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1. INTRODUCTION
We report on the recent result by the author concerning

the classification of exceptional Dehn surgeries on a com-
ponent of a hyperbolic two-bridge link in the 3-sphere $S^{3}$ .
1.1. Backgrounds. Let us start with viewing backgrounds
on the study of Dehn surgery.

A 3-dimensional manifold, simply called 3-manifold, is
one of the central objects to study in low-dimensional topol-
ogy. Originally, in 1904, Poincar\’e raised the famous Poincar\’e
Conjecture for the characterization of the 3-dimensional
sphere. It had been a guiding principle in the early study
of 3-manifolds. Extending the Poincar\’e Conjecture, the
Geometrization Conjecture was conjectured by Thurston
in [17, Conjecture 1.1]. This gave a relationship between
the 3-manifold theory and complex analysis, hyperbolic ge-
ometry, foliation theory, differential geometry, and so on.
Eventually the Geometrization Conjecture was established
by Perelman in his celebrated preprints in [11, 12, 13].

Now, for example, we have a following classification of 3-
manifolds as a consequence of the geometrization. That is,
every closed orientable 3-manifold is a reducible manifold
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(containing essential 2-sphere), a toroidal manifold (con-
taining essential torus), Seifert fibered space (foliated by
circles), or a hyperbolic manifold (admitting a Riemma-
nian metric of constant sectional curvature $-1$ ).

Beyond the classification of 3-manifolds, there would be
several directions in the future study of 3-manifolds, For
example, we can consider:

$\bullet$ Attack the remaining Open Problems. (e.g., Virtu-
ally Haken Conjecture [6, Problem 3.2], “Heegaard
genus VS rank of $\pi_{1}$

” problem [6, Problem 3.92], etc.)
$\bullet$ Relate geometric and topological invariants (quanti-

ties) (e.g., Volume conjecture [10, Conjecture 5.1])
$\bullet$ Study the Relationships between 3-manifolds.

One of such relationship between 3-manifolds is given by
Dehn surgery defined as follows.

1.2. Dehn surgery. A Dehn surgery on a link $L$ in a 3-
manifold $M$ is an operation to construct a 3-manifold from
$M$ and $L$ as follows. Take the exterior $E(L)$ of $L$ , i.e.,
remove the interior of the tubular neighborhood $N(L)$ of $L$

from $M$ , and then, glue solid tori to $E(L)$ .
This gives an interesting subject to study; for example,

it was shown by [7, 18] that any pair of closed orientable
3-manifolds are related by a Dehn surgery on a link.

1.3. Exceptional surgery. Another motivation to study
Dehn surgery was given by Thurston. He proved the fol-
lowing theorem [16, Theorem 5.8.2], now called the Hy-
perbolic Dehn Surgery Theorem: On each component of
a hyperbolic link, there are only finitely many Dehn surg-
eries yielding non-hyperbolic manifolds. Remark that this
is just a consequence of the original form. In view of this,
we say that a Dehn surgery on a hyperbolic link giving a
non-hyperbolic manifold an exceptional surgery. We here
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remark that a link is called hyperbolic if the complement
$M-L$ admits a complete hyperbolic structure.

In the study of exceptional surgery, one of the most im-
portant problems, related to Knot theory, is the following:

Problem 1. Completely classify the exceptional surgeries
on hyperbolic links in the 3-sphere $S^{3}$

This seems to be considerably challenging, and the fol-
lowing much easier to tackle.

Problem 2. Completely classify the exceptional surgeries
on hyperbolic 2-bridge links in the 3-sphere $S^{3}$

Actually the class of 2-bridge links gives one of the most
well-known and most well-studied family of links in $S^{3}$ .
1.4. 2-bridge link. A link in $S^{3}$ is called a 2-bridge link if
it admits a diagram with exactly two maxima and minima.
See [5] for more details. We will follow the definition and
notations about 2-bridge link from [4, 19]. In the following,
we denote by $L_{p/q}$ the 2-bridge link associated to a rational
number $p/q$ .

