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INTRODUCTION TO NON-DEGENERATE MIXED FUNCTIONS

MUTSUO OKA
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1.1. Milnor fibration. We first recall the theory of Milnor fibrations for holomor-

phic functions.
Let f(z) be a holomorphic function of n-variables 21, ..., z, such that f(0) = 0.

As is well-known, J. Milnor proved that

Theorem 1. ([15]) There exists a positive number g such that the argument map-
ping

o= f/If]: S\ Ke — 8
is a locally trivial fibration for any positive € with e < €9 where K, = f~1(0)nS2n-1,

We call this the first description of Milnor fibration. Topologically S, \
K. 2 FxI/h: F — F. The characteristic polynomial is defined by Pn_;1(t) =
det(h. - tid), where h, : Hy,_1(F) — Hy_1(F). h, is called monodromy homomor-
phism.

Theorem 2. ([15]) Suppose that € is sufficiently small as in the above theorem.
Then K is (n — 3)- connected. Suppose further that O is an isolated singularity.
Then F has the homotopy type of a bouquet of spheres of S™1
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Euclidean inner product and hermitian inner product:
z2=(21,...,2p) =X+1iy, W= (wy,...,Wn) = U+ 1V
(2,W) = 211+« + 2, Wy,
(2, W)r = (x,u) + (y,v) = R(z, w)
C" < R, z <= (x,y)
f(z) = g(x,y) + ih(x,y)
gradg = (i{gl jfn gyg—ldign
Tangent spaces:
TzS. = {w € C" | R(z,w) = 0}
Tzf~1(t) = {w € C"| (w, grad f(z)) = 0}
={weC"| wlg—gl-—f----—i-wn% =0}
= {w € R*™| (w,gradg(z))r = (w, grad h(z))g = 0}
TzF = {w € C" |R(w,z) = R(w, igradlog(f(z))) = 0}, F = ¢~ 1(1)
Note that

log f(2) =10g [f(2)] +iarg(f(2)),
f(2)/f(2)| = exp(i arg(f(2))-

Lemma 8. ([15]) ¢ = f/|f]: S. — S* is a submersion if and only if {z, igrad log f(z)}

are linearly independent over R.

1.1.1. Cone theorem and the second fibration. Suppose that V = f~(0) has an
isolated singularity at the origin. Then there exists a positive ¢ > 0 such that
SV for any 0 < r < e. Note that

S,V < T3S, DTzV
<= Vz € 5, NV, {z,gradf(z)} : linearly independent over C

Theorem 4. ([15]) Assume O is an isolated singularity of V. Then there exists
a positive number ro > 0 so that for any v, 0 < r < rg, S, h V. In particular,
(Br, B, NV) = Cone (S, K;).

We call such rg a stable radius.

Proof. Suppose there does not exists such rq. By Curve Selection lemma, one can
find a real analytic path

p:[0,e] =V, p(t) e V\{O}, t #0
such that p(t) is tangent to V. Thus we can write
p(t) = A(t)grad f(p(t)),t > 0.

Then we have a contradiction as follows.
Put ¢(z) = (z,2) = 2| and ¢ = /5.

2 opt)) = 202 1)

- (0 s gradiorey) = 23 T g
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INTRODUCTION TO NO-DEGENERATE MIXED FUNCTIONS

For the proof of the second assertion, we construct a vector field x on B, \ {O}
such that

For any z € V' \ {0}, there exists an open neighborhood U(z) such that x(z) €
Tzf ' (f(z)) for any z € U(z). More precisely, for any 0 < €; < ro, there exists
8(e1) > 0 such that f~1(n) h S, for any |n| < 8(e1), &1 < r < 7. Take U(z) so
that

U(Z) c f—l(Dé(é‘l)) N BTo \ Bgl
R(x(2), grad ¢(z)) = —1.

Then using the integration ¥(z,t) (¥(z,0) = z) of x, we sec that d—‘ﬂ%w =
—1 and thus starting from z € S,, lim,—., |¢(z,t)] = 0. Using this, we get a
homeomorphism:

(S, K.} x[0,r) = B, \ {0}, ¥(z,t) = ¥(z,1)
which extends to the homeomorphism Cone(S;, K;) = (B:, V). d
1.1.2. Second description of Milnor fibration. Take ry as before. Fix 0 < r < .

Theorem 5. Fir r,0 < r < ro. Take § > 0 sufficiently small so that for any 7
ln| <8, S, th f~Y(n). Put E(r,8)* = {z € B\ V||f(z)| <d}. Then f: E(r,0)* —
A} is a locally trivial fibration, where A} = {n € C|0 < || < 6}

Theorem 6. Two fibrations ¢ : S, \ K, — S* and f : 0E(r,8)* — S} are equiva-
lent.

1.2. Weighted homogeneous polynomials. Let ay,...,a, and c be given posi-
tive integers with ged(as, .. .,a,) = 1. An analytic function f(z1,...,2,) iscalled a
weighted homogeneous polynomial of type (a1, ..., an;c) or a weighted homogeneous
polynomial of degree ¢ with the weight vector (a1, ..., an) if f satisfies the functional

equality
ft%zy,.. 8% 2,) = t°f(21,...,22), 2€C", teC

Definition 7. The C*-action associated with a weighted homogeneous polynomial:
C*xC"—>C", (t,z)—toz:=(t"z,...,t%"2,))

Then weighted homogeneous <> f(toz)=1t°f(z).

Note that V = f~1(0) is C* stable.

Example 8. 1. Let f(z) be a homogeneous polynomial of degree c. Then f(z)
satisfies the obvious equality: f(tzi, -+ ,tz,) = t°f(z1,--- ,2n). Thus f(z) is a
weighted homogeneous polynomial of type (1,--- ,1;¢).

2. Let f(z) = 28 + -+ -+ 22 (Pham-Brieskorn polynomial). Then it is weighted
homogeneous polynomial of type (p1,...,Pn,c) where ¢ =lcm(ay,...,8,) and p; =
c/aj.

Theorem 9. Assume that f is a generalized weighted homogeneous polynomial of
type (a1, ...,an;c). Then
(1) (Euler equality). We have the equality:
n 6f.
Cf(Z) = ; a,zié—;.

