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ABSTRACT. Let $G$ be a connected reductive group over $\mathbb{Q}$ , and $\Gamma$ an arithmetic subgroup of
$G(\mathbb{Q})$ . In this note we survey the trace formula method of Arthur for computing (sums of)
multiplicities of discrete series representations in the spectrum of $L^{2}(\Gamma\backslash G(\mathbb{R}))$ . His formula
expresses these multiplicities as a combination of p-adic orbital integrals, and asymptotic
values of discrete series characters. We write down the most basic example of $GL_{2}$ in some
detail. However we omit many details for general $G$ , giving references instead. We also state
a conjecture which should refine Arthur $s$ formula to give the multiplicities directly. We
conclude with an amusing application of the conjecture, together with known multiplicity
formulas, towards computing p-adic orbital integrals and associated distributions.

1. NOTATION

For $G$ an algebraic group defined over a field $F$ and $\gamma\in G(F)$ , write $G_{\gamma}$ for the centralizer
in $G$ of $\gamma$ . If $T$ is a torus in a reductive group $G$ , write $T_{r}$ for the set of regular elements of
$T$ . Write A for the adeles of $\mathbb{Q}$ , write $A_{f}$ for the finite adeles of $\mathbb{Q}$ , and $\hat{Z}$ for the integers in
$A_{f}$ .

2. ASYMPTOTICS OF DISCRETE SERIES CHARACTERS
2.1. Case of $GL_{2}$ . Let $G=GL_{2}$ . Write $A$ for the subgroup of diagonal matrices in $G$ . We
identify the character group $X^{*}(A)$ with $Z^{2}$ so that $(m, n)\in Z^{2}$ corresponds to the character

$(\begin{array}{ll}a 00 b\end{array})\mapsto a^{m}b^{n}$ .

We view the root $\alpha=(1, -1)$ as positive. Given $(m, n)\in X^{*}(A)$ , with $m\geq n$ , there is
a unique irreducible finite-dimensional algebraic representation $E$ of $G(\mathbb{C})$ whose highest
weight for $A$ is $(m, n)$ . In fact,

(2.1) $E=$ Sym$m-nV\otimes\det^{n}$ ,

where $V=\mathbb{C}^{2}$ is the standard representation of $G(\mathbb{C})$ . Note that $E$ has dimension $m-n+1$ .
There