We here recall the results about exceptional surgeries on
hyperbolic 2-bridge links. Remark that a 2-bridge link is
hyperbolic unless it is equivalent to $L_{1/n}$ , that is, $($ 2, $n)-$

torus link by [8].
On hyperbolic 2-bridge knots, Brittenham and Wu gave

in [1] a complete classification of exceptional surgeries. For
example, they showed that only 2-bridge knots $K_{[b_{1},b_{2}]}$ ad-
mits exceptional surgeries. Here, by $[a_{1}, a_{2}, \cdots , a_{n}]$ , we
mean a continued fraction expansion following [4].

For 2-bridge links, it follows from the result obtained by
Wu in [19]: If a 3-manifold obtained by a Dehn surgery on
a component of a 2-bridge link $L$ contains an essential disk,
annulus, or 2-sphere, then $L$ is equivalent to $L_{[b_{1},b_{2}]}$ . Recall
that an embedded disk, annulus, 2-sphere in a 3-manifold
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is called essential if it is incompressible and not boundary-
parallel. We remark that Dehn surgery on a hyperbolic
link yielding 3-manifolds with essential disk, annulus, or 2-
sphere, is a typical example of exceptional surgery. See the
next subsection for details.

Further, in [4], Goda, Hayashi and Song obtained a com-
plete classification (resp. a necessary condition) of 2-bridge
links on a component of which a Dehn surgery yields a non-
trivial, non-core torus knot exterior or a cable knot exterior
(resp. a prime satellite knot exterior) in a lens space.

Based on these results, we set out target the following:

Problem 3. Completely classify the exceptional surgeries
on a component of hyperbolic $2$-bridge links in $S^{3}$

2. RESULT

To state our result, we fix our notation as follows.
For a knot $K$ in the 3-sphere $S^{3}$ , by using a standard

meridian-longitude system, we have a one-to-one correspon-
dence between the set of slopes on the peripheral torus of $K$

and the set of rational numbers, or equivalently irreducible
fractions, with 1/0. See [14] for example.

Let $L$ be a 2-bridge link. We denote $L(r)$ the manifold
obtained by Dehn surgery on a component of $L$ along the
slope $r$ , i.e., the $r$ corresponds to the slope determined by
the meridian of the attached solid torus.

Next we recall the classification of exceptional surgery
on a component of a hyperbolic link. A Dehn surgery on
one component of a 2-component hyperbolic link is excep-
tional, i.e., it yields a non-hyperbolic 3-manifold with torus
boundary, if and only if the obtained manifold contains an
essential disk, annulus, 2-sphere, or torus. See [16] as the
original reference.

Now we give our classification theorem of exceptional
surgeries on components of 2-bridge links.
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Theorem. Let $L$ be a hyperbolic 2-bridge link in $S^{3}$ and
$L(r)$ denote the 3-manifold obtained by Dehn surgery on a
component of $L$ along the slope $r$ . Then the following hold.

(1) $L(r)$ contains neither essential disk nor 2-sphere.
(2) $L(r)$ contains an essential torus if and only if $L$ is

equivalent to $L_{[2w,v,2u]}$ and $r=-w-u$ with
(a) $w=1,$ $u=-1,$ $|v|\geq 2$ ,
(b) $w\geq 2,$ $|u|\geq 2,$ $|v|=1$ .
(c) $w\geq 2,$ $|u|\geq 2,$ $|v|\geq 2$ .
In all the cases, $L(r)$ is never Seifert fibered, and $L(r)$

gives a graph manifold if and only if the pammeters
$u,$ $v,$ $w$ satisfies the first and the second conditions.