1

(2) Assume that ¢ # 0. The only possible critical value of f is 0 and f :
C™ — f~1(0) — C" is a locally trivial fibration.
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(3) Assume that ay,...,an,c > 0. Then the Milnor fibration of f at the origin
is defined on any sphere S;, € > 0 andt he restriction of the above fibration
over St: f: f~ (51) — St is equivalent to the Milnor fibration of f at the
origin: f/|f|:+ §2*1 — K. — S for any ¢ > 0. In particular, the Milnor
fiber is daﬁeomorphzc to the affine hypersurface f~*(1). The hypersurface
f™Y0) is contractible to the origin.

(4) ([Or-Mil]) Assume that the origin is an isolated singular point andaq,...,ayn,c >
0.
(a) For any € > 0, the sphere S, and the hypersurface f~1(0) intersect
transversely.

(b) Putting c/a; = w;/v; with us,v; € N, (ug,v;) =1, i =1,...,n, the
divisor of the zeta functz'on is given as follows.

(€)= (- Auy = 1)+ (= Aa, = 1)

n

In particular,

Proof. (4-a): Euler equality is given by differentiating t°f(z) = f(t 0 z). Assume
that

Then by Euler equality, we have

cf(z) = Zazz1 i=;\i 2:Z; # 0.

1.2.1. Equivalence of global and local fibrations. E = f~1(S!) and define
Y E—-S\V, ¢Y(@)=7103z,|7r02]|=7r,7>0
or
§=971:5\V > E, &) =s(z)oz, s(z) = 1/|/(2)]"°
Then we have the commutative diagram:
E % S\K

SLf B Sllf/(fl
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2. MIXED FUNCTION
Now we consider the situation of recal algebraic varicty of codimension 2:
V = {g(x,y) = h(x,y) =0z =x+1iy € C"}

where 2; = z; + iy; and g,h € R[x,y]. We study when the link is fibered
over the circle. It can be writte as

V={z€eC"|f(z,2) =0}, f(2,2)=g(

We call f a mixed polynomial.

245 z2~3.  74+3 2-7%
7 ) Pl

)

2.1. Weighted homogeneous polynomials. A mixed polynomial f(z,2) = 3, y CouZZ
is called polar weighted homogeneous (respectively radially weighted homogeneous)
if there exist integers positive integers py, ..., pn and a non-zero integer my, (resp.
positive integers qi,. .., ¢, and a non-zero intcger m;) such that
ged(pr, ... pn) =1, o5 pi(vs — 1) =y, if e, #0
(resp. ged(gr,- .- qn) = 1, 300y 45 (vy + py) = my)

We say f(z,Z) is a rad-polar weighted homogeneous if [ is radially weighted homo-
geneous of type, say (q1,.--,9n;mr), and f is also polar weighted homogeneous of
type, say (p1, .. -,Pn; mp)([23]). We define vectors of rational numbers (uy, .. ., uy)
and (vi,...,vn) by u; = ¢i/mr, vi = pi/m, and we call them the normalized radial
(respectively polar) weights.

Example 10. Let f = 232 + 23%>. Polar weight:(8,2;6), Radial weight: (5,4;20)

Using a polar coordinate (r,7) of C* where » > 0 and n € S* with $! = {n €
C||nl = 1}, we define a polar R x S*-action on C" by

(r,m) oz = (rVnMz,...,r%nPrz,), re = (r,n) €RY x S*
(rym)ozZ=(r,n)oz = (rT'y™Pz,...,r9"n"PrZ,).
Assume that f(z,Z) is rad-polar weighted homogencous polynomial. Then f satis-
fies the functional cquality

(1) f((r,n) o (2,2)) = """ f(2,2).
This notion was introduced by Ruas-Seade-Verjovsky [27] implicitly and then by

Cisneros-Molina [5].
It is easy to see that such a polynomial defines a global fibration

f:Ct— 7o) —C".
For example, put U, g = {pe|1/r < p<7r, -0 < < 6}
W (1/r,r} x [-6,8] x 1) = 71 (Ure), ¥(p,6,2) = (p*/™, cxp(i6/m;)) oz

Theorem 11. ¢ = f/|f| : S~ !\ K, — S! is a locally trivial fibration for any
r > 0 and it is equivalent to f: f~1(S!) — S*.

Proof. First,

Yo o™ (1) = p(exp(i)), Yo(z) = (1,exp(i8/m,)) o2
gives the trivialization. Define

&: ST\ K, — fTHSY) @(2) = (1/1f(2)|V™,0) 02
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2.2. Mixed non-singular point. Let f(z,Z) be a mixed polynomial and we con-
sider a hypersurface V = {z € C"; f(2,2) = 0}. Put z; = z; + iy;. Then
f(z,Z) is a real analytic function of 2n variables (x,y) with x = (z1,...,z,) and
Yy = (y1,...,yn). Put f(z,2) = g(x,y) + i h(x,y) where g, h are real analytic
functions. Recall that

8 _1(8 . .8
%5, = 32 (3; + ‘o;,,)
Thus for a complex valued function f, we dcfine

of 09 4, ,0n Of _ 99 4 ;09
3z, = Bz T '3z, 0% — 03, T '3,

We assume that g, h are non-constant polynomials. Then V is a real codimension
two subvariety. Put

[} 8g J8g %) 7
leQ("a)’)z(Erg{"""&L TR ’Fyg: € R
a8 oh oh
drh(x,y) = ('e%l{v""axﬁ’ayl "’Gyn) € R
For a complex valued mixed polynornial we use the notation:
df (z, z)—(az1 "’Bz 2yecr, df(zz) = (a- ..... OZn)€C"

We say that a point z € V is a mixed-singular point of V if and only if df, :
Tz|BC™ — Ty (z)C is surjective or equivalently the two vectors dgr(x,y), dhr(x,y)
are linearly dependent over R.

Proposition 12. [23] The following two conditions are equivalent.
(1) z € V is a mized singular point.
(2) dgr,dhgr are linearly dependent over R. _
(3) There exists a complez number a, |a| = 1 such that df(z,2Z) = adf(z,z).

2.3. Transversality. We assume again f(z,Z) is a rad-polar weighted homoge-
neous polynomial as before. First we obscrve that f~!(¢) is mixed non-singular for
any t % 0 as df : Tz f~1(t) — T,C is surjective.

Proposition 13. [23] Let V = f~!(0). Assume that the radial weight q; > 0 for
any j. Then V is contractible to the origin O. If further O is an isolated mized
singularity of V, V\{O} is smooth.

