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Abstract

We investigate the random dynamics of rational maps and the dynamics of semi-
groups of rational maps on the Riemann sphere C. We show that regarding random
complex dynamics of polynomials, generically, the chaos of the averaged system dis-
appears, due to the cooperation of the generators. We investigate the iteration and
spectral properties of transition operators acting on the space of (Hoélder) continuous

~ functions on €. We also investigate the stability and bifurcation of random complex
dynamics. We show that the set of stable systems is open and dense in the space of
random dynamics of polynomials. Moreover, we prove that for a stable system, there
exist only finitely many minimal sets, each minimal set is attracting, and the orbit
of a Hélder continuous function on € under the transition operator tends exponen-
tially fast to the finite-dimensional space U of finite linear combinations of unitary
eigenvectors of the transition operator.

1 Introduction

This is a research announcement article. Many results of this article has been written in
[36].

In this paper, we investigate the independent and identically-distributed (i.i.d.) ran-
dom dynamics of rational maps on the Riemann sphere C and the dynamics of rational
semigroups (i.e., semigroups of non-constant rational maps where the semigroup operation
is functional composition) on €.

One motivation for research in complex dynamical systems is to describe some math-
ematical models on ethology. For example, the behavior of the population of a certain
species can be described by the dynamical system associated with iteration of a polynomial
f(2) = az(1 — 2) (cf. [8]). However, when there is a change in the natural environment,
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some species have several strategies to survive in nature. From this point of view, it is very
natural and important not only to consider the dynamics of iteration, where the same sur-
vival strategy (i.e., function) is repeatedly applied, but also to consider random dynamics,
where a new strategy might be applied at each time step. Another motivation for research
in complex dynamics is Newton’s method to find a root of a complex polynomial, which
often is expressed as the dynamics of a rational map ¢ on C with deg(g) > 2, where
deg(g) denotes the degree of g. We sometimes use computers to analyze such dynamics,
and since we have some errors at each step of the calculation in the computers, it is quite
natural to investigate the random dynamics of rational maps. In various fields, we have
many mathematical models which are described by the dynamical systems associated with
polynomial or rational maps. For each model, it is natural and important to consider a
randomized model, since we always have some kind of noise or random terms in nature.
The first study of random complex dynamics was given by J. E. Fornaess and N. Sibony
([9]). They mainly investigated random dynamics generated by small perturbations of a
single rational map. For research on random complex dynamics of quadratic polynomials,
see [3, 4, 5, 6, 7, 10]. For research on random dynamics of polynomials or rational maps
(of general degrees), see the author’s works [30, 29, 31, 32, 33, 35, 34, 36, 37|.

In order to investigate random complex dynamics, it is very natural to study the dy-
namics of associated rational semigroups. In fact, it is a very powerful tool to investigate
random complex dynamics, since random complex dynamics and the dynamics of rational
semigroups are related to each other very deeply. The first study of dynamics of rational
semigroups was conducted by A. Hinkkanen and G. J. Martin ([13]), who were interested in
the role of the dynamics of polynomial semigroups (i.e., semigroups of non-constant poly-
nomial maps) while studying various one-complex-dimensional moduli spaces for discrete
groups, and by F. Ren’s group ([11]), who studied such semigroups from the perspective
of random dynamical systems. Since the Julia set J(G) of a finitely generated rational
semigroup G = (hi, ..., hy) has “backward self-similarity,” i.e., J(G) = -, hJ-_l(J(G))
(see [22, Lemma 1.1.4]), the study of the dynamics of rational semigroups can be regarded
as the study of “backward iterated function systems,” and also as a generalization of the
study of self-similar sets in fractal geometry. For recent work on the dynamics of rational
semigroups, see the author’s papers [22]-[38], and [20, 21, 39, 40, 41, 42].

In this paper, by combining several results from [34] and many new ideas, we investigate
the random complex dynamics and the dynamics of rational semigroups. In the usual
iteration dynamics of a single rational map g with deg(g) > 2, we always have a non-
empty chaotic part, i.e., in the Julia set J(g) of g, which is a perfect set, we have sensitive
initial values and dense orbits. Moreover, for any ball B with BN J(g) # 0, ¢"(B)
expands as n — 00. Regarding random complex dynamics; it is natural to ask the following
question. Do we have a kind of “chaos” in the averaged system? Or do we have no chaos?
How do many kinds of maps in the system interact? What can we say about stability
and bifurcation? Since the chaotic phenomena hold even for a single rational map, one
may expect that in random dynamics of rational maps, most systems would exhibit a
great amount of chaos. However, it turns out that this is not true. One of the main
purposes of this paper is to prove that for a generic system of random complex dynamics
of polynomials, many kinds of maps in the system “automatically” cooperate so that
they make the chaos of the averaged system disappear, even though the dynamics of each
map in the system have a chaotic part. We call this phenomenon the “cooperation
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principle”. Moreover, we prove that for a generic system, we have a kind of stability (see
Theorems 1.7, 3.23). We remark that the chaos disappears in the C? “sense”, but under
certain conditions, the chaos remains in the C® “sense”, where C? denotes the space of
B-Holder continuous functions with exponent 3 € (0,1) (see Remark 1.11).

To introduce the main idea of this paper, we let G be a rational semigroup and denote
by F(G) the Fatou set of G, which is defined to be the maximal open subset of C where G is
equicontinuous with respect to the spherical distance on C. We call J(G) := C\ F(G) the
Julia set of G. The Julia set is backward invariant under each element h € G, but might not
be forward invariant. This is a difficulty of the theory of rational semigroups. Nevertheless,
we utilize this as follows. The key to investigating random complex dynamics is to consider
the following kernel Julia set of G, which is defined by Jker(G) = e 9 Y(J(G)). This
is the largest forward invariant subset of J(G) under the action of G. Note that if G is a
group or if G is a commutative semigroup, then Jx(G) = J(G). However, for a general
rational semigroup G generated by a family of rational maps h with deg(h) > 2, it may
happen that § = Jyr(G) # J(G).

Let Rat be the space of all non-constant rational maps on the Riemann sphere ¢,
endowed with the distance x which is defined by «(f,g) := sup,.¢ d(f(2),9(2)), where

d denotes the spherical distance on C. Let Rat, be the space of all rational maps g
with deg(g) > 2. Let P be the space of all polynomial maps g with deg(g) > 2. Let
T be a Borel probability measure on Rat with compact support. We consider the i.i.d.
random dynamics on C such that at every step we choose a map h € Rat according to .
Thus this determines a time-discrete Markov process with time-homogeneous transition
probabilities on the phase space C such that for each z € € and each Borel measurable
subset A of C, the transition probability p(z, A) of the Markov process is defined as
p(z,A) = 7({g € Rat | g(zr) € A}). Let G, be the rational semigroup generated by
the support of 7. Let C(C) be the space of all complex-valued continuous functions on
€ endowed with the supremum norm || - ||cc. Let M, be the operator on C(C) defined
by M-()(z) = [ ¢(9(2))dr(g). This M, is called the transition operator of the Markov
process induced by 7. For a metric space X, let 9%;(X) be the space of all Borel probability
measures on X endowed with the topology induced by weak convergence (thus p, — 4 in
9, (X) if and only if [ pdun, — [ @du for each bounded continuous function ¢ : X — R).
Note that if X is a compact metric space, then 9;(X) is compact and metrizable. For
each 7 € 9M,(X), we denote by supp7 the topological support of 7. Let 9M; .(X) be
the space of all Borel probability measures 7 on X such that suppr is compact. Let
Mz (€) - My (C) be the dual of M,. This M?* can be regarded as the “averaged
map” on the extension 9M; (€) of C (see Remark 2.14). We define the “Julia set” Jmeqs(7)
of the dynamics of M} as the set of all elements g € 9;(C) satisfying that for each
neighborhood B of g, {(M*)*g : B — 9M1(C)}nen is not equicontinuous on B (see
Definition 2.11). For each sequence v = (v1,72,...) € (Rat)N, we denote by J the set
of non-equicontinuity of the sequence {v, o --- o v1}nen with respect to the spherical
distance on €. This Jy is called the Julia set of 7. Let 7 := Q72,7 € 9, ((Rat)N). For
a 7 € M, (Rat), we denote by U, the space of all finite linear combinations of unitary
eigenvectors of M, : C(€) — C(C), where an eigenvector is said to be unitary if the
absolute value of the corresponding eigenvalue is equal to one. Moreover, we set By r :=
{o € C(€) | MP(p) — 0 as n — oo}. For a metric space X, we denote by Cpt(X) the



space of all non-empty compact subsets of X endowed with the Hausdorff metric. For
a rational semigroup G, we say that a non-empty compact subset L of C is a minimal
set for (G,C) if L is minimal in {C e Cpt(C) | Vg € G,g(C) c C} with respect to
inclusion. Moreover, we set Min(G,C) := {L € Cpt(C) | L is a minimal set for (G, C)}.
For a7 € 9 (Rat), let S, := ULEMin(G-,,C) L.For at € Mi(Rat), let I'; := supp 7(C Rat).

In [34], the following two theorems were obtained.

Theorem 1.1 (Cooperation Principle I, see Theorem 3.14 in [34]). Let 7 € 9 .(Rat).
Suppose that Jyer(Gr) = 0. Then Jmeas(t) = 0. Moreover, for F-a.e. v € (Rat)N, the
2-dimensional Lebesgue measure of J., is equal to zero.

Theorem 1.2 (Cooperation Principle II: Disappearance of Chaos, see Theorem 3.15 in
34)).

Let 7 € My (Rat). Suppose that Jyer(Gr) = 0 and J(G.) # 0. Then all of the following
statements hold.