(3) $L(r)$ contains an essential annulus, but contains no
essential tori, equivalently $L(r)$ is a small Seifert fibered
space if and only if $L$ is equivalent to
(a) $L_{[3,2u+1]}$ and $r=u$ ,
(b) $L_{[2w+1,3]}$ and $r=-w-1_{f}$
(c) $L_{[3,-3]}$ and $r=-1_{f}$ or,
(d) $L_{[2w+1}$ ,2$u+1]$ and $r=-w+u$
with $w\geq 1,$ $u\neq 0,$ $-1$ .

3. SURFACES IN 2-BRIDGE LINK EXTERIOR

Our proof is heavily based on the results on [4] and [2].
In [2], Floyd and Hatcher studied meridionally incom-

pressible essential surfaces in 2-bridge link exteriors, and
gave a complete description of such surfaces. See [2] and
[4] for details. In the following, we assume that the readers
are familiar to a certain extent.

Here a surface $F$ in $E(L)$ is called meridionally incom-
pressible if, for any disk $D\subset S^{3}$ with $D\cap F=\partial D$ and
$D$ meeting $L$ transversely in one point in the interior of $D$ ,
there is a disk $D’\subset F\cup L$ with $\partial D’=\partial D,$ $D$‘ also meeting
$L$ transversely in one interior point.
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To prove our theorem, a key investigation is to study es-
sential surfaces embedded in 2-bridge link exteriors of genus
at most one. Most parts of such studies have been achieved
in [4]. Our advantage is the following lemma obtained by
using the machinery of [2].

Lemma 1. If a hyperbolic 2-bridge link exterior contains a
meridionally incompressible essential planer surface $F$ with
at most two meridional boundaries on a component of the
link and non-empty boundary on the other component if
and only if the link is equivalent to $L_{[2,n,-2]}$ with $|n|\geq 2$

and $F$ is an essential two punctured disk with two merid-
ional punctures on a component on the link and a single
longitudinal boundary on the other component.

4. OUTLINE OF PROOF

Let $L=K_{1}\cup K_{2}$ be a hyperbolic 2-bridge link in $S^{3}$ and
$L(r)$ denote the 3-manifold obtained by Dehn surgery on
$K_{1}\subset L$ along the slope $r$ . Note that, since the component
$K_{2}$ remains unfilled, $L_{(}r$) has a torus boundary component.
Also note that it is known by [8] that $L$ is hyperbolic if and
only if $L$ is not equivalent to $L_{1/n}$ for some integer $n$ .

Now suppose that $L(r)$ is non-hyperbolic. Then, as re-
marked before, $L(r)$ contains an essential disk, sphere, an-
nulus or torus.

In the following, we give our proof of the theorem divided
into four claims.

Claim 1. There are no essential sphere in $L(r)$ .

Proof. Suppose for a contrary that there exists an essential
sphere in $L(r)$ . Then, by the standard argument, the link
exterior $E(L)$ contains a connected, orientable, essential
(i.e., incompressible and $\partial$-incompressible), properly em-
bedded planer surface $F$ . The surface $F$ has non-empty
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boundary components on $\partial N(K_{1})$ with boundary slope $r$

and no boundary components on $\partial N(K_{2})$ .
First suppose that $F$ is meridionally incompressible. Then,

by [2, Theorem 3.1 $(a)$ ], the surface $F$ is carried by a
branched surface $\Sigma_{\gamma}$ for some minimal edge-path $\gamma$ in the
diagram $D_{t}$ in [2]. See also [4]. In this case, we can apply
the argument given in [4, Lemma 12.1]. Then we see that
the minimal edge-path $\gamma$ is in $D_{\infty}$ and is composed of only
two edges with label $B$ with endpoints 1/0 and $p/q$