Proposition 14. [23](Transversality) Under the same assumption as in Proposi-

tion 13, the sphere S; = {z € C™; ||z|| = 7} intersects transversely with V for any
7> 0.

2.4. Two special cases. There are two cases foe which we know more about the
topology of Milnor fiber.

24.1. Casel, Simplicial polynomial. Let [(z.2) = Y ;_, ¢;2™2™ be a mixed
polynomial. Here we assume that c;,...,c, # 0. Put

s
fw) = e;wh ™ w=(w,...,w,) € C.

We call f the the associated Laurent polynomial. This polynomial plays
an important role for the determination of the topology of the hypersurface F =
f71(1). Note that
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Proposition 15. If f(z,Z) is a polar weighted homogeneous polynomial of polar
weight type (p1,...,Pn;mp), f(W) is also a weighted homogeneous Laurent polyno-
mial of type (p1,...,Pn;Myp) in the complex variables wy, ..., wn.

A mixed polynomial f(z,Z) is called simplicial if the exponent vectors {n; %
m,|j=1,...,s}arelinearly independent in Z" respectively. In particular, simplic-
ity implies that s < n. When s = n, we say that f is full. Put n; = (n;1,...,n;.),
m; = (m;1,...,Mjn) in N*. Assume that s < n. Consider two integral matrix
N = (n; ;) and M = (m, ;) where the k-th row vectors are ny, my respectively.

Lemma 16. Let f(z,Z) be a mized polynomial as above. If f(z,2) is simplicial,
then f(z,%) is a polar weighted homogeneous polynomial. In the case s = n, f(z, 2)
is simplicial if and only if det(N = M) # 0.

2.4.2. Ezample. Let
al = bl

Ba,b(z’z) =24 -t zﬁ"zn ) aubz > 1 Vi

fap(2.2) =21 2 + -+ 222", 00, b 2 1, Vi

k(z,2) = 2}(Z1 4+ Z2) + - -- + 28(Z, + 21), d > 2.

The associated Laurent polynomials are

fapW) = wy wy® 4wt

k(w) = wi(1/wy + 1/wz) + - - + wi(1/wn + 1/wn).
Corollary 17. For the polynomial f, 1, the following conditions are equivalent.
(1) fap is simplicial.
(2) fap s a polar weighted homogeneous polynomial.
(3) (SC) a1---an#by---by
Let f(2,2) = 3.;_; ¢ 2z z™ be a polar weighted homogeneous polynomial of

radial weight typc (g1, ...,¢n; m,) and of polar wcight type
(p1....,Pn;myp). Let F'= f~1(1) be the fiber.

2.4.3. Canonical stratification of F' and the topology of each stratum. For any subset
I c{1,2,...,n}, we define

={z|z;=0, j¢ I}, C!l ={z|z #0iff i € I}, C" = C*{1n}

and we define mixed polynomials f7 by the restriction: f/ = f|¢r. For simplicity,
we write a point of C’ as z;. Put F*! = C*/ N F. Note that F*! is a non-empty
proper subset of C*/ if and only if f/(z;,2;) is not constantly zero. Now we observe
that the hypersurface F' = f~1(1) has the canonical stratification

F =1I; F*!,

Thus it is essential to determine the topology of each stratum F*/. Put F* :=
F N C*™, the open dense stratum and put £ := f~1(1) N C*™ where f(w) is the
associated Laurent weighted homogeneous polynomial.

Theorem 18. [23] Assume that f(z,%) is a simplicial polar weighted homogeneous
polynomial and let f(w) be the associated Laurent weighted homogeneous polyno-
mial. Then there exists a canonical diffeomorphism ¢ : C*™ — C*™ which gives an
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isomorphism of the two Milnor fibrations defined by f(z,%) and f (w):
c-fi0) Lo

K |

C*n — f‘—l(o) i) C*

and it satisfies p(F*") = F* and @ is compatible with the respective canonical
monodromy maps.

Proof. Assume first that s = n for simplicity. Recall that

7
) = 32 ey
=1
Let w = (w1, ..., uy,) be the complex coordinates of C™ which is the ambient space

of F'. We construct ¢ : C*"* — C*" so that o(z) = w satisfies
w(p(2)™ ™ = 2%z thus  f(e(z)) = f(2).

For the construction of p, we use the polar coordinates (p;,6;) for z; € C* and
polar coordinates (€;,7;) for w;. Thus z; = p; cxp(i6;) and w; = &; exp(in;).

First we take m; = 6;. Put n; = (n;1,....n5,), mj = (my1,...,m;,) in
N™. Consider two integral matrix N = (n;;) and M = (m, ;) where the k-th
row vector are ng, my respectively. Now taking the logarithm of the equality
2z™ = wi M | we get an equivalent equality:

(nj1 +mj1)logpr + - + (njn + myn) log py,
= (nj1 —mj1)log&r + -+ + (njn — myn) logén

for j =1,...,n. This can be written as
log p1 log &1
(2) (N+M)| ¢ | =(N-M)|
log Pn logé&n

Put (N — M)™Y(N + M) = (X)) € GL(n, Q). Now we define ¢ as follows.

w:C" — C*", 2= (p1 exp(i6y),..., pnexp(ib,)) —
w = (& exp(i61), . .., &n exp(iby))
where ; is given by §; = exp(3_., Ajilogp;) for j = 1,...,n. It is obvious that ¢

is a real analytic isomorphism of C*" to C*". Let us consider the Milnor fibrations
of f(z,%) and f(w) in the respective ambient tori C*™.

frOmMfHO) =€, fiem\fHo) - C
Recall that the monodromy maps h*, h* are given as

h*: F*— F*, 2z~ exp(2mi/m,) oz

h*: F* - F*,  w o exp(27i/myp) o w.
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Recall that the C*-action associated with f(w) is the polar action of f(z,2). Namely

expifl ow = (exp(ip10)un, . ..,exp(ip,bd)w,). Thus we have the commutative dia-
gram:

A o

el

Fro 2 R
where F: = f~}(a) NC*" and Er = f~Y(a)NC*" for @ € C*. a

2.4.4. Remark. The case f(z,Z) = 2{'Z + - + 23~ %, is studied in [27]. In this
case, g =z "' 4+ ... + 22" "L and p: f}(1) — g~1(1) is given by

2
wj = zj|zi|%7, j=1,...,n
We can see that this is a homeomorphism.