(1) There exists a direct sum decomposition C(C) = U, @ By ;. Moreover, dimg U, < oo
and By is a closed subspace of C((f:) Furthermore, each element of U, is locally
constant on F(G;). Therefore each element of U, is a continuous function on C
which varies only on the Julia set J(G,).

(2) For each z € C, there exists a Borel subset A, of (Rat)N with 7(A,) = 1 with
the following property. For each v = (v1,%2,...) € A,, there erists a number § =
d(2,7) > 0 such that diam(~, - -71(B(z,6))) — 0 as n — oo, where diam denotes
the diameter with respect to the spherical distance on C, and B(z,6) denotes the ball
with center z and radius 4.

(3) We have 1 < $Min(G,, ) < cc.

(4) For each z € C there exists a Borel subset C, of (Rat)N with 7#(C,) = 1 such that for
each v = (7,72,...) €Cs, d(¥n- - m(2),S:) = 0 as n — oco.

Remark 1.3. If 7 € M (Rat) and T'; NRat, # 0, then §J(G,) = co.

Theorems 1.1 and 1.2 mean that if all the maps in the support of 7 cooperate, the chaos
of the averaged system disappears, even though the dynamics of each map of the system
has a chaotic part. Moreover, Theorems 1.1 and 1.2 describe new phenomena which can
hold in random complex dynamics but cannot hold in the usual iteration dynamics of a
single h € Rat. For example, for any h € Rat., if we take a point z € J(h), where J(h)
denotes the Julia set of the semigroup generated by h, then the Dirac measure J, at z
belongs t0 Jmeqs(0n), and for any ball B with BN J(h) # 0, h"(B) expands as n — oo.
Moreover, for any h € Rat,, we have infinitely many minimal sets (periodic cycles) of h.

Considering these results, we have the following natural question: “When is the kernel
Julia set empty?” In order to give several answers to this question, we say that a family
{9»}ren of rational (resp. polynomial) maps is a holomorphic family of rational (resp.
polynomial) maps if A is a finite dimensional complex manifold and the map (z,)) —
gx(2) € € is holomorphic on € x A. In [34], the following result was proved.
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Theorem 1.4 (Cooperation Principle III, see Theorem 1.7 in [34]). Let 7 € 9 (P).
Suppose that for each z € C, there exists a holomorphic family {gx}ea of polynomial maps
with yep{9r} C supp 7 such that X — gx(2) is non-constant on A, then Jy:(G7) = 0,
J(G;) # 0 and all statements in Theorems 1.1 and 1.2 hold.

In this paper, regarding the previous question, we prove the following very strong
results. To state the results, let ) be a subset of Rat. We say that ) satisfies condition
() if YV is closed in Rat and at least one of the following (1) and (2) holds: (1) for
each (zg,hg) € € x Y, there exists a holomorphic family {gr}ren of rational maps with
Usea{gr} € Y and an element A\g € A, such that, gy, = ho and A — gx(zp) is non-
constant in any neighborhood of Ap. (2) Y C P and for each (29, hp) € C x Y, there exists
a holomorphic family {g}xea of polynomial maps with | J,c4{gx} C YV and an element
Ao € A such that gy, = kg and A — gx(2p) is non-constant in any neighborhood of Ag. For
example, Rat, Rat,, P, and {2? + ¢ | c € C} (d € N,d > 2) satisfy condition (*). For a
subset I" of Rat, we denote by (T') the rational semigroup generated by I'. Let I € Cpt(Rat)
and let G = (I'). We say that G is mean stable if there exist non-empty open subsets U,V
of F(G) and a number n € N such that all of the following (I)(II)(III) hold: (I) V c U
and U C F(G). (II) For each v = (71,72,.-.) € TN, 7, ---m(T) c V. (I1I) For each point
z € C, there exists an element g € G such that g(z) € U. Note that this definition does not
depend on the choice of a compact set I' which generates G. Moreover, for aI' € Cpt(Rat),
we say that I' is mean stable if (I') is mean stable. Furthermore, for a 7 € 9M; .(Rat), we
say that 7 is mean stable if G, is mean stable. We remark that if I' € Cpt(Rat) is mean
stable, then Jy:((T')) = 0. Thus if 7 € M; .(Rat) is mean stable and J(G,) # 0, then
Jxer(Gr) = 0 and all statements in Theorems 1.1 and 1.2 hold. Note also that it is not so
difficult to see that I is mean stable if and only if the cardinality of the set of all minimal
sets for ((T'),C) is finite and each minimal set L is “attracting”, i.e., there exists an open
subset Wy, of F((I')) with L C Wy and an € > 0 such that for each z € Wi, and for each
¥ = (1,72,---) € N, d(yn---71(2),L) — 0 and diam(y, - -1 (B(z,€))) — 0 as n — oo
(see Remark 3.6). Thus, the notion “mean stability” of random complex dynamics can
be regarded as an analogy of “hyperbolicity” of the usual iteration dynamics of a single
rational map. For a metric space (X,d), let O be the topology of 9 (X ) such that
brn — i in (M) (X),0) as n — oo if and only if (i} [ pdu, — [ @du for each bounded
continuous function ¢ : X — C, and (ii) supp un — supp u with respect to the Hausdorff
metric in the space Cpt(X). Under these notations, we prove the following theorems.

Theorem 1.5 (Cooperation Principle IV, Density of Mean Stable Systems, see Theo-
rem 3.19). Let ) be a subset of P satisfying condition (). Then, we have the following.

(1) The set {7 € M1 (V) | T is mean stable} is open and dense in (My (V), O). More-
over, the set {Tr € M1 (V) | Jker(Gr) = 0,J(G;) # 0} contains {T € My (}) |

T is mean stable}.
(2) The set {T € My (V) | T is mean stable, L'y < oo} is dense in (M1 (V),O).

We remark that in the study of iteration of a single rational map, we have a very
famous conjecture (HD conjecture, see [17, Conjecture 1.1]) which states that hyperbolic
rational maps are dense in the space of rational maps. Theorem 1.5 solves this kind of
problem in the study of random dynamics of complex polynomials. We also prove the
following result.



Theorem 1.6 (see Corollary 3.22). Let ) be a subset of Raty satisfying condition (x).
Then, the set

{r € M1c(Y) | 7 is mean stable } U {p € M, () | Min(G,,C) = {C}, J(G,) = C}
is dense in (M o()),O).

For the proofs of Theorems 1.5 and 1.6, we need to investigate and classify the minimal
sets for ((T'),C), where " € Cpt(Rat) (Lemmas 3.7,3.15). In particular, it is important to
analyze the reason of instability for a non-attracting minimal set.

For each 7 € 9 .(Rat) and for each L € Min(GT,(fZ), let T1 » be the function of
probability of tending to L. We set C(C)* := {p:C(C) - C| pis linear and continuous}
endowed with the weak*-topology. We prove the following stability result.

Theorem 1.7 (Cooperation Principle V, O-Stability for Mean Stable Systems, see The-
orem 3.23). Let 7 € M (Rat) be mean stable. Suppose J(G,) # 0. Then there ezists a
neighborhood Q0 of T in (9 (Rat), O) such that all of the following hold.

(1) For each v € Q, v is mean stable, §(J(G,)) > 3, and tMin(G,,C) = Min(G,, C).
(2) For each v € Q, dime(U,) = dime(U,).

(3) The map v — 7, and v — U, are continuous on Q, where m, : C(C) — U, denotes
the canonical projection (see Theorem 1.2). More precisely, for each v € §, there
exists a family {cpj,y}‘;:l of unitary eigenvectors of M, : C((C) — C(C)A,"where
q = dim¢(U,), and a finite family {pj'y};?:l in C(C)* such that all of the following
hold.

(a) {pjv}]=; s a basis of U,.

~

)
(b) For each j, v — ¢;, € C(C) is continuous on Q.
(c) For each j, v p;, € C(C)* is continuous on €.
(d) For each (i,7) and each v € Q, p;,(p;.) = 6.
(e) For each v € Q and each ¢ € C(C), m,(p) = 21 P () i

(4) For each L € Min(G,,C), there exists a continuous map v — L, € Min(G,,C) c
Cpt(C) on Q with respect to the Hausdorff metric such that Ly = L. Moreover,
for each v € Q, {LV}LeMin(G,. &) = Min(G,,C). Moreover, for each v € Q and for

each L, L' € Min(G, C) with L # L/, we have L, N L, = 0. Furthermore, for each
L € Min(G~,C), the map v — T1,,, € (C(C), | - lloo) 18 continuous on (.

By applying these results, we give a characterization of mean stability (Theorem 3.24).

We remark that if 7 € 90 o(Rat4) is mean stable and $Min(G,,C) > 1, then the
averaged system of 7 is stable (Theorem 1.7) and the system also has a kind of variety.
Thus such a 7 can describe a stable system which does not lose variety. This fact (with
Theorems 1.5, 1.1, 1.2) might be useful when we consider mathematical modeling in various
fields.

Let YV be a subset of Rat satisfying (). Let {ut}icp,1; be a continuous family in
(9M1,.(Y), ©). We consider the bifurcation of {My. }rejo,1; and {Gy, }eefo,1)- We prove the
following result.
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Theorem 1.8 (Bifurcation: see Theorem 3.25 and Lemmas 3.7, 3.15). Let Y be a subset
of Rat, satisfying condition (x). For each t € [0,1], let us be an element of My (V).
Suppose that all of the following conditions (1)-(4) hold.

(1) t— p € (M (), O) is continuous on [0, 1).
(2) Ift1,t2€[0,1] and t; < to, then Ty, Cint(Ty,,) with respect to the topology of V.
(3) int(Tyy) # 0 and F(Gy,) # 0.
(4) #(Min(Gp, ©)) # #(Min(Gy,, C)).
Let B := {t € [0,1) | p¢ is not mean stable}. Then, we have the following.

