also assume that the magnetic field may
be written as

B, (z,)
B = | By(z,t) | = By (z,t)+Boey, (44)
By

where By represents the ambient homogeneous magnetic field (normalizing B by this
ambient magnetic field, we set By = 1).
We generalize the Beltrami conditions (34)-(35) as

V =u(VxV+B)+ue, CS))
V-nlVxB= UeB +ue,, (46)
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where n(z,t) is an inhomogeneous density and u(z,?) is a certain scalar function (4; and
U, are constant numbers as before). Immediately, we find V-V = 8 ,u, and hence, an
inhomogeneous u allows compression of the flow.

In the one-dimensional geometry, the Vx does not have a z component. Hence, the z
components of (45) and (46), respectively, read as V, = y; +u and V, = Y. + u, implying
that

Vi=p+u (U==H). Cy)
Remembering the discussions in Subsec. 2.3, we see that the magnetic field (44) con-
sists of a harmonic (ambient) component e, and the transverse wave component B , and
hence, we require (41).
Combining (45) and (46) yields

VXVxV,+(np-p)VxV, =0, (48)

which is a modification of (36) with an inhomogeneous n(z,t).

The scalar functions #(z,7) and n(z,¢) bring about nonlinear evolution of the gener-
alized Beltrami fields —plugging (45) and (46) into the momentum equations (29), we
obtain

a,Pj—uezxﬂj=—V¢p,- (j=i,e). 49)

The x-y components of (49) are equivalent to the vortex equation; taking the curl, we

obtain

AN;—Vx(ue,x Q) =0 (j=i,e), (50)
which imply that the vortices €2 ; propagate with the velocity u in the direction of e, (on
the reference frame).

The z components of (49), both for the ions and electrons, read as “generalized Bernoulli
conditions” (compare with (33)):

P, = —0, (¢ +hi+ %VZ) , (51)
A, = —3,(¢ — h.). (52)
Subtracting (52) from (51) yields
AV, =—a, (h + -;-Vz) , (53)
which may be rewritten as
XV, +V,0,V, = ~4, (h+ -;-Vf_) , (54)

where V; must be determined by the Beltrami condition (48) that includes the unknown
variable n(z,t) that is governed by the mass conservation law

on+9,(V;n) =0. (55

In summary, our nonlinear system consists of the z and perpendicular components of

the generalized Beltrami conditions (47) and (48), the generalized Bernoulli condition
(54) and the mass conservation law (55).

As mentioned in Remark 2, one may replace 4 in (54) by ¢ and invoke the Poisson
equation (22), instead of assuming a conventional barotropic relation & = h(n).



32 Reductive perturbation

To simplify the system of equations, we invoke the reductive perturbation method, and
reduce the number of dependent variables (they have a common wave form). Introducing
a small parameter €, We write the dependent variables as

n = 14+en®+&2n@ ..., (56)
u = O+eul)+e2u® ..., 67
V, = Vo+eV+evP 4., (58)
Vi = 0+eVD42vP oy 59

where Vj is assumed to be a constant number. We assume h = ¢ =0 +e¢“) +£2¢(2) +---
We also expand the independent variables as

= gf=¢g(z—c1), (60)
= ezz, (61)

~ A

where c is a constant to be determined later. We note that our scaling is different from the
one that derives the ion-acoustic KdV equation.
Using these variables in (47), we obtain

Vo=p, VV=u), v =40, (62)

The Beltrami equation (48) starts from the terms of the order of £2, which summarize as

-V x v =o. (63) -

To proceed with nontrivial VJ(_I), we satisfy (63) by choosing
pl-p=0 o p=1 (64)
By (62), Vo = . = 1. From the order of €3, we obtain
Vx ¥ x v 420V x v o, (65)
Next, we examine the conservation law (55). From the oder of €2, we find
n®) =y (d:=c=Vop=c~-1), (66)
and, from the oder of &3,

3D+ 3 (a0 + v - n®) =0, 7
The Bernoulli condition (54) yields, from the oder of 2,

c/Vz(l) — ¢(1), (68)

185



186

and, from the oder of &3,
1
v +v VeV + o (—c’vf’ +¢@ + gl"lmlz) =0. (69)

Finally, the one-dimensional Poisson equation (indeed, it is just the charge-neutrality con-
dition in this scaling) yields, from the oder of €2,