2.4.5. Zeta-functions. Now we know that by [19, 20], the inclusion map F*—
is (n — 1)-equivalence and x(F*) = (=1)""1det(N — M) for s = n and 0 otherwise.
In general, for a diffeomorphism h : F — F, the zeta function of A is defined by
T152, det(tha;—1 —id)
r(t) = 13["3 Ty,
3=0 ct(the; — id)

where hj = h. : Hj(F) — H;(F).

Note also in our case the monodromy map h:F*— F*hasa period m,. The
fixed point locus of (h)* is F* if m, |k and @ otherwise. Thus using the formula of
the zeta function (see, for example [15]),

o0
Ge (8) = exp(D_ (=1)"7 ™ /(jmy)) = (1 — ™) (=1 /m
=0
where d = det (N — M) if s = n and d = 0 for s < n. Translating this in the
monodromy h* : F* — F*, we obtain

Corollary 19. F* has a homotopy type of CW-complezx of dimension n — 1 and
the inclusion map F* — C*" is an (s — 1)-equivalence. The zeta function (- (1) of
h*: F* — F* is given as (1 — t™)(~1"¢/m» yith d = det (N — M) if s = n and
Cne(t) =1 for s < n.

2.4.6. Connectivity of F. Now we are ready to patch together the information of
the strata F*/ for the topology of F. First we introduce the notion of k-convenience
which is introduced for holomorphic functions ([20]). We say f(z, Z) is k-convenient
if fT%0forany I C {1,2,...,n} with {I| > n— k. The following is obvious by the
definition.

Proposition 20. [23] Assume that f(z,Z) is a simple polar weighted homogeneous
polynomial with s monomials and assume that f is k-convenient. Then k < s — 1.

Now we have the following result about the connectivity of F'.

Theorem 21. [23] Assume that f(z,Z) is a simple polar weighted homogeneous
polynomial with s monomials and assume that f is k-convenient. Then F is
min(k, n — 2)-connected.
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2.4.7. Join type polynomials. Another special type of mixed functions are mixed
polynomials of join type. Consider the rad-polar weighted homogeneous poly-
nomials g(z, %), h(w, W) with z = (21,...,2,) and w = (w1,...,wn). Consider
f(z,w,2,W) = g(z,Z) + h(w,W). Then

Theorem 22. (Cisneros-Molina [5]) The Milnor fiber of f is homotopic to the join
of 971 (1) xh™1(1) and the monodromy is also the join of the respective monodromy.

Proof. Let (p1,...,pn) and (r1,...,7m) be the normalized polar weights. Then f
has the nomalized polar weight (p1,...,pn,71,...,7m). The polar weight is given
by multiplying the least common multiple of the denominator. The proof is divided
into three steps. Let Fy = f~1(1) c C™*™, F, = g~(g), F, = h71(1). Let

Fy = {(z,w)|g(2,2) € R}, 3 = {(z,w) € F1|0 < g(2,%) < 1}.

Step 1. Fy C F is a defoemation retract which is compatible with the mon-
odromy.
Step 2. F; C F is also a deformation retract.

Step 3. F; is homotopic to the join F, x Fj, and the joined monodromy.
O

Corollary 23. Suppose that Fy and Fahas the homotopy types of bouques of spheres
of dimension n — 1 and m — 1. Then F is n+m — 2 connected and

Hn+m—1(F) 'h—" Hn+m-1(F)

~ )

Hnr(Fy) ® Ho1(F3) 557 Hol1(F) @ He1(F)
2.5. General mixed functions. This section is completely included in [24].

2.5.1. Newton boundary of a mized function. Suppose that we are given a mixed
analytic function f(z,2) =}, , ¢, 2"2%. We always assume that co,0 = 0 so that
O € f~1(0). We call the variety V = f~1(0) the mized hypersurface. The radial
Newton polygon I' . (f;z,z) (at the origin) of a mixed function f(z,Z) is defined by
the convex hull of
U 4w +R*™
Cu, 70

Hereafter we call '} (f;2,2) simply the Newton polygon of f(z,%z). The Newton
boundary I'(f;z,Zz) is defined by the union of compact faces of 'y (f). Observe
that I'(f) is nothing but the ordinary Newton boundary if f is a complex analytic
function. For a given positive integer vector P = (p1,...,pn), we associate a
linear function £p on T'(f) defined by £p(v) = 3 7 pju; for v € T'(f) and let
A(P, f) = A(P) be the face where £p takes its minimal value. In other words,
P gives radial weights for variables z1,...,z, by rdegpz; = rdegpz; = p; and
rdegp 22* = 3_7_ pj(v; +u;). To distinguish the points on the Newton boundary
and weight vectors, we denote by N the set of integer weight vectors and denote a
vector P € N by a column vectors. We denote by N*, N*F the subset of positive
or strictly positive weight vectors respectively. Thus P = (p;,...,p,) € NT+
(respectively P € N*) if and only if p; > 0 (resp. p; > 0) forany i = 1,...,n. We
denote the minimal value of £p by d(P; f) or simply d(P). Note that

d(P; f) = min {rdegp 2"2" | ¢, , # 0}.

89



INTRODUCTION TO NO-DEGENERATE MIXED FUNCTIONS

For a positive weight P, we define the face function fp(z,z) by
fr(z,2) = Z e, 2’2"
v+u€eA(P)

Example 24. Consider a mixed function f := 2332 + 2222 + 23z,. The Newton
boundary ['(f;z,Z) has two faces A;, Az which have weight vectors P := ¥(2,3)
and @ := !(1,1) respectively. The corresponding invariants are

fr(z,2) = 232} + 2123, d(P; f) =10
fo(z,2) = 225 + 237, d(Q;f) = 4.

FiGuURE 1. I'(f)

2.5.2. Non-degenerate functions. Suppose that f(z,Z) is a given mixed function
f(z,2). For P € N**, the face function fp(z, %) is a radially weighted homogencous
polynomial of type (p1,...,pn;d) with d = d(P; f).

Definition 25. Let P be a strictly positive weight vector. We say that f(z,Z) is
non-degenerate for P, if the fiber fp 1(0) N C*" contains no critical point of the
mapping fp : C** — C. In particular, f5'(0) NC*" is a smooth real codimension
2 manifold or an empty set. We say that f(z,Z) is strongly non-degenerate for P
if the mapping fp : C*® — C has no critical points. If dim A(P) > 1, we further
assume that fp : C*™ — C is surjective onto C.