(a) For each t € [0,1], Jyer(Gp,) = 0 and §J(Gn,) = 3, and all statements in (34,
Theorem 3.15] (with T = ) hold.

(b) We have 1 < B < ﬁMin(GM,C) - ﬁMin(Gm,'C) < 00. Moreover, for each t € B,
either (i) there ezists an element L € Min(G,,,C), a point z € L, and an element
g € 0T, (C V) such that z € LNJ(G,) and g(z) € LN J(Gy,), or (ii) there ezist
an element L € Min(Gm,C), a point z € L, and finitely many elements g1,...,9r €
8Ty, such that L C F(Gy,) and z belongs to a Siegel disk or a Hermann ring of

gro---og.

In Example 3.26, an example to which we can apply the above theorem is given.

We also investigate the spectral properties of M, acting on Holder continuous functions
on C and stability (see subsection 3.2). For each a € (0,1), let
CC) = {p € C(C) | sup, ¢ 2, lo(z) — @(y)l/d(z,y)* < oo} be the Banach space
of all complex-valued a-Hélder continuous functions on C endowed with the a-Hélder
norm | - la, where ||¢lla 1= sup,c¢ [9(2)] + 8UP, e oy 0(2) — ©(y)l/d(x, y)* for each
v € C*(C).

Regarding the space U, we prove the following.

Theorem 1.9. Let 7 € 9 .(Rat). Suppose that Jyer(G-) = 0 and J(G,) # 0. Then,
there exists an a € (0,1) such that U, C C*(C). Moreover, for each Le Min(GT,C), the

function Ty, : € — [0,1] of probability of tending to L belongs to C*(C).

Thus each element of U, has a kind of regularity. For the proof of Theorem 1.9, the
result “each element of U, is locally constant on F(G,)” (Theorem 1.2 (1)) is used.

If 7 € 9 (Rat) is mean stable and J(G,) # @, then by [34, Proposition 3.65], we
have S, C F(G,). From this point of view, we consider the situation that 7 € 9; .(Rat)
satisfies Jyer (G,) = 0, J(G,) # 0, and S; C F(G;). Under this situation, we have several
very strong results. Note that there exists an example of 7 € 9 .(P) with §I"; < co such
that Jier(G7) = 0, J(G7) #0, S; C F(G), and 7 is not mean stable (see Example 4.3).

Theorem 1.10 (Cooperation Principle VI, Exponential Rate of Convergence: see Theo-
rem 3.29). Let 7 € 9, .(Rat). Suppose that Jyer(G7) = 0, J(Gr) # 0, and S, C F(G).
Then, there exists a constant a € (0,1), a constant A € (0,1), and a constant C > 0 such
that for each ¢ € C*(C), |M™ (¢ — m-(0))|la £ CA™|@|la for each n € N.
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For the proof of Theorem 1.10, we need some careful arguments on the hyperbolic
metric on each connected component of F(G,).

We remark that in 1983, by numerical experiments, K. Matsumoto and I. Tsuda ({16])
observed that if we add some uniform noise to the dynamical system associated with
iteration of a chaotic map on the unit interval [0, 1], then under certain conditions, the
quantities which represent chaos (e.g., entropy, Lyapunov exponent, etc.) decrease. More
precisely, they observed that the entropy decreases and the Lyapunov exponent turns
negative. They called this phenomenon “noise-induced order”, and many physicists have
investigated it by numerical experiments, although there has been only a few mathematical
supports for it.

Remark 1.11. Let 7 € 9 .(Rat) be mean stable and suppose J(G,) # 0. Then by [34,
Theorem 3.15], the chaos of the averaged system of T disappears (Cooperation Principle
II), and by Theorem 1.10, there exists an ag € (0, 1) such that for each o € (0,1) the action
of {MP},en on C¥(C) is well-behaved. However, [34, Theorem 3.82] tells us that under
certain conditions on a mean stable 7, there exists a 5 € (0, 1) such that any non-constant
element ¢ € U, does not belong to C#(C) (note: for the proof of this result, we use the
Birkhoff ergodic theorem and potential theory). Hence, there exists an element ¢ € C#(C)
such that || MP(4)|lg — oo as n — co. Therefore, the action of {M"},en on C#(C) is not
well behaved. In other words, regarding the dynamics of the ~averaged system of T, there
still exists a kind of chaos (or complex1ty) in the space (C?(C), || - ||3) even though there
exists no chaos in the space (C(C), || - [|oo). From this point of view, in the field of random
dynamics, we have a kind of gradation or stratification between chaos and non-chaos. It
may be nice to investigate and reconsider the chaos theory and mathematical modeling
from this point of view.

We now consider the spectrum Spec, (M) of M, : c*(C) — C"‘A(C). From Theo-
rem 1.10, denoting by U, -(C) the set of unitary eigenvalues of M, : C(C) — C(C) (note:
by Theorem 1.9, U, -(C) C Spec, (M) for some & € (0, 1)), we can show that the distance
between Uy, -(C) and Spec, (M) \ Uy, -(C) is positive.

Theorem 1.12 (see Theorem 3.30). Under the assumptions of Theorem 1.10, Spec,(M,) C
{z€C ||zl L A}UU, - (C), where X € (0,1) denotes the constant in Theorem 1.10.

Combining Theorem 1.12 and perturbation theory for linear operators ([15]), we obtain
the following theorem. We remark that even if g, — ¢ in Rat, for a ¢ € C*(C), || © gn —
¢ 0 g|lo does not tend to zero in general. Thus when we perturb generators {h;} of T';, we
cannot apply perturbation theory for M, on C"‘(C). However, for a fixed generator system
(h1,...hm) € Rat™, the map (p1,...,Pm) € Wi, := {(al,.. sam) € (0,1)™ | }:J 105 =
1} — MZ}":l pidh, € L(C*(C)) is real-analytic, where L(C*(C)) denotes the Banach space

of bounded linear operators on C*(C) endowed with the operator norm. Thus we can
apply perturbation theory for the above real-analytic family of operators.

Theorem 1.13 (see Theorem 3.31). Let m € N with m > 2. Let hy, ..., hm € Rat. Let
G = (h1,...,hm). Suppose that Jy:(G) = 0,J(G) # 0 and ULeMin(G, e F(G) Let
Wi = {(a1,...,am) € (0,1)™ | ZJ vaj =1} = {(a1,...,am-1) € (0,1)™} |Z o aJ
1}. For each a = (a1,...,0m) € W, let 17, := Z 1 aj0p; € My (Rat). Then we have all
of the following.



80

(1) For each b € Wh,, there ezists an o € (0,1) such that a — (7, : C*(C) — C*(C)) €

~

L(C*(C)) s real-analytic in an open neighborhood of b in Wr,.

(2) Let L € Min(G,C). Then, for each b € Wy, there exists an a € (0,1) such that the
mapa+— T ., € (C2(C), || lla) is real-analytic in an open neighborhood of b in W,
Moreover, the map a — Ty, ,, € (C (€), ]l - lloo) is real-analytic in We,. In particular,
for each z € C, the map a — T L1 (2) is real-analytic in Wr,. Furthermore, for any
multi-indez n = (nq,...,nm_1) € (NU{0})™! and for any b € Wy,, the function
z [(32—1)"1 e (Mij)nm_l(TL,ra(z))”wb is Holder continuous on C and is locally
constant on F(G).

(3) Let L € Min(G,C) and let b € Wy,. For eachi =1,...,m—1 and for each z € C, let
Yip(2) = (52 (TL,7a (2))la=b and let Gip(2) = T 7, (hi(2)) = Tim, (hm(2))- Then, v;p
is the unique solution of the functional equation (I — My )(¥) = (ip,¥ls,, =0,¥ €
C(C), where I denotes the identity map. Moreover, there exists a number a € (0,1)

~

such that P;p = Y 07 o M7 (Gip) in (C*(C), || - [la)-

Remark 1.14. The function z — ;(z) = [%(TL,TQ(Z))”a:b defined on C can be re-
garded as a complex analogue of the Takagi function T(z) := Y oo ; s Millmez |2z — m|
where x € R (for more details of the Takagi function, see [43]). In order to explain the
details, let g)(z) := 2z,92(z) :=2(zx — 1)+ 1 (z € R) and let 0 < a < 1 be a constant.
We consider the random dynamical system on R such that at every step we choose the
map g; with probability a and the map g2 with probability 1 — a. Let T o(7) be the
probability of tending to +oo starting with the initial value z € R. Then, as the author
of this paper pointed out in [34], we can see that the function Tco,alfo,y : [0,1] — [0,1]
is equal to Lebesgue’s singular function L, with respect to the parameter a. (For the
definition of L, see [43]. See Figure 1, [34].) It is well-known (see [43, 19]) that for each
z € [0,1], a — Lg(z) is real-analytic in (0,1), and that z — (1/2)[3‘%(La(z))]|a=1/2 is
equal to the Takagi function restricted to [0, 1] (Figure 1). From this point of view, the
function z — ), p(z) defined on C can be regarded as a complex analogue of the Takagi

function. For the figure of the graph of 1; 3, see Example 4.2 and Figure 5.

Figure 1: From left to right, the graphs of Lebesgue’s singular function and the Takagi

function
\’/ﬂ\vx\
i \
1 \
g \
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We also present a result on the non-differentiability of the function ;(2) of Theo-
rem 1.13 at points in J(G,) (Theorem 3.39), which is obtained by the application of the
Birkhoff ergodic theorem, potential theory and some results from [34].