(1)
%_ =), (70)
and from the oder of &3, )
)] )
0 1 (97__) _a® =, 1)

To satisfy both (66), (68) and (70), we have to set
=%c;:=VT, & c=Vptc;,.
Now, (66), (68) and (62) deduce
VY =4 = e,n® = £c719O), (72)

Summing up the 3-c; multiple of (67), (69) and —d; of (71), and using (72), we obtain
) + 3 [%(u(l))2+%|V_,(_'l)|2] 0. (73)

This evolution equation must be solved simultaneously with the Beltrami equation (65)
that now reads as
VxVx Vl(l) +¢7 UMV x VJ(_I) =0. (74)

Remark 3. If we assume a simple barotropic relation k = h(n) and write dh = c2(edn(!) +
€2dn'? + .. .) (physical meaning of c; is different from that of the ion acoustic mode), the
term (2{1))2/2 on the left-hand side of (73) is replaced by (1(!))2. All other relations are
unchanged excepting that ¢ is no longer involved.

Remark 4. The present model of nonlinear dispersive Alfvén waves may be compared
with other previously formulated models in the literature: At the same ordering of inde-
pendent variables (60)-(61), but with a smaller parallel perturbations (1) = u®) = vV =
0), we may consider an envelope wave y(Z,7) multiplying to the carrier wave of the form
of expi(kz — wt). Then, y(Z,7) obeys a nonlinear Schrodinger equation [7, 8]. At larger
amplitude modulations (V, = g!/2 Vl(l) + g3/ ZVJ(_Z) +---) we obtain a differential nonlin-
ear Schrodinger equation [9]. In comparison with these models, the present formulation
assumes a Jonger wavelengths and lower frequency of the wave (we do not assume a car-
rier wave of a short-wavelength ~ ion skin depth). In a different (larger) scale hierarchy,



we obtain the conventional jon acoustic soliton that is produced by the dispersive effect
due to a small charge non-neutrality: Instead of (60) and (61), we set

= e2Gz-a), (75)
= g%, (76)

has A 1]

Then, the dispersive term d;¢(!) and the nonlinear term (¢»)2 make a balance in the
Poisson equation, to yield an additional term ~a2¢(!) on the left-had side of (71). Other
relations (66)-(70) are unchanged. For a totally electrostatic mode (V. = 0), we obtain
the well-known KdV equation by adding 93 ¢(!) on the left-hand side of (73). To couple a
transverse (electromagnetic) component V; =0 to this KdV equation, we need to assume
a smaller n{1) in the Beltrami equation (48): To match the scaling (75), we assume

np—p~t =230+ untV) 4.,

inlying that &t — u~" and n/) (j = 1,2, ---) are restricted to be of the order of £'/2. Then,
we obtain, from the order of €2, V x V x V(l) ¢V x V(1 = 0, which yields a

homogeneous IV( )|2 (modulation of the transverse component is separated to the smaller
scale hierarchy).

33 Hamilton-Jacobi equation

The model (73)-(74) is a new type of nonlinear evolution equation that has an interesting
Hamiltonian structure.

In what follows, we will simplify the notation with omitting () on the dependent
variables and ~ on the independent variables.

Let us define an action S(z,t) and Hamiltonian H(u,z,t) by !

u(z,t)=3,S (momentum), an
H@%ﬁ=%ﬁ+awﬁ@ﬁ. (78)

Integrating (73) with respect to z, we obtain a Hamilton-Jacobi equation
0,8+ H(9,S,z,t) =0. (79)

The potential energy |V |?(z,#)/4 included in the Hamiltonian (78) must be determined
by solving the Bernoulli condition (74) as a “potential equation”, and there, the S(z,?)
appears as the eikonal of the vorticity field. Denoting 2 = V x V, the Beltrami equation
(74) is written as V X Q +¢;1uQ = 0 (in what follows, c; absorbs the + sign), which is
solved by

nzmwﬁm(lj, (80)

—i

In view the Bernoulli condition (53), we find that this Hamiltonian is the perturbation part of the total
energy density.

187



188

where W is a constant. Obviously, we have the enstrophy conservation:
9 =V x V. [ = W[ @1)

Using (80), we may formally write the potential energy as

1 . 1 [
FIViP = glowt™' 0P = ZW / &Slesdy2,

4 Conclusion

As reviewed in Introduction, the ideal Alfvén wave can have an arbitrary waveform —
undetermined solutions occur at the singularity (the point where the determining differ-
ential equation degenerates) of the Beltrami equation. The Hall MHD system includes a
singular perturbation [2], which removes the singularity, and thus, the Alfvén waves no
longer have an arbitrary waveform.