A mixed function f(z,Z) is called non-degenerate (respectively strongly non-
degenerate) if f is non-degenerate (resp. strongly non-degenerate) for any strictly
positive weight vector P.

Consider the function f(z,%) = 2171 + -+ + 2p,2,. Then V = f~1(0) is a single
point {O}. By the above definition, f is a non-degenerate mixed function. To
avoid such an unpleasant situation, we say that a mixed function ¢(z,Z) is a true
non-degenerate function if it satisfies further the non-emptiness condition:

(NE) : For any P € N** with dim A(P,g) > 1, the fiber g5'(0) N C*™ is
non-empty.

Remark 26. Assume that f(z) is a holomorphic function. Then fp(z) is a
weighted homogeneous polynomial and we have the Euler equality:

P ffP Zpizz fP
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Thus fp : C*™ — C has no critical point over C*. Thus f is non-degenerate for
P implies f is strongly non-degenerate for P. This is also the case if fp(z.Z) is a
polar weighted homogeneous polynomial.

2.5.3. Isolatedness of the singularities. Let f(z.Z) = Y, , c,,.2"Z*. As we are
mainly interested in the topology of a germ of a mixed hypersurface at the origin,
we always assume that f does not have the constant term so that O € f~1(0). Put
V= f"10) cC".

2.5.4. Mized singular points. We say that w € V is a mized singular point if w is a
critical point of the mapping f : C* — C. We say that V is mized non-singular if
it has no mixed singular points. If V is mixed non-singular, V is smooth variety of
real codimension two. Note that a singular point of V' (as a point of a real algebraic
variety) is a mixed singular point of V but the conversc is not necessarily true. For
example, every point of the sphere S = {212+ -+ 2,,Z, = 1} is a mixed singular
point.

2.5.5. Non-vanishing coordinate subspaces. For a subset J C {1,2,...,n}, we con-
sider the subspace C” and the restriction f := f|cs. Consider the set

NV(fy={Ic{1,...,n}|fF 20}
We call NV(f) the set of non-vanishing coordinate subspaces for f. Put

vi= |J vnc
TENV(f)

Theorem 27. [24] Assume that f(z,2) is a true non-degenerate mized function.
Then there exists a positive number ro such that the following properties are satis-
fied.
(1) (Isolatedness of the singularity) The mized hypersurface V* N B,, is mized
non-singular. In particular, codimgVH = 2.
(2) (Transversality) The sphere S, with 0 < r < 7o intersects V! transversely.

We say that f is k-convenient if J € NV(f) for any J C {1,...,n} with [J| =
n~k. We say that f is convenient if f is (n—1)-convenient. Note that V# = V\ {0}
if f is convenient. For a given £ with 0 < £ < n, we put W(¢) = {z € C" | |I(z)| < ¢}
where I(z) = {i|z; = 0}. Thus W(n—1) = C*". If f is ¢-convenient, VAW (£) C V¥,

Corollary 28. Assume that f(z,Z) is a convenient true non-degenerate mized
polynomial. Then V = f~1(0) has an isolated mized singularity at the origin.

Remark 29. The assumption “true” is to make sure that V* = f=1(0) N C*" is
non-empty.

2.6. Milnor fibration. In this section, we study the Milnor fibration, assuming
that f(z,Z) is a strongly non-degenerate convenient mixed function. We have seen
in Theorem 27 that there exists a positive number rg such that V = f~1(0) is mixed
non-singular except at the origin in the ball Bf: and the sphere S?*~! intersects
transversely with V' for any 0 < r < ry. The following is a key assertion for which
we need the strong non-degeneracy.

Lemma 30. [23] Assume that f(z,Z) is a strongly non-degenerate convenient mized

function. For any fized positive number r1 with ry < 1o, there exists positive num-
bers 6p K r1 such that for any n # 0, |n| < & and r with ry < r < ro, (a) the fiber
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Vi, := f~Y(n) has no mized singularity inside the ball B2 and (b) the intersection
V,, N S2=1 is transverse and smooth.
2.6.1. Milnor fibration, the second description. Put
D(%)" = {n€C|0 < [n] < &}, S, =0D(&)" = {n & C|n| =do}
E(r,80)* = f~Y(D(do)") N B2, OE(r,0)* = f~(S3,) N B2™.
By Lemma 30 and the theorem of Ehresman ([31]), we obtain the following descrip-
tion of the Milnor fibration of the second type ([10]).

Theorem 31. (The second description of the Milnor fibration) Assume that f(z, Z)
is a convenient, strongly non-degenerate mized function. Toake positive numbers
ro,71 and 8o such that r < ro and 8o K r1 as in Lemma 30. Then f : E(r,80)* —
D(bo)* and f : BE(r,80)* — Sj, are locally trivial fibrations and the topological
isomorphism class does not depend on the choice of ég and r.

2.6.2. Milnor fibration, the first description. We consider now the original Milnor
fibration on the sphere, which is defined as follows:

@: S IN\K, = S,z ¢(2) = f(2,2)/|f(2,2)]

where K, = VN S?"~1, The fibrations of this type for mixed functions and related
topics have been studied by many authors ({27, 28, 6, 29, 26, 3]). But most of the
works treat rather special classes of functions. The mapping ¢ can be identified
with p(2z) = —R(ilog f (z)) t;a.kmg the argument 6 as a local coordinate of the circle
S1. We use the basis {az : 8z |7 =1,...,n} of the tangent space TzC" ® C. For

a mixed function g(z,Z), we use two complex “gradient vectors” defined by
99 99, 5 _ 99 9g
d. ey =), dg=(z=,..., =)
9=(5," B =gz 5)
Take a smooth path z(t), =1 <t < 1 with 2(0) = w € C*\ V and put v = 22(0) €
TwC™. Then we have

- £ (R( log £ (2(0), 51
_SR(Z {ng;( %)% (0) + gf( w)—E(O)}/ﬂw,v“v))

i=1
= R(v,idlog f(w,W)) + %(V,i&log f(w,w))
= R(v,idlog f(w,W)) + R(v, —idlog f(w, W))
= R(v,i(dlog f — dlog f)(w, W)).

Namely we have

d , _ A 3 -
(8)  — (R log f(a(2),2(2))) =0 = R(v, 1 (dlog f — dlog f)(w, W)).
Thus by the same argument as in Milnor [15], we get

Lemma 32. [24] A point z € Sf"‘l.\ K, is a critical point of ¢ if and only if the
two complex vectors i (dlog f(z,2) — dlog f(z,Z)) and z are linearly dependent over
R.