Combining these results, we can say that for a generic 7 € 9 (P), the chaos of the
averaged system associated with 7 disappears, ﬁMin(GT,(f:) < oo, each L € Min(GT,C)
is attracting, there exists a stability on U, and Min(GT,C) in a neighborhood of 7 in
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(M1,c(P), 0), and there exists an o € (0, 1) such that for each ¢ € C*(C), M™(p) tends to
the space U, exponentially fast. Note that these phenomena can hold in random complex
dynamics but cannot hold in the usual iteration dynamics of a single rational map h with
deg(h) > 2. We systematically investigate these phenomena and their mechanisms. As
the author mentioned in Remark 1.11, these results will stimulate the chaos theory and
the mathematical modeling in various fields, and will lead us to a new interesting field.
Moreover, these results are related to fractal geometry very deeply.

In section 2, we give some basic notations and definitions. In section 3, we present the
main results of this paper. In section 4, we present several examples which describe the
main results.

This work was partially supported by JSPS Grant-in-Aid for Scientific Research (C)
21540216.

2 Preliminaries

In this section, we give some fundamental notations and definitions.

Notation: Let (X,d) be a metric space, A a subset of X, and 7 > 0. We set B(A,r) :=
{z € X | d(2,A) < r}. Moreover, for a subset C of C, we set D(C,r) := {z € C |
infsec |2 — a| < r}. Moreover, for any topological space Y and for any subset A of Y, we
denote by int(A) the set of all interior points of A. Furthermore, we denote by Con(A)
the set of all connected components of A.

Definition 2.1. Let Y be a metric space. Weset C(Y) := {¢:Y — C | ¢ is continuous }.
When Y is compact, we endow C(Y) with the supremum norm || - ||s. Moreover, for a
subset F of C(Y'), we set Fp := {¢ € F | ¢ is not constant}.

Definition 2.2. A rational semigroup is a semigroup generated by a family of non-
constant rational maps on the Riemann sphere C with the semigroup operation be-
ing functional composition([13, 11]). A polynomial semigroup is a semigroup gen—
erated by a family of non-constant polynomial maps. We set Rat : = {h :
® | his a non-constant rational map} endowed with the distance x which is deﬁned by
&(f,9) := sup,.¢d(f(2),9(z)), where d denotes the spherical distance on C. Moreover,
we set Rat, := {h € Rat | deg(h) > 2} endowed with the relative topology from Rat.
Furthermore, we set P := {g: C — € | g is a polynomial, deg(g) > 2} endowed with the
relative topology from Rat.

Remark 2.3 ([1]). For each d € N, let Raty := {g € Rat | deg(g) = d} and for each
d € Nwithd > 2, let P;:= {g € P | deg(g) = d}. Then for each d, Raty (resp. Py) is
a connected component of Rat (resp. P). Moreover, Raty (resp. Py) is open and closed
in Rat (resp. P) and is a finite dimensional complex manifold. Furthermore, h, — h in
P if and only if deg(hy,) = deg(h) for each large n and the coefficients -of h, tend to the
coefficients of h appropriately as n — oo.

Definition 2.4. Let G be a rational semigroup. The Fatou set of G is defined to be
F(Q) :=

{z € C | 3 neighborhood U of z s.t. {g|y : U — C}geg is equicontinuous on U}. (For the
definition of equicontinuity, see [1].) The Julia set of G is defined to be J(G) := C\ F(G).
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If G is generated by {g;};, then we write G = (g1,92,...). If G is generated by a subset
I’ of Rat, then we write G = (I"). For finitely many elements g1,...,9m € Rat, we set

F(g1,...,9m) := F({g1,..-,9m)) and J(91,-..,9m) := J({(g1,-..,9m)). For a subset A of

~

C, we set G(A) := Uyeq 9(A) and G HA) = Ugec g 1 (A). We set G* := GU{Id}, where
Id denotes the identity map.

Lemma 2.5 ({13, 11]). Let G be a rational semigroup. Then, for each h € G, h(F(G)) C
F(G) and h=1(J(G)) C J(G). Note that the equality does not hold in general.

The following is the key to investigating random complex dynamics.

Definition 2.6. Let G be a rational semigroup. We set Jier(G) := [y g~ 1(J(G)). This
is called the kernel Julia set of G.

Remark 2.7. Let G be a rational semigroup. (1) Jier(G) is a compact subset of J(G). (2)
For each h € G, h(Jyxer(G)) C Jier(G). (3) If G is a rational semigroup and if F(G) # 0,
then int(Jyer(G)) = 0. (4) If G is generated by a single map or if G is a group, then
Jxer(G) = J(G). However, for a general rational semigroup G, it may happen that @ =
Jier (G) # J(G) (see [34]).

It is sometimes important to investigate the dynamics of sequences of maps.

Definition 2.8. For each v = (71,72,...) € (Rat)N and each m,n € N with m > n, we
set Ymn = Ym 0+ 0 Jn and we set

E, := {z € C| 3 neighborhood U of 2 s.t. {Yn,1}neN is equicontinuous on U}

and J, := C\ F,. The set F, is called the Fatou set of the sequence -y and the set J, is
called the Julia set of the sequence 7.

Remark 2.9. Let v € (Rat;)N. Then by [1, Theorem 2.8.2], J, # 0. Moreover, if ' is a
non-empty compact subset of Rat, and v € TN, then by [25], Jy is a perfect set and J,
has uncountably many points.

We now give some notations on random dynamics.

Definition 2.10. For a metric space Y, we denote by 9;(Y) the space of all Borel
probability measures on Y endowed with the topology such that p, — p in 9% (Y) if
and only if for each bounded continuous function ¢ : Y — C, [ ¢ du, — [ du. Note

that if Y is a compact metric space, then 9M;(Y) is a compact metric space with the

: duy— [ ¢;d .
metric do(p1, p2) 1= Y 52, ;‘,171H}°;j‘;iu{f;j’;ﬂ2|, where {¢;};en is a dense subset of C(Y').

Moreover, for each 7 € 9M;(Y), we set supp 7 := {z € Y | V neighborhood U of z, 7(U) >
0}. Note that supp 7 is a closed subset of Y. Furthermore, we set M; (Y) := {7 € M1 (Y) |
supp 7 is compact}. '

For a complex Banach space B, we denote by B* the space of all continuous complex
linear functionals p : B — C, endowed with the weak* topology.

For any 7 € 9;(Rat), we will consider the i.i.d. random dynamics on C such that at
every step we choose a map g € Rat according to 7 (thus this determines a time-discrete
Markov process with time-homogeneous transition probabilities on the phase space € such
that for each z € € and each Borel measurable subset A of C, the transition probability
p(z, A) of the Markov process is defined as p(z, A) = 7({g € Rat | g(x) € A})).



Definition 2.11. Let 7 € 9%, (Rat).

1. We set I'; := supp 7 (thus I'; is a closed subset of Rat). Moreover, we set X, :=
TN (= {¥ = (7,92,---) | % € I+ (V4)}) endowed with the product topology.
Furthermore, we set 7 := ®32;7. This is the unique Borel probability measure on
X7 such that for each cylinder set A = A; X -+ x A, x ' x 'y x -+ in X,
F(A) = H?=1 7(A;). We denote by G, the subsemigroup of Rat generated by the
subset I'; of Rat.

2. Let M, be the operator on C(C) defined by M, (p)(z) := fl“f v(g(z)) dr(g). M, is
called the transition operator of the Markov process induced by 7. Moreover, let
M; : C(C)* — C(C)* be the dual of M,, which is defined as M?*(u)(p) = u(M,(p))
for each p € C(€)* and each ¢ € C(C). Remark: we have M*(9;,(C)) c 9,(C)
and for each p € 9M;(C) and each open subset V of C, we have M*(u)(V) =
Je. wlg™H (V) dr(g).

3. We denote by Frmeas(7) the set of u € M (C) satisfying that there exists a neigh-
borhood B of p in 9M1(C) such that the sequence {(M;)"|p : B — M1(C)}nen is
equicontinuous on B. We set Jimeqas(7) := M1 (C) \ Freas(7).

Remark 2.12. Let I" be a closed subset of Rat. Then there exists a 7 € ;(Rat) such
that I'; = I'. By using this fact, we sometimes apply the results on random complex
dynamics to the study of the dynamics of rational semigroups.

Definition 2.13. Let Y be a compact metric space. Let ® : Y — 91;(Y) be the topo-
logical embedding defined by: ®(z) := J,, where §, denotes the Dirac measure at z. Using
this topological embedding ® : Y — 9 (Y'), we regard Y as a compact subset of 91;(Y).

Remark 2.14. If h € Rat and 7 = 3, then we have Mo ® = ® o h on C. Moreover,
for a general 7 € My (Rat), M (u) = [ ha(u)d7(h) for each p € MM, (C). Therefore, for a
general 7 € M;(Rat), the map M7 : M, (C) — My (C) can be regarded as the “averaged
map” on the extension M, (C) of C.

Remark 2.15. If T=0p€ Qﬁl(Rat+) with h € Raty, then Jpeqs(7) # 0. In fact, using
the embedding ® : C — 9, (C), we have 0 # ®(J(h)) C Jmeas(7).

The following is an important and interesting object in random dynamics.

Definition 2.16. Let A be a subset of C. Let 7 € 9M;(Rat). For each z € €, we set
Tar(z) = 7{7 = (n,72,-..) € Xr | d(yn,1(2),A) — 0 as n — oo}). This is the prob-
ability of tending to A starting with the initial value 2z € C. For any a € C, we set
To,r = Tia} r-

Definition 2.17. Let B be a complex vector space and let M : B — B be a linear operator.
Let ¢ € B and a € C be such that ¢ # 0,|a| = 1, and M(p) = ap. Then we say that ¢ is
a unitary eigenvector of M with respect to a, and we say that a is a unitary eigenvalue.