) where
$L_{p/q}$ is equivalent to $L$ . However, as seen in [2, Figure 1.1]
or [4, Figure 2], it implies that $L_{p/q}$ is equivalent to $L_{\pm 1/m}$

for some $m$ , contradicting $L$ is hyperbolic.
Next suppose that $F$ is meridionally compressible. Per-

form meridional compressions as possible. It can be checked
by the standard argument that meridional compressions
preserve essentiality of surfaces. Then, since any boundary
curve of a meridionally compressing disk is separating on $F$ ,
there must exist some component which is meridionally in-
compressible essential planer surface with single meridional
boundary on $\partial N(K_{2})$ and with non-empty boundaries on
$\partial N(K_{1})$ . However, by Lemma 1, such a surface must have
exactly two meridional boundaries on $\partial N(K_{2})$ . A contra-
diction occurs. $\square$

Claim 2. There are no essential disk in $L(r)$ .

Proof. Suppose for a contrary that there exists an essential
disk in $L(r)$ . It follows that there is a compressible disk
for $\partial L(r)$ in $L(r)$ . By compression) $L(r)$ must be a solid
torus. Otherwise we would have an essential sphere in $L(r)$

contradicting Claim 1.
Then, considering the exterior of $K_{2}$ , we can regard $K_{1}$

as a knot in a handlebody. Since the surgery on $K_{1}$ yields a
solid torus again, by the result given in [3], $K_{1}$ is either a $0$

or l-bridge braid in the solid torus $E(K_{2})$ . Then, together
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with the result of [9, Proposition 3.2], $K_{1}$ must be knotted
in $S^{3}$ . This contradicts that $L$ is a 2-bridge link. $\square$

Claim 3. There exists an essential torus in $L(r)$ if and
only if $L$ is equivalent to $L_{[2w,v,2u]}$ and $r=-w-u$ with

(1) $w=1,$ $u=-1,$ $|v|\geq 2$ ,
(2) $w\geq 2,$ $|u|\geq 2,$ $|v|=1$ .
(3) $w\geq 2,$ $|u|\geq 2,$ $|v|\geq 2$ .

In all the cases, $L(r)$ is never Seifert fibered, and $L(r)$ gives
a graph manifold if and only if the parameters $u,$ $v,$ $w$ sat-
isfies the first and the second conditions.

Proof. Suppose that there exists an essential torus in $L(r)$ .
As seen in the proof of Claim 1, the link exterior $E(L)$

contains a connected, orientable, essential properly embed-
ded surface $F$ of genus one with non-empty boundaries on
$\partial N(K_{1})$ with boundary slope $r$ and no boundary compo-
nents on $\partial N(K_{2})$ .

First suppose that $F$ is meridionally incompressible. Then,
by [2, Theorem 3.1 $(a)$ ], the surface $F$ is carried by a
branched surface $\Sigma_{\gamma}$ for some minimal edge-path $\gamma$ in the
diagram $D_{t}$ in [2]. See also [4]. Again we can apply the
argument given in [4, Lemma 12.1]. Then, in this case, $\gamma$

has length 4 in $D_{\infty}$ with endpoints 1/0 and $p/q$ , where
$L_{p/q}$ is equivalent to $L$ . As claimed in the proof of [4,
Theorem 1.5], $L_{p/q}$ must be equivalent to $L_{[2w,v,2u]}$ with
$w\geq 2,$ $|v|\geq 1,$ $|u|\geq 2$ .

It remains to show that $L_{[2w,v,2u]}$ actually contains essen-
tial torus for $w\geq 2,$ $|v|\geq 1,$ $|u|\geq 2$ . By imitating the
arguments used in the proofs of [19, Theorem 5.1] and [4,
Theorem 11.1], it can be checked directly from the illustra-
tion that the manifold obtained by the surgery is homeo-
morphic to the exterior of a satellite knot in a lens space.
We here omit the details. Moreover, in the case where
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$|v|\neq 1$ (resp. $|v|=$ 1), we can see that the compan-
ion knot is a torus knot and the pattern knot is a hy-
perbolic knot (resp. a cable knot). See also [4, Theo-
rem 11.1] in the case where $|v|=1$ . Note that we have
$L_{[2w,\pm 1,2u]}(-w-u)\equiv L_{[2w’+1,2u’+1]}(-w’+u’\pm 1)$ for some
$w’$ and $u’$ .