We have derived a system of equations which describes the nonlinear modulation of
one-dimensional Alfén waves propagating on a Hall MHD plasma. The trivial solution
(i.e., non-modulated, homogeneous-velocity propagation) is the Galilean-boosted Bel-
trami vortex that is the kernel of the generator of the system. The Casimirs quantize the
vortex structure; U, Uy (scaling the helicities) and 3 (scaling energy) are the quantum
numbers. A compressional motion and the corresponding density perturbation cause the
nonlinear modulation of the wave; an integrable system of equations governs a small but
finite amplitude wave stemming in the vicinity of the kernel of the generator.

Appendix A: Beltrami fields and Alfvén waves

Taking the curl of (17) and (18), we obtain a set of canonical vortex equations: denoting
R=VxPand B=Vx A,

aN-Vx(VxQ)=0, (82)
aB-Vx(V.xB)=0. (83)

We add a homogeneous ambient magnetic field By = Bge,, which does not change
the flows V' and V,. Writing ' = Q@ — By and B’ = B — By, (82) and (83) translate as

Y —3,(BeV) -V x (Vx)=0, (84)
&B'—3,(BoVe) -V x (Vo x B') =0, (85

where we have assumed V-V =V -V, = 0. Otherwise, we have to add By(V- V) and
By(V - V,) on the left-hand sides of (84) and (85), respectively.

Now we seek a propagating wave solution that may be written as f(x,,z,t) = f(x,y,Z,¢)
with Z = z — ct. Then, (84) and (85) transform into

S — 3 (BoV +c$¥) -V x (V x V) =0, (86)
B’ —3(ByV. +cB') -V x (V. x B') =0. (87)



Here after, we omit ~ to simplify the notation.
The Beltrami wave solutions (stationary solutions in the moving frame) are given by
V = uY (ul'v=§VxV+B), (88)
V. = uB' (V-8n"'VxB'=uB’), 89
where y = —c/By.

From (88), the Beltrami wave must be incompressible (V- V = 0). A constant n
is, then, consistent to the mass conservation law (19), and it also simplifies (89). Let
us first calculate the Beltrami equations. Combining (88) and (89), we obtain (denoting
o,V = curl)

curl(n~curlB) + (4 — u " n"!)curlB = 0. (90)

Since n is assumed to be constant, (90) simplifies
curl [curl + (np — u~1)]| B =0,
which has general solutions of the form of
B=CyGo+C,G;, V =uCGo+nu1C,Gy.

with curlGg = 0 and curlG;, = AGj, (A = 4! —ny) and arbitrary constants Cp and C; .
The first component (harmonic field) yields a “Doppler shift” of the Alfvén wave: Adding
B = Cye,, for instance, yields a change of the ambient field By = Boep — (Bo —Co)e;,
which results in the change of the propagation velocity by —cCo/Bo = Copd.

Let us examine the Bernoulli condition in this constant-n situation. De-curling (86)
and (87), we obtain (omitting ~)

P +(Boe; xV —~co,P)=V x Q¥ =—-V¢ —Vhi— -;—VVZ, 91)

A’ +(Boe; x V, —c0,A' )~ V, x B' = —V¢ + Vh,. (92)

For the above-mentioned Beltrami waves with constant n, we may set d, =0, V x ' =0,

V. xB'=0,Vh;=Vh,=0,and (Boe, x V ~cd, P") = Vy;, (Boe, x V. —cd, A} = Vy,
with some scalar y; and .. Hence, the Bernoulli condition reads as

Vyi = -Vo— %VV2, 93)

Vy, = -Vé. 4)

Subtracting (93) from (94), and remembering the definition of y; and y/,, as well as using
the Beltrami conditions (88) and (89), we obtain

= Boe; x (—8n~ 'V x B')+ca,5V
—8iuByle. x (VxV)+9,V]
= —&uB,VY, 95)
If the fields are one dimensional (functions of only z), the right-hand side becomes 9.V, =

0. Hence, the Beltrami wave must have a homogeneous energy density V2 = constant,
which implies that only a single Beltrami wave may propagate.
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