Definition 2.18. Let 7 € 9, (Rat). Let K be a non-empty subset of C such that G,(K) C
K. We denote by Us,(K) the set of all unitary eigenvectors of M, : C(K) — C(K).
Moreover, we denote by U, - (K) the set of all unitary eigenvalues of M, : C(K) — C(K).

83
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Similarly, we denote by Uy, .(K) the set of all unitary eigenvectors of M; : C(K)* —
C(K)*, and we denote by U, . «(K) the set of all unitary eigenvalues of M} : C(K)* —
C(K)*.

Definition 2.19. Let V be a complex vector space and let A be a subset of V. We set
LS(A) := {Z;’;l ajvj | a1,...,am € C,v1,...,vm € A,m € N}

Definition 2.20. Let Y be a topological space and let V' be a subset of Y. We denote by
Cy(Y) the space of all ¢ € C(Y') such that for each connected component U of V, there
exists a constant ¢y € C with |y = cy.

Definition 2.21. For a topological space Y, we denote by Cpt(Y) the space of all non-
empty compact subsets of Y. If Y is a metric space, we endow Cpt(Y) with the Hausdorff
metric.

Definition 2.22. Let G be a rational semigroup. Let Y € Cpt(C) be such that G (Y)cY.
Let K € Cpt(C). We say that K is a minimal set for (G,Y) if K is minimal among the
space {L € Cpt(Y) | G(L) C L} with respect to inclusion. Moreover, we set Min(G,Y) :=
{K € Cpt(Y) | K is a minimal set for (G,Y)}.

Remark 2.23. Let G be a rational semigroup. By Zorn’s lemma, it is easy to see that
if K1 € Cpt(C) and G(K1) C Kj, then there exists a K € Min(G,C) with K c K.
Moreover, it is easy to see that for each K € Min(G,C) and each z € K, G(z) = K. In
particular, if K;, Ky € Min(G, @) with K; # Ks, then K; N Ky = (). Moreover, by the
formula G(z) = K, we obtain that for each K € Min(G, C), either (1) $K < oo or (2) K
is perfect and §K > Ng. Furthermore, it is easy to see that if I' € Cpt(Rat),G = (T'), and
K € Min(G, C), then K =, h(X).

Remark 2.24. In [34, Remark 3.9], for the statement “for each K € Min(G,Y), either (1)
3K < oo or (2) K is perfect”, we should assume that each element g € G is a finite-to-one
map.

Definition 2.25. For each 7 € M (Rat), we set Sy := ULeMin(G, &) L.
In [34], the following result was proved by the author of this paper.

Theorem 2.26 ([34], Cooperation Principle II: Disappearance of Chaos). Let 7 € 9 o(Rat).
Suppose that Jyer(Gr) = 0 and J(G;) # 0. Then, all of the following statements hold.

1. Let By := {p € C(C) | MP(p) — 0 asn — oo}. Then, By, is a closed subspace
of C(C) and there exists a direct sum decomposition C(C) = LS(Us~(C)) & Bo,-.
Moreover, LS(Us - (C)) C Cr(g,)(C) and dime(LS(Uy,-(C))) < oo.

2. ﬁMin(G’T,C) < 00.

3. Let W := Ugccon(F(G,)),ans. 20 A- Then S: is compact. Moreover, for each z € C

there exists a Borel measurable subset C, of (Rat)N with #(C,) = 1 such that for each
v € C,, there exists an n € N with v,1(2) € W and d(ym,1(2),S;) — 0 as m — oo.
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Definition 2.27. Under the assumptions of Theorem 2.26, we denote by 7, : C (C) —

LS(Us,(C)) the projection determined by the direct sum decomposition C(C) = LS(U; - (C))®
Bo .

Remark 2.28. Under the assumptions of TheoremA2.26, by the theorem, we have that
[M2(p — 7 (©))loc — 0 as n — oo, for each ¢ € C(C).

3 Results

In this section, we present the main results of this paper.

3.1 Stability and bifurcation
In this subsection, we present some results on stability and bifurcation of M, or M.

Definition 3.1. Let (X, d) be a metric space. Let O be the topology of 9 .(X) such that
pn — pin (M1 (X),0) as n — oo if and only if (1) [@dp, — [ @du for each bounded
continuous function ¢ : X — C, and (2) supp g, — supp g with respect to the Hausdorff
metric in the space Cpt(X).

Definition 3.2. Let I' € Cpt(Rat). Let G = (I'). We say that G is mean stable if there
exist non-empty open subsets U,V of F(G) and a number n € N such that all of the
following hold.

(1) VcUand U C F(G).
(2) Foreach y € I'N, 4,1 (T) C V.
(3) For each point z € C, there exists an element g € G such that g(z) € U.

Note that this definition does not depend on the choice of a compact set I which generates
G. Moreover, for a I' € Cpt(Rat), we say that ' is mean stable if (I') is mean stable.
Furthermore, for a 7 € M, (Rat), we say that 7 is mean stable if G, is mean stable.

Remark 3.3. If G is mean stable, then Jye (G) = 0.

Definition 3.4. Let I' € Cpt(Rat) and let G = (T'). We say that. L € Min(G,C) is
attracting (for (G,C)) if there exist non-empty open subsets U,V of F(G) and a number
n € N such that both of the following hold.

(1) LcvcVcUcUcF@G),H#C\V)>3.
(2) For each v € TN, 7, (U) c V.
Remark 3.5. For each h € G N Rat,
#{attracting minimal set for (G, C)} < #{attracting cycles of h} < .

Remark 3.6. Let I' € Cpt(Rat). Let G = (I'). Suppose that §J(G) > 3. Then [34,
Theorem 3.15, Remark 3.61, Proposition 3.65] imply that I' is mean stable if and only if
tMin(G,C) < oo and each L € Min(G, C) is attracting for (G,C). Combining this with
Remark 3.5, it follows that I is mean stable if and only if each L € Min(G, C) is attracting
for (G, C).
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We now give a classification of minimal sets.

Lemma 3.7. Let T € Cpt(Rat.) and let G = (T'). Let L € Min(G,C). Then eractly one
of the following holds.

(1) L is attracting.

(2) LN J(G) # 0. Moreover, for each z € LN J(G), there exists an element g € I' with
g(z) € LN J(G).

(3) L C F(G) and there erists an element g € G and an element U € Con(F(G)) with
LNU # 0 such that g(U) C U and U is a subset of a Siegel disk or a Hermann ring

of g.
Definition 3.8. Let T € Cpt(Raty) and let G = (T'). Let L € Min(G, ©).
e We say that L is J-touching (for (G,C)) if LN J(G) # 0.
e We say that L is sub-rotative (for (G,C)) if (3) in Lemma 3.7 holds.

Definition 3.9. Let I' € Cpt(Rat.) and let L € Min((I"), C). Suppose L is J-touching or
sub-rotative. Moreover, suppose L # C. Let g € I'. We say that g is a bifurcation element
for (T, L) if one of the following statements (1)(2) holds.

(1) L is J-touching and there exists a point z € L N J((T')) such that g(z) € J((I')).

(2) There exist an open subset U of C with UNL # 0 and finitely many elements
Y,---yYn—1 € ' such that goy,—1---0%(U) C U and U is a subset of a Siegel disk
or a Hermann ring of goyp-1::-071.

Furthermore, we say that an element g € T is a bifurcation element for I' if there exists
an L € Min((T"), C) such that g is a bifurcation element for (I', L).

We now consider families of rational maps.

Definition 3.10. Let A be a finite dimensional complex manifold and let {g)}xea be a
family of rational maps on C. We say that {gx}rea is a holomorphic family of rational
maps if the map (2, A) € €x A — gx(z) € C is holomorphic on C x A. We say that {gx}aeca
is a holomorphic family of polynomials if {g }»ea is a holomorphic family of rational maps
and each g, is a polynomial.

Definition 3.11. Let Y be a subset of Rat and let U be a non-empty open subset of
C. We say that ) is strongly U-admissible if for each (29,ho) € U x ), there exists a
holomorphic family {g)}xea of rational maps with {Jycp{gr} € ) and an element Ap € A
such that gy, = ho and A — gx(2g) is non-constant in any neighborhood of Ag.

Example 3.12. Rat, is strongly C-admissible. P is strongly C-admissible. Let fo € P.
Then {fo + c| c € C} is strongly C-admissible.

Definition 3.13. Let ) be a subset of Rat. We say that ) satisfies condition () if Y is a
closed subset of Rat and at least one of the following (1) and (2) holds. (1): Y is strongly
C-admissible. (2) Y C P and ) is strongly C-admissible.



87

Example 3.14. The sets Rat, Rat, and P satisfy (x). For an hy € P, the set {hp + ¢ |
c € C} is a subset of P and satisfies ().

We now present a result on bifurcation elements.

Lemma 3.15. Let Y be a subset of Rat, satisfying condition (x). Let T' € Cpt(}) and let
L € Min((T'), C). Suppose that L is J-touching or sub-rotative. Moreover, suppose L # C.
Then, there exists a bifurcation element for (I',L). Moreover, each bifurcation element
g €T for (T',L) belongs to 8T, where the boundary OT of T is taken in the topological
space ).

We now present several results on the density of mean stable systems.