Next suppose that $F$ is meridionally compressible. As in
the proof of Claim 1, perform meridional compressions as
possible. It can be checked by the standard argument that
meridional compressions preserve essentiality of surfaces.
If some boundary curve of a meridionally compressing disk
on $F$ is separating, then the same contradiction could oc-
cur as in Claim 1, and so, there must be single meridional
compression for $F$ along the non-separating curve on $F$ .
Then, by Lemma 1, the link is equivalent to $L_{[2,n,-2]}$ with
$|n|\geq 2$ and $F$ is an essential two punctured disk with two
meridional punctures on $\partial N(K_{2})$ and a single longitudinal
boundary on $\partial N(K_{1})$ . Actually, by tubing operation, we
can find a once-punctured torus or klein bottle embedded
in $E(L)$ coming from a spanning surface for $K_{1}$ .

Conversely, we can see that 0-surgery on $K_{1}\subset L_{[2,n,-2]}$

with $|n|\geq 2$ gives the exterior of a knot in $S^{2}\cross S^{1}$ This
knot intersects the level horizontal sphere in $S^{2}\cross S^{1}$ trans-
versely twice. This implies that the knot exterior contains
a meridional incompressible annulus. By tubing operation,
we have a non-separating incompressible torus or klein bot-
tle in the knot exterior.

It can be checked by the Montesinos trick technique for
the surgery on $K_{1}\subseteq L_{[2,n,-2]}$ that the manifold so obtained
is a graph manifold. The verification of the details are
remained to the reader. $\square$

Claim 4. There exists an essential annulus, but no essen-
tial torus in $L(r)$ if and only if $L(r)$ is a small Seifert fibered
space and $L$ is equivalent to
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(1) $L_{[3,2u+1]}$ and $r=u$ ,
(2) $L_{[2w+1,3]}$ and $r=-w-1$ ,
(3) $L_{[3,-3]}$ and $r=-1_{f}$ or,
(4) $L_{[2w+1}$ ,2$u+1]$ and $r=-w+u$

with $w\geq 1,$ $u\neq 0,$ $-1$ .

Proof. Suppose that there exists an essential annulus but
no essential torus in $L(r)$ . Then it is known that $L(r)$ must
be a small Seifert fibered space.

Let $r_{2}$ be the slope on $\partial N(K_{2})$ determined by the bound-
ary of the essential annulus. Then it is shown that $r_{2}\neq 1/0$

as follows. Suppose for a contrary that $r_{2}=1/0$ , i.e., $r_{2}$

is meridional. Now we are assuming that $L(r)$ is a Seifert
fibered space, and the essential annulus coming from the
surface $F$ must be vertical. This implies that the merid-
ian of $K_{2}$ is a regular fiber of the Seifert fibration of $L(r)$ .
Then, as shown in [15, Proof of Corollary 2.6], $K_{2}$ must be
a core knot in the lens space. However it contradicts that
$L(r)$ is not a solid torus as claimed before.

Thus we see that $r_{2}\neq 1/0$ . Then, as also shown in
[15, Proof of Corollary 2.6], $K_{2}$ gives a non-trivial non-core
torus knot in a lens space. In this case, if we perform suit-
able surgery on $K_{2}$ , we have a reducible manifold, equiva-
lently, a suitable surgery on the 2-bridge link $L$ yields a re-
ducible manifold. Then, as a consequence of [19, Theorem
5.1], $L$ must be equivalent to a 2-bridge link corresponding
to a continued irreducible fraction of length two.

Now we can apply [4, Theorem 11.1], which establishes
a complete classification of such 2-bridge links and surgery
slopes on which surgeries yield non-trivial non-core torus
knots in lens spaces. This gives us the desired conclusions.
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