The key assertion is the following.
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Lemma 33. (24] Assume that f(z,%) is a strongly non-degenerate mized func-
tion. Then there exzists a positive number ro such that the two complez vectors
i(dlog f(2,2) — dlog f(2,2)) and z € S, \ K, are linearly independent over R for
anyr with 0 < r < rg.

Now we are ready to prove the existence of the Milnor fibration of the first
description.

Theorem 34. [24](Milnor fibration, the first description) Let f(z,Z) be a strongly
non-degenerate convenient mized function. There exists a positive number ro such
that

o =F/If]: ST\ K, - 8
is a locally trivial fibration for any r with 0 < r < rp.

2.6.3. Equivalence of two Milnor fibrations. Take positive numbers r, §y with &y <
7 as in Theorem 31. We compare the two fibrations
f:BE(r,50)~—>S§0, @: 8\ K, — §t

and we will show that they are isomorphic. However the proof is much more
complicated compared with the case of holomorphic functions. The reason is that
we have to take care of the two vectors

i(dlog f — dlog f), dlog f + dlog f

which are not perpendicular. (In the holomorphic case, the proof is easy as the two
vectors reduce to the perpendicular vectors idlog f, dlog f.) Consider a smooth

curve z(t), -1 <t < 1, with z2(0) = w € B\ V and v = didff—)(O). Put v =
(v1,...,vp). First from (3), we observe that
log f(z(t), 2(t)),  ~ Ologf, . _ dlogf
p lt=0 = JZ:; v, 5z, (W, W) + 7, 5z, (w, W)

=R(v, (dlog [ + dlog f)(w,W)) + iR(v, i (dlog | — dlog [)(w, w)).
Define two vectors on C* — V:
vi(z,Z) = dlog f(z,2) + dlog f(z, )
vo(z,%) = i (dlog f(2,Z) — dlog f(z,2))
The above equality is translated as

(4) log f(z(t),z(t))
dt
The following will play the key role for the equivalence of two fibrations:

t=0 = R(v, vi(w, W)) + i R(v, va(w, W)).

Lemma 35. [24]labelkey lemma Under the same assumption as in Theorem 84,
there exists a positive number ro so that for any z with ||z} < ro and f(z,2) # 0,
the three vectors

z, vi(z,2), va(z,Z)
are either (i) linearly independent over R or (ii) they are linearly dependent over
R and the relation can be written as
(5) z=avi(2,Z)+bvy(z,Z), a,b € R.

and the coefficient a is positive.
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FIGURE 2. If A0 <0, |8| < |9l

Now we are ready to prove the isomorphism theorem:
Theorem 36. Under the same assumption as in Theorem 34, the two fibrations
f 1 OE(r,80) — S}, w:821\ K, - 8!

are topologically isomorphic.

3. MIXED PROJECTIVE CURVES

Let f(z,%) be a rad-polar weighted homogeneous mixed polynomial with z =
(z1,...,2n) € C*. Namely there exist integers (¢1,...,¢n) and (p1,...,pn) and
positive integers dy, d,, such that

f(toz,toz) =t4f(z,2), toz=(t"z,...,t%z), t€R*
flpoz,55%) = p*f(2,2), poz=(p"2z1,...,0"2a), pEC, |p| = 1.
This gives Rt x S! action by
(t,p)oz = (t"pPz1,...,t"pP"z,), tp € RV x St
We say that f(z,Z) is strongly polar weighted homogeneous if p; = g; for j =

1,...,n. Then the associated Rt x S* action on C" is in fact the C* action which
is defined by
(z,7) = ((21,...,n),7) —~ Toz = (z177,...,2,7""), T € C".

We say f(z,Z) is strongly polar homogeneous if further the weights satisfies the
equalities g¢; = p; = 1 for any j. A strongly polar weighted homogeneous polynomial
f(z,Z) satisfies the equality:

(6) f((t,p) 0z, (t, p) 0 7) = 1% p% f(2,2), (I,p) € RT x ST,

Assume that f(z,Z) is a strongly polar weighted homogeneous polynomial of
radial degree d, and of polar degree d, respectively and let P = (pi,...,pn) be the
weight vector. Let V be the mixed affine hypersurface

V=7"0)={z€C"|f(z,2) = 0}.
Let ¢ : §2"~1\ K — S! be the Milnor fibration with K = V' N S?"~* and let F be
the fiber. Recall that (z) = f(z,2)/|f(2,Z)|. Thus F is defined by

F=¢Y(1)={ze S '\ K| [(z,2) >0}
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We can equivalently consider the global fibration f : C*—V — C*. Then the Milnor
fiber is identified with the hypersurface f~1(1). The monodromy map h: F — F
(in either case) is defined by

2p17rz'

h(z) = (exp( A

We consider also the wighted projective hypersurface V defined by
V={(21:20::2,) € CP(P)""!| f(z,2) = 0}

where CP(P)™~! is the weighted projective space defined by the equivalence induced
by the above C* action:

2p,mi

)21, o)),

z~W < JreC’,w=roz2.

It is well-known that CP(P)"~! is an orbifold with at most cyclic quotient singu-
larities.

By (6), z € f~'(0) and 2’ ~ 2, then 2 € f~1(0). Thus the hypersurface
V = {[z] € CP""1(P)|f(z) = 0} is well-defined. Consider the quotient map = :
§2n=1 _ CP(P)"! or 7 : C*\{O} — CP(P)"~!. For the brevity’s sake, we denote
the restrictions 7[F : F — CP"~!\ V and #|K : K — V by the same 7. We are
interested in the topology of V and the relation with the Milnor fibration.

3.1. Canonical orientation. It is well known that a complex analytic smooth
variety has a canonical orientation which comes from the complex structure (see
for example p.18, [7]). Let ¥V = f~1(0) be a mixed hypersurface. Take a point
acV. We say that a is a mized singular point of V| if a is a critical point of the
mapping f : C* — C. Otherwise, a is a mired regular point. Note that a point
a € V to be a regular point as a point of a real analytic variety is a necessary
condition but not a sufficient condition for the regularity as a point on a mixed
variety. Recall that a is a mixed singular point if and only if dfa : TaC" — Tt@a)C
is surjective. This is equivalent to the existence of a complex number a € C with
la] = 1 such that

) ST P
df(a,a) = ad f(a,a) i.e., 7z, (a,a) = aeazj (a,a),7=1,...,n

([23]). We assert that
Proposition 37. There is a canonical orientation on the smooth part of a mized

hypersurface.