Theorem 3.16. Let YV be a subset of Raty satisfying condition (x). Let T' € Cpt()).
Suppose that there exists an attracting L € Min((T"), C). Let {L; 7_1 be the set of attracting

minimal sets for ((T),C) such that L; # L; if i # j (Remark: by Remark 3.5, the set
of attracting minimal sets is finite). Let U be a neighborhood of T' in Cpt()). For each
J=1,...,r, let V; be a neighborhood of L; with respect to the Hausdorff metric in Cpt()).
Suppose that V;NV; = 0 for each (i, 7) with i # j. Then, there exists an open neighborhood
U of T in U such that for any element T' € U’ satisfying that T C int(IV) with respect to
the topology in Y, both of the following statements hold.

(1) (I") is mean stable and

iMin((I'),C) = ${L" € Min((T"'), C) | L' is attracting for ((T'), C)} =7

(2) For eachj=1,...,r, there exists a unique element L€ Min((I"), C) with L eV
Moreover, L’ is attracting for ({I), C) for each j=1,...,r.

Remark 3.17. Theorem 3.16 (with [34, Theorem 3.15]) generalizes [9, Theorem 0.1].

Theorem 3.18. Let Y be a subset of Raty satisfying condition (x). Let 7 € My (V).
Suppose that there ezists an attracting L € Min(G-,C). Let {L;};_; be the set of attracting

minimal sets for (GT,C) such that L; # L; if i # j. Let U be a neighborhood of T in
(M1,(Y),0). For each j = 1,...,r, let V; be a neighborhood of L; with respect to the
Hausdorff metric in Gpt(Y). Suppose that V;NV; = O for each (i,j) with i # j. Then,
there exists an element p € U with T, < oo such that all of the following hold.

(1) G, is mean stable and
Min(G,, C) = #{L' € Min(G,,C) | L' is attracting for (T,C)} = r-
(2) For each j =1,...,7, there exists a unique element L;- € Min(GP,C) with L;- €V;.
Moreover, L;- is attracting for (G,,C) for each j =1,...,r.

Theorem 3.19 (Cooperation Principle IV: Density of Mean Stable Systems). Let ) be a
subset of P satisfying condition (x). Then, we have the following.
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(1) The set {r € My c(Y) | T is mean stable} is open and dense in (M1 (Y),O0). More-
over, the set {T € M1 (V) | Jker(Gr) = 0,J(G;) # 0} contains {7 € My (V) |
7 18 mean stable}.

(2) The set {T € M1 (V) | T is mean stable, {I'; < oo} is dense in (M (YV),O).

Theorem 3.20. Let Y be a subset of Rat, satisfying condition (¥). Let ' € Cpt(Y).
Suppose that there exists no attracting minimal set for ((I'), C). Then we have the following.

(1) For any element I' € Cpt(Rat) such that T' C int(T") with respect to the topology in
YV, we have that Min((I"),C) = {C} and J((I'")) = C.

(2) For any neighborhood U of T' in Cpt(Y), there exists an element I' € U withT' DO T
such that Min((I'"), C) = {C} and J({T")) = C.

Corollary 3.21. Let Y be a subset of Rat, satisfying condition (x). Let 7 € 91 ().

~

Suppose that there exists no attracting minimal set for (G,,C). Let U be a neighborhood
of T in (My1c(Y),0). Then, there exists an element p € U such that Min(G,,C) = {C}
and J(G,) = C.

Corollary 3.22. Let YV be a subset of Rat, satisfying condition (x). Then, the set
{T € M1 (V) | T is mean stable } U {p € M, (¥) | Min(G,,C) = {C},J(G,) = C}
is dense in (IM1()), O).
We now present a result on the stability of mean stable systems.

Theorem 3.23 (Cooperation Principle V: O-stability of mean stable systems). Let 7 €
I (Rat) be mean stable. Suppose J(G,) # 0. Then there exists a neighborhood Q of T
in (9N (Rat), O) such that all of the following statements hold.

1. For each v € Q, v is mean stable, §(J(G,)) > 3, and $Min(G,,C) = fMin(G,, C).

2. For each L € Min(G,,C), there exists a continuous map v — QL, € Cpt(C) on
QY with respect to the Hausdorff metric such that QL , = L. Moreover, for each
v e, {QL’V}LEMin(G? & = Min(G,,C). Moreover, for each v € Q and for each

L,L' € Min(G,,C) with L # L', we have Q1,, N Qy/,, = 0.

3. For each L € Min(G-,C) and v € Q, let 1, := dimc(LS(Uy (L)), Arpp = {hry 0
+--ohy | hj € Ty(V))}, and GF = (Ar,u). Let {L;}L, = Min(G7*, L) (Remark: by
[34, Theorem 3.15-12], we have ry, = $Min(G%E, L)). Then, for each L € Min(G,,C)
and for each j = 1,...,ry, there exists a continuous map v — L;, € Cpt(C) with re-
spect to the Hausdorff metric such that, for each v € Q, {L ,,};’;1 = Min(G7t,QL)
and L;, # Lj, whenever i # j. Moreover, for each L € Min(G-, C), for each
J=1,...,rL, and for each v € Q, we have L1, = Uheru h(L;y), where Ly, 11, =
Li,.

4. For each v € Q, dime(LSUy. (€))) = dime(LSUs+(€))) = XL enpina,.&)TL- For
each v € Q and for each L € Min(G’,-,(f:), we have dimc(LS(Us,,(QL))) = 7L,
Uy QL) = {at };Z;, and Uy, (C) = ULeMin(G,,C){azL}:iL’ where ay, := exp(2ni/rL).



5. The maps v — m, and v — LS(L{f,,,((f:)) are continuous on Q). More precisely, for
each v € Q, there ezists a finite family {1, | L € Min(G,,C),i = 1,...,7r.} in
Uz, (C) and a finite family {pr:, | L € Min(G,,C),i = 1,...,r1} in C(C)* such
that all of the following hold.

(a) {¢Liv | L€ Min(GT,C),i =1,...,r.} is a basis of LS(Uf,,,(C)) and {pLiv |
L € Min(G,,C),i=1,...,7)} is a basis of LS(Uf,,,,*(C)).

(b) Let L € Min(G,,C) and let i = 1,...,ry. Let v € Q. Then M,(pr;,) =
ai‘PL,z’,uy (pL,i,UIQL,V = (SOL,I,VIQL,U)i; ‘PL,i,V‘QL:,,, = 0 for any L' € Min(G,, C)
with L' # L, and supppr;, = QL. Moreover, {¢riulq,, }it1 is a basis of
LS(ZIf,,,(QL,l,)) and {pL,i,V|C(QL,,,) | 1= 1, N .,T‘L} s a basis OfLS(Uf,U,*(QL,,,)).
In particular,
dimc(LS(Uf,u(QL,u))) =rr.

(c) For each L € Min(G,,C) and for each i = 1,...7, v +— o, € C(C) is
continuous on Q and v~ p;, € C(C)* is continuous on Q.

(d) For each L € Min(G’,,C), for each (i,7) and each v € Q, pr;.(pLjwv) = 4.
Moreover, For each L,L' € Min(G,,C) with L # L', for each (i,j), and for
eachv € Q, pr ;. (¢ jv) = 0.

(e) For each v € Q and for each o € C(C), 7, (p) = Y LeMin(Gy ) 2uim1 PLyiw (#) -
YLy

6. For each L € Min(G,,C), the map v — Tg,.v € (C(C), || - lloo) is continuous on Q.
We now present a result on a characterization of mean stability.

Theorem 3.24. Let Y be a subset of Rat, satisfying condition (x). We consider the
following subsets A, B,C, D, E of M (V) which are defined as follows.

(1) A:= {1 € M ()| 7 is mean stable}.

(2) Let B be the set of T € M1 (V) satisfying that there exists a neighborhood Q of T in
(M1.c(YV), O) such that (a) for each v € Q, Jyer(Gy) = 0, and (b) v — $Min(G,,C)
18 constant on Q.

(3) Let C be the set of T € My o(Y) satisfying that there exists a neighborhood Q0 of T in
(M1,.(Y), O) such that (a) for each v € Q, F(G,) # 0, and (b) v — §Min(G,,C) is

constant on 1.

(4) Let D be the set of T € My (V) satisfying that there ezists a neighborhood 2 of T
in (M1,c(Y),0) such that for each v € Q, Jxer(Gy) = 0 and dime(LS(Uy,,(C))) =
dimc(LS(Uf,T((C))).

(5) Let E be the set of T € M1 .(Y) satisfying that for each ¢ € C(C), there ezists a

neighborhood Q2 of T in (M (), O) such that (a) for each v € Q, Jyer(Gy) = 0, and
(b) the map v — m,(p) € (C(C), ]l - |loo) defined on Q is continuous at .

Then, A=B=C=D=E.
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We now present a result on bifurcation of dynamics of G, and M, regarding a contin-
uous family of measures 7.

Theorem 3.25. Let ) be a subset of Rat, satisfying condition (). For each t € [0,1],
let s be an element of M (V). Suppose that all of the following conditions (1)-(4) hold.

(1) t— s € (M1 (Y),O) is continuous on [0, 1].

(2) Ifti,t2 € [0,1] and t) < ty, then T, C int(Ty,,) with respect to the topology of Y.
(3) int(Ty,) # 0 and F(G,) # 0.

(4) $(Min(Gpy, €)) # §(Min(Gy,, €)).

Let B := {t € [0,1) | there ezists a bifurcation element g € T, for T',,}. Then, we have
the following.

(a) For each t € [0,1], Jyer(Gu,) = 0 and §J(G,,) > 3, and all statements in [34,
Theorem 3.15] (with 7 = u;) hold.

(b) We have ) )
1 < §B < fMin(G,,,C) — $Min(G,,,C) < oo.

Moreover, for each t € B, p; is not mean stable. Furthermore, for eacht € [0,1)\ B,
Lz 18 mean stable.

Example 3.26. Let ¢ be a point in the interior of the Mandelbrot set M. Suppose z —
22+ cis hyperbolic. Let rg > 0 be a small number. Let r; > 0 be a large number such that
D(e,r1)N(C\M) # 0. For each t € [0,1], let u: € M1 (D(c, (1 — t)rg + tr1)) be the normal-
ized 2-dimensional Lebesgue measure on D(c, (1 — t)ro + tr1). Then {u:}:¢(o,1] satisfies the
conditions (1)—(4) in Theorem 3.25 (for example, 2 = jiMin(G’“o,C) > tMin(G,,,, C) =1).
Thus

#{t € [0,1] | there exists a bifurcation element g € T, for ', } = 1.

3.2 Spectral properties of M, and stability

In this subsection, we present some results on spectral properties of M, acting on the
space of Holder continuous functions on C and the stability.

Definition 3.27. Let K € Cpt(C). For each a € (0,1), let

Co(K) = {p € C(K) | suPy yexam [9(x) — 9(4)l/d(z,y)* < o0} be the Banach space
of all complex-valued a-Hoélder continuous functions on K endowed with the a-Holder
norm || - |la, where [l¢lla := sup,ex 19(2)| + supg yex oy l9(2) — @(¥)|/d(z, y)* for each
p € C*(K).

Theorem 3.28. Let 7 € M, (Rat). Suppose that Jxer(Gr) = 0 and J(G,) # 0. Then,
there exists an ag > 0 such that for each a € (0,ap), LSU;+(C)) c C*(C). Moreover,
for each a € (0,ap), there ezists a constant Eq > 0 such that for each ¢ € C*(C),
7+ ()le € Eall@llco- Furthermore, for each a € (0,00) and for each L € Min(G,, (),

A

Ty, € C%(C).



If 7 € M, (Rat) is mean stable and J(G,) # 0, then by [34, Proposition 3.65], we have
S; C F(G;) (see Definition 2.25). From this point of view, we consider the situation that
T € M, (Rat) satisfies Jyer (Gr) = 0, J(G-) # 0, and S; C F(G,). Under this situation,
we have several very strong results. Note that there exists an example of 7 € 9 -(P)
with §I'; < oo such that Jxe: (G,) = 0, J(G;) # 0, S; C F(G;), and 7T is not mean stable
(see Example 4.3).

Theorem 3.29 (Cooperation Principle VI: Exponential rate of convergence). Let T €
My (Rat). Suppose that Jyer(Gr) =0, J(G-) # 8, and Sr C F(G,). Let

re= ] dimc@LSUs.(L))).
LeMin(Gr,C)

Then, there ezists a constant o € (0,1), a constant A € (0,1), and a constant C > 0 such
that for each ¢ € C*(C), we have all of the following.

(1) M7 () = mr(Pla £ CA™|l@ — e (@)l for each n € N.
(2) 1M e — mr(@)lla < CAM|l — (@)l for each n € N.
(3) 1Mo = mr(@))lla < CXM|@lla for each n € N.

(4) I (@)lla < Cllella-

~ We now consider the spectrum Spec, (M) of M : c*(€) — c*(C). By Theorem 3.28,
Uy,+(C) C Spec, (M) for some a € (0,1). From Theorem 3.29, we can show that the
distance between U, »(C) and Spec,(M-) \ U, -(C) is positive.

Theorem 3.30. Under the assumptions of Theorem 3.29, we have all of the following.

(1) Specy(M;) C {z € C | |2|] < A} UlUy-(C), where X € (0,1) denotes the constant in
Theorem 3.29.

(2) Let { € C\ ({z € C | |2] < A} UlUy-(C)). Then, (I — M;)™*: C*(C) - C(C) is
equal to

(CI - MT)l (C)) omr + Z (I 7T7-),

n+1
n=0 C

where I denotes the identity on C*(C).

Combining Theorem 3.30 and perturbation theory for linear operators ([15]), we obtain
the following. In particular, as we remarked in Remark 1.14, we obtain complex analogues
of the Takagi function.

Theorem 3.31. Let m € N withm > 2. Let hy,...,hm € Rat. Let G = (hy,...,hp). Sup-
pose that Jyer(G) = 0,J(G) # 0 and ULeMm celc F(G). Let Wy, == {(a1,..-,am) €
O,)™ | 3%, a; = 1} = {(ay,...,am-1) € (0,1)™} | 2—1 a; < 1}. For each a =
(@1,...,am) € W, let 1, := Z 1650k, € My o(Rat). Then we have all of the following.
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(1) For each b € W, there ezists an o € (0,1) such that a — (7., : C*(C) - C*(C)) €
L(C*(C)), where L(C*(C)) denotes the Banach space of bounded linear operators
on C’O‘((fl) endowed with the operator norm, is real-analytic in an open neighborhood
of b in W,. ‘

(2) Let L € Min(G, C). Then, for each b € Wp,, there ezists an a € (0,1) such that the
map a — T -, € (C*(C), || |la) 35 real-analytic in an open neighborhood of b in Wp,.
Moreover, the map a — T, r, € (C(C), |- |lco) %5 real-analytic in Wr,. In particular,
for each z € C, the map a — Ty, 7o(2) is real-analytic in Wy,. Furthermore, for any
multi-index n = (nl, ceosim—1) € (NU{0})™! and for any b € W, the function
2 [(z2)™ - (m)""‘ W(TLr ( Z))]|a—b belongs to Cr(c)(C).

(3) Let L € Mln(G C) and let b € Wy,. For eachi=1,...,m—1 and for each z € C, let
Yip(2) = (2= (TL,ra(2))]la=b and let Gip(2) := Ty, n,(h (2)) = Tp,z, (hm(z)). Then, iy
is the unique "solution of the functional equation (I — Mp)(¥) = Gip, ¥ls,, = 0,9 €

C(C), where I denotes the tdentity map. Moreover, there exists a number a € (0,1)
such that ;p = 300 o M7 ((ip) in (C( Ol la)-

We now present a result on the non-differentiability of v; ; at points in J(G). In order
to do that, we need several definitions and notations.

Definition 3.32. For a rational semigroup G, we set

P(G) := U'{all critical values of g : C — C}
geG

where the closure is taken in C. This is called the postcritical set of G. We say that a
rational semigroup G is hyperbolic if P(G) C F(G). For a polynomial semigroup G, we
set P*(G) := P(G) \ {o0}. For a polynomial semigroup G, we set K(G) := {z € C |
G(z) is bounded in C}. Moreover, for each polynomial h, we set K(h) := K((h)).

Remark 3.33. Let I’ € Cpt(Rat+) and suppose that (T') is hyperbolic and Jie((T')) = @
Then by [34, Propositions 3.63, 3.65], there exists an neighborhood U of I' in Cpt(Rat) such
that for each IV € U, I” is mean stable, Jye((I")) = @, J((I')) # 0 and ULemingr ey £ €
F((T)).

Definition 3.34. Let m € N. Let h = (hj,...,hy) € (Rat)™ be an element such that
Rhi,..., hm are mutually distinct. We set T := {h1,...,hm}. Let f: TN x € > TN x C be
the map defined by f(v,y) = (¢(7),71(y)), where v = (71,72,. JeMNando: TN - N
is the shift map ((v1,72,...) = (72,73,-..)). This map f : N x C - I'N x C is called
the skew product associated with T. Let 7 : TN x C — TN and 7g : TN x C — C be the
canonical projections. Let p € 90t (TN x (C) be an f-invariant Borel probability measure.
Let Wn, := {(a1,-..,am) € (0,1)™ | Z;nzl aj = 1}. For each p = (p1,...,Pm) € W, we
define a function 5 : TN x € — R by p(v,y) := p; if 71 = h; (where v = (71,72, --)), and

we set
—(Jov g log (7, y) du(v,v))

h,p,
ulhpop) = Jev e 10g [|(D71)ylls du(y, )

(when the integral of the denominator converges), where || - ||s denotes the norm of the
derivative with respect to the spherical metric on C.




Definition 3.35. Let h = (hq,...,hy) € P™ be an element such that hi,...,h,, are
mutually distinct. We set ' := {hy,..., hn}. For any (7,y) € TN x C, let Gy(y) =
limg, 00 amlogJ“ [n,1(y)|, where log* a := max{loga,0} for each a > 0. By the ar-
guments in [18], for each v € TN, G, (y) exists, G, is subharmonic on C, and G| Ao 18
equal to the Green’s function on Ay, with pole at oo, where Ao, := {2 € C | yn1(2) —

0o as n — 0o}. Moreover, (7v,y) — G,(y) is continuous on I'N x C. Let py := dd°G., where
d® := 2=(8 — ). Note that by the argument in [14, 18], . is a Borel probablhty measure
on J, such that supp pu, = J,. Furthermore, for each vy € T'N, let Q(y) = 3, G,(c), where
c runs over all critical points of 7; in C, counting multiplicities.

Remark 3.36. Let h = (h1,...,hn) € (Rat,)™ be an element such that hi,..., hy are
mutually distinct. Let I' = {h1,...,hn} and let f : TN x C — I'N x C be the skew product
map associated with I". Moreover, let p = (p1,...,Pm) € Wi, and let 7 = ZJ 1Pj0n; €
9y (T). Then, there exists a unique f-invariant ergodic Borel probability measure p on
TN x C such that m,(u) = 7 and h u(flo) = MaX e, | (PNE):fu (p)=prma(p)=F ho(flo) =

Z;n:lpj log(deg(h;)), where h,(f|o) denotes the relative metric entropy of (f,p) with
respect to (o,7), and €;(-) denotes the space of ergodic measures (see [24]). This p is
called the maximal relative entropy measure for f with respect to (o, 7).