Proof. Take a regular point a € V. The normal bundle M of V C C" has a
canonical orientation so that dfa : Na — Tt@a,a)C is an orientation preserving
isomorphism. This gives a canonical orientation on V' so that the ordered union of

the oriented frames {vi,...,v2,-2,n1,n2} of TaC" is the orientation of C" if and
only if {vi,...,v2,-2} is an oriented frame of TaV where {n;,n2} is an oriented
frame of normal vectors. O

Consider a mixed homogencous hypersurface V and let V be the corresponding
mixed projective hypersurface.

Proposition 38. Leta c V\ {0}. Then a € V is a mized singular point of V if
and only if m(a) € V' is a mized singular point,
See [24] for the proof.
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3.2. Milnor fiberation and Hopf fiberation. Consider the Hopf fibration = :
§2n=1 _, CP"~1 and its restriction to the Milnor fiber F' = {z € $2"71| f(2,2) >
0}. Put K = f~1(0) N S?"~! be the link. As [ is polar weighted, it is easy to
see that 7 : F — CP"~!\ V is a cyclic covering of order d, and the covering
transformation is generated by the monodromy map

27

h: F— F, ZHexp(d—)-z.
P

Thus we have

Proposition 39. (1) x(F) = dpx(CP*~1\ V).
(2) x(CP*~*\ V) =n—-x(V) and x(V) =n — x(F)/dy.
(3) We have the following ezact sequence.

1 - m (F)=5m (CP* '\ V) - Z/d,Z — 1.
The following special cases are used later.

Corollary 40. (1) Suppose n = 2. Then K < S3 is a link. Put r be the
number of the components. Then V is r points and v and x are related by

x(F)
=2
dp
(2) Suppose n=3. Then V C P? is a curve of genus g and
1429 = x(F).
dp

Remark 41. Let f be a mized polar weighted polynomial of two variables and
let v be the number of link components S3. Let s be the number of irreducible
components of f. Then r > s. For ezample, For example, let f(z1,22,%1,%2) =
—222%) + 222, + t22%32. Then fort =0, kn(f) =1 =s and fort =2, s =1 and
lkn(f) = 3.

Corollary 42. Ifd, = 1, the projection n: F — CP™"1\ V is a diffeomorphism.
The monodromy map h : F — F gives free Z/d,Z action on F. Thus using the
periodic monodromy argument in {15], we get
Proposition 43. The zeta function of h: F — F is given by
¢ty =(1- ¢ )~ x(F)/dp
In particular, if d, =1, h = idr and {(t) = (1 — £)~x(F),

3.3. Degree of mixed projective hypersurfaces. Suppose that f(z,z) € M(g+
2r,q; n) be a strongly polar homogeneous polynomial and let

V = {z € CP"!| f(2,2) = 0}.

We assume that the singular locus TV of V is either empty or codimgrXV > 2. We
have observed that V' \ &V ¢ CP"~! is canonically oriented so that the union of
the oriented frame of TpV, say {vi1,...,van~2)} and the frame of normal bundle
{w1,ws} which is compatible with the local defining complex function g; on the
affine chart U; = {z; # 0} is the oriented frame of CP"~!. (Recall that g; is 2 mixed

function of the variables u; = z;/z;, i # j defined by g;(u,@) = f(z,z)/z;&r/z}'.)
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Thus it has a fundamental class (V| € Ha,_4(V; Z) by Borel-Haefliger [4]. The topo-
logical degree of V' is the integer d so that 1. [V] = d[CP"~2?] where ¢« : V — CP»~!
is the inclusion map and [CP"~?] is the homology class of a canonical hyperplane
Cpn-2.

Theorem 44. [22] The topological degree of V is equal to the polar degree g. Namely
the fundamental class [V] corresponds to g[CP™~2] € Hy(y—_2)(CP™1) by the inclu-
sion mopping t..

3.3.1. Residue formula for a monic mized polynomial. Let g(w,w) = Dab Ca pwD®

be a mixed polynomial. Put d = max{a + b|c,» # 0} and we call d the radial
degree of g. We say that g is a monic mized polynomial of degree d if g has a
unique monomial of radial degree d.

Lemma 45. Assume that g(w,®) is a monic mized polynomial of degree d which
s written as
9(w, W) = co(D)w™" + e (W)W 4+ -+ s
(@) € Clw], rdeggze; <7, j=0,...,9+7
co(w) = cor@" + -+ - + coo, Cor # 0

with d = q+ 2r. Then
1

o . Gauss(g)df = q.

3.3.2. Mized projective curves. In this section, we study basic examples in the pro-
jective surface CP2, Thus we assume that n = 3. We consider projective curves of
degree ¢:

C = {[z1 : 22 : 23] € CP?| f(21, 22, 23) = 0}

where f is a strongly polar homogeneous polynomial with pdeg f = q. We have
seen that the topological degree of C is ¢ by Theorem 44. The genus ¢ of C is not
an invariant of g. Recall that for a differentiable curve C of genus g, embedded in
CP2, with the topological degree g, we have the following Thom’s inequality, which
was conjectured by Thom and proved by for example Kronheimer-Mrowka [13]:

9> (g-1)(g—2)
2
where the right side number is the genus of algebraic curves of degree q, given by the
Pliicker formula. Recall that for a mixed strongly polar homogeneous polynomial,
the genus and the Euler characteristic of the Milnor fiber are related as follows (
Corollary 40):

where
F = {(Z]_,ZQ,Zg) € (Csif(zl,ZQ,Zs,Zl,Eg,Z;;) = 1}.

Now we will see some examples which shows that x(F) is not an invariant of q.
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I. Simplicial polynomials. We consider the following simplicial polar homoge-
neous polynomials of polar degree q.

fsl(z Z) — zg+r 5T+ Z2q+r T4 Zg+7 ST

fs'z(zaz) = z;;+r 1212 + zq+r I—TZS + 23 g
Fia(2,2) = 207 5] 2 + 237 2 2 +z3 iz
Fou(2,2) = 20T 515 4 23T T 0z + 21775
fs5(2,2) = zf‘*"“"‘ + 2325 4 23Tz

Let F;, be the Milnor fiber of fs, and let C,, be the corresponding projective curves
for i = 1,...,5. First, the Euler characteristic of the Milnor fibers and the genera

arc given as follows.

X(FSi)=q3_3q2+3q, g(Cst)zgq—_l_)zgq_dl,l=1,23
x(Foo) = a(@®+q+1), g(Cs)= ‘I(L;_l_)
X(Fsy) = g(g® +3¢+3), 9(Csr) = (_‘l+_"’)2£€1+_1)

In [21], we have shown that C,, and Cj, arc isomorphic to algebraic plane curves
defined by the associated homogeneous polynomials of degree g:

9n(@) =20+ 2] a+ 2]

gs,(2) = 287 Tag + 2823 4 2.
We also expect that Cs, is isotopic to the algebraic curve

Ao+ 28 4237 =0,
as the genus of C;, suggests it (see also [21]).

II. We consider the following join type polar homogeneous polynomial.

hi(z,2) = gj(w, W) + 23772},
9;(w, W) = (I + wit @) (w] ™7 - aw} ™) (@™ - gy ),
0<j<r

(a, 8 € C* are generic.) The the Milnor fiber Fy, of g; is connected. The link
component number of g = 0 is lkn(g) = g+2(r—3). Thus x(Fy,) = ¢(g—2+2(r—j))
by Corollary 40 and g = (0-1)(0—§+2(r'j)).

In particular, taking g = 2, we obtain g = r — j and thus

Corollary 46. For any smooth surface S of genus g, there is an embedding S C CP?
so that the degree of S is 2.

We observe that the case ¢ = 1 gives only the trivial case g = 0 in this family.

3.4. Twisted join type polynomial. In this section, we introduce a new class of
mixed polar weighted polynomials which we use to construct curves with embedded
degree 1. For further detail, see [22]. Let f(z,2) be a polar weighted homogeneous
polynomial of n-variables z = (21,...,2n). Let @ = *(q1,...,qn), P ="*(p1,...,Pn)
be the radial and polar weight respectively and let d, g be the radial and polar
degree respectively. For simplicity, we call that Q' = t(ql /d,...,qn/d) and P’ =
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Yp1/a,...,pn/q) the mormalized radial weights and the normalized polar weights
respectively. Consider the mixed polynomial of (n + 1)-variables:

9(z,7Z,w, @) = f(z,2) + Z,wa®, a>b.

Consider the rational numbers §,41, Pns1 satisfying
q — _
—;' (a+b)Q7H—1=la _p?n"'(a'_b)pn-}-l = 1.

We assume that ¢, < d so that §,,+1, Pr+1 are positive rational numbers. The poly-
nomial g is a polar weighted homogencous polynomial with the normalized radial

and polar weights Q' = ‘(¢1/d,...,qn/d,@n+1) and P’ = “(p1/q,...,Pn/q, Pr+1)
respectively. The radial and polar degree of g are given by lem(d, denom(gn+1))
and lem(q, denom(pp41)) where denom(z) is the denominator of » € Q. We call g a
twisted join of f(z,%) and zZ,w®w®. We say that g is a polar weighted homogeneous
polynomial of twisted join type. A twisted join type polynomial behaves differently

than the simple join type, as we will see below.
We recall that f(z,2) is called to be I-convenient if the restriction of f to each

coordinate hyperplane f; := f|(;,—o} is non-trivial for i = 1,...,n ([23])
Lemma 47. Assume that n > 2 and f is 1-convenient. Then
by m(C)\ F) 2 B x
is an isomorphism where ¢ is the canonical mapping
¢: (C)*\Ff — (C")" x (C\{1})
defined by ¢(z) = (2, f(2,2)) and F} := ) n(cn.

Put Fy, := f73(1) = Ff N {2, =0} c C*"! with f, := flern{za=0y-
Theorem 48. [22] Assume that n > 2 and f is 1-convenient and g(z,Z,w, W) s a
twisted join polynomial as above. Then

(1) the Milnor fiber of g, F, = g~ Y(1), is simply connected.
(2) The Euler characteristic of F, is given by the formula:
x(Fg) = —(a+b—1)x(Ff) + (a = b)x(Fs,).

3.4.1. Construction of a family of mized curves with polar degree g. Now we are
ready to construct a key family of mixed curves with embedding degree q. Recall
the polynomial:

har (W, ) = (o 75 + A4 —azg )5 -7 Y), W= (a1, 22).
hqr.;(W, W) is 1-convenient strongly polar homogeneous polynomial with the radial
degree g + 7 and the polar degree g respectively. The constants a, 3 are generic.

For this, it suffices to assume that |a|, |3] # 0,1 and |a| # |8|. Consider the twisted
join polynomial of 3 variables z;, 23, z3:

sq,T,j(z’ 2) = th’”,j (W, W) + Z2zg+rzé'_lﬁ z= (21,22, 23)-
Let Fy,; = s;i'j(l) C C3 be the Milnor fiber and let Sy, ; C P? be the corre-

sponding mixed projective curve:

SQ-T')j = {[Z] e ]Pz | SqJ‘:j(z’ 2) = 0}'
Note that S, ; is a smooth mixed curve. The following describes the topology of
Forj and Sgr.;.
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Theorem 49. (1) The Euler characteristic of the Milnor fiber Fy . ; is given

by:
X(Fyri) =a(@® —a+1+2(r—7j)).

(2) The genus of S, ; 18 given by:

6(Sars) = L (- 5)

Proof. Let Hyr; = h; ! ;(1). Then by Corollary 40,
x(Hqrj) = —qlg — 2+ 2(r — j))
X(Hg,r,j N {7'2 = O}) =q
and the assertion follows from Theorem 48. O

3.4.2. Mized curves with polar degree 1. We consider the case g = 1,5 = O:

h(w, W) = (21 + 22)(2] — az)(z] - 02)
fr(z,2) = h(w, W)+ Z2231125 7}
Sy = {[z] € P?| f,(z,2) = 0}.

Corollary 50. Let S, be the mized curve as above. Then the embedding degree of
S, is 1 and the genus of Sy is .

Proof. Let F,. = f;71(1) be the Milnor fiber of f,. By Theorem 48, we have x(F;) =
2r + 1. Thus by Corollary 40, the assertion follows immediately. a

Remark 51. h(w, W) can be replaced by (2] — 25 11)(2, — B%}) without changing
the topology.
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