Definition 3.37. Let V be a non-empty open subset of C. Let ¢ : V — C be a function
and let y € V be a point. Suppose that ¢ is bounded around y. Then we set

. . : lp(2) — ¢(y)
H ]. , = f (= R 1 —_— e ,
ol(p,y) :=inf{BeR | fmsup = )P oo}
where d denotes the spherical distance. This is called the pointwise Holder exponent
of ¢ at y.

Remark 3.38. If Hol(yp,y) < 1, then ¢ is non-differentiable at y. If Hol(¢,y) > 1, then
@ is differentiable at y and the derivative at y is equal to 0.

We now present a result on the non-differentiability of v;;(z) = [%(T Lo (2))la=b at
points in J(G).

Theorem 3.39. Let m € N with m > 2. Let h = (h1,...,hn) € (Rat4)™ and we set T :=
{h1,h2, ... h}. Let G = (h1,..., hm). Let Wp, = {(a1,.-.,am) € (0,1)™ | Z;-’;laj =
1} = {(a1,...,am-1) € (0,1)™ 1 | PR a] < 1}. For each a = (a1,...,am) € Wnp, let
To = i) ajéhj € My (Rat). Let p = (P1,...,pm) € Wi Let f :TNx € - TN x C
be the skew product associated with T'. Let T := Y 72 pjop, € IM(T) C My (P). Let
p € My (IN x (f:) be the maximal relative entropy measure for f : INx € - IN x C with
respect to (o, 7). Moreover, let A := (7g)«(1) € M1(C). Suppose that G is hyperbolic, and
r7HI(G)) N hj—l(J(G)) = 0 for each (i,5) with i # j. For each L € Min(G,C), for each
i=1,...,m—1 and for each z € C, let ¥ 1.(z) := [E‘Z—i(TL,Ta(z))]lwp. Then, we have all
of the following.

1. G, = G is mean stable, Jye:(G) = 0, and S; C F(G,). Moreover, 0 < dimg (J(G)) <
2, supp A = J(G), and A({z}) = 0 for each z € J(G).
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2. Suppose #Min(G,C) # 1. Then there ezists a Borel subset A of J(G) with A(4) =1
such that for each zo € A, for each L € Min(G,C) and for eachi =1,...,m — 1,
exactly one of the following (a),(b),(c) holds.

(a) HoL(Yip,L,21) = HOW(Wip,L, 20) < ulh, p, p) for each z; € hi ({20}) Uhyl ({20})-
(b) Hol(ip,r,20) = u(h,p, p) < Hol(ip 1, 21) for each 21 € b7 ({20})Ubr! ({20}).
(c) Hol(Wipr,21) = ulh,p, 1) < Hol(Yip 1, 20) for each 21 € by ' ({20}) Uh ({20}).
3. Ifh=(hy,..., hm) € P™, then
—(ZT lpj log p;)
i1 pj logdeg(hy) + Jpn Q(v) d7(7)

u(h,p, p) =

and
ZT 1 p;log deg(hj) S 1pj log p;

2 >dimy(\) =
() 1pJ log deg(h;) + frn Q(7) d7(7)

4. Suppose h = (hy,...,hp) € P™. Moreover, suppose that at least one of the following
(a), (b), and (c) holds: (a) > 7., p;log(p; deg(h;)) > 0. (b) P*(G) is bounded in C.
(c) m = 2. Then, u(h,p,p) < 1.

4 Examples

In this section, we give some examples.

Example 4.1 (Proposition 6.1 in [34]). Let f; € P. Suppose that int(K(f;)) is not
empty. Let b € int(K(f1)) be a point. Let d be a positive integer such that d > 2.
Suppose that (deg(f1),d) # (2,2). Then, there exists a number ¢ > 0 such that for each
Ae{AeC:0<|) <c},setting fr = (fr1, frz) = (f1, Mz—b)?+d) and G» := (f1, fa2),
we have all of the following.

(a) f» satisfies the open set condition with an open subset U, of ¢ (ie., fy ll(U,\) U
frxa(Ux) C Uxand f5{ (Ux)NFra(Un) = 0), F51(J(GA)Nfr3(J(GA)) =0,int(J(G1)) =
0, Juer(Ga) = 0, GA(K(f1)) € K(f1) C int(K(fa2)) and @ # K(f1) C K(G)).

(b) If K(f1) is connected, then P*(G},) is bounded in C.

(c) If f1 is hyperbolic and K(f,) is connected, then G is hyperbolic, J(G)) is porous
(for the definition of porosity, see [27]), and dimp(J(G))) < 2.

‘By Example 4.1, Remark 3.33 and [34, Proposition 6.4], we can obtain many examples
of 7 € M, (P) with §T'7 < oo to which we can apply Theorems 3.23, 3.24, 3.28, 3.29, 3.30,
3.31, 3.39.

Example 4.2 (Devil’s coliseum ([34]) and complex analogue of the Takagi function). Let
g1(z) == 22 — 1,92(2) := 2%/4,hy = g%, and hy := g%. Let G = <h1,h2> and for each
a = (a1,a2) € Wy := {(a1,az) € (0,1)? | ZJ 105 = 1} = (0 1), let 7 := 21—1 a;0n,. Then
by [34, Example 6.2], setting A := K (h2) \ D(0,0.4), we have D(0,0.4) C int(K (h1)),



ha(K (h1)) C int(K(h1)), h7'(A) U s (A) C A, and h7'(A) N hy'(A) = 0. Therefore
AN (J(G))Nhs (J(G)) = @ and O # K (h1) C K(G). Moreover, G is hyperbolic and mean
stable, and for each a € W,, we obtain that Ty, -, is continuous on C and the set of varying
points of To 7, is equal to J(G). Moreover, by [34] dimy(J(G)) < 2 and for each non-
empty open subset U of J(G) there exists an uncountable dense subset Ay of U such that
for each 2z € Ay, Tw,7, is not differentiable at z. See Figures 2 and 3. The function T -,
is called a devil’s coliseum. It is a complex analogue of the devil’s staircase. (Remark: as
the author of this paper pointed out in [34], the devil’s staircase can be regarded as the
function of probability of tending to +oo regarding the random dynamics on R such that
at every step we choose h;(x) = 3z with probability 1/2 and we choose ha(z) = 3(z—1)+1
with probability 1/2. For the detail, see [34].) By Theorem 3.31, for each 2 € C, a1 —
Teo,r, (2) is real-analytic in (0,1), and for each b € W, [%5';—;‘12—)”,1___3, =3 oo MZ(Cip),
where (1 4(2) := Teo7,(h1(2)) — Too,r, (h2(2)). Moreover, by Theorem 3.31, the function
Y(z) := [a—T"%(Z—)]{a:b defined on C is Holder continuous on C and is locally constant on

F(G). As mentioned in Remark 1.14, the function (z) defined on € can be regarded as a
complex analogue of the Takagi function. By Theorem 3.39, there exists an uncountable
dense subset A of J(G) such that for each z € A, either 9 is not differentiable at z or v is
not differentiable at each point w € h7!({z})Uhy ! ({z}). For the graph of [?I%%ﬁ”m:l/%
see Figure 5.

Figure 2: The Julia set of G = (h1, hg), where ¢1(2) := 221, g2(2) := 2%/4,hy := gf, ho =
g%. P*(G) is bounded in C and #(Con(J(G))) > No. G is hyperbolic ([33]). (h1, h2) satisfies
the open set condition ([40]). Moreover, VJ € Con(J(G)), 3y € {h1, h2}N s.t. J = J,. For
almost every v € {hy, ho }N with respect to a Bernoulli measure, J is a simple closed curve
but not a quasicircle, and the basin A, of infinity for the sequence v is a John domain

(I33))-

We now give an example of 7 € My (P) with I’y < oo such that Jyer(G-) = 0,
J(G:) # 8, S: C F(G,) and 7 is not mean stable.

Example 4.3. Let h; € P be such that J(h1) is connected and h; has a Siegel disk S. Let
b € S be a point. Let d € N be such that (deg(h;),d) # (2,2). Then by [34, Proposition
6.1] (or [31, Proposition 2.40]) and its proof, there exists a number ¢ > 0 such that for
each A € C with 0 < |A| < ¢, setting ha(z) := A(z — b)% + b and G := (h1, h2), we have
Jker(G) = 0 and ho(K(h1)) C S C int(K (k1)) C int(K (h2)). Then the set of minimal sets
for (G,C) is {{oc}, Lo}, where Lo is a compact subset of S (C F(G)). Let (p1,p2) € Wa
be any element and let 7 := 212:1 pj0h;- Then Jyer(Gr) =0, J(G;) # 0, S; C F(G,) and
7 is not mean stable. In fact, Lg is sub-rotative. Even though 7 is not mean stable, we
can apply Theorems 3.28, 3.29, 3.30, 3.31, 3.39 to this 7.
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Figure 3: The graph of z — T 1, (2), where, letting (hj, h2) be the element in Figure 2,

we set 74 = Z?=1 a;0p,. A devil’s coliseum (a complex analogue of the devil’s staircase).
T, is mean stable. The set of varying points is equal to Figure 2.

Figure 4: The graph of z — Ty r, ,(2), where, letting (h1, h2) be the element in Figure 2,
we set 7, = Z?=1 a;jop,. Figure 3 upside down. A “fractal wedding cake”.

Figure 5: The graph of z — [(0T,r,(2)/0a1)]|a,=1/2, Where, 7, is the element in Figure 3.
A complex analogue of the Takagi function.
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Example 4.4. By [34, Example 6.7], we have an example 7 € 9 .(P) such that Jker (G7) =
0 and such that there exists a J-touching minimal set for (G, C). This 7 is not mean stable
but we can apply Theorem 3.28 to this 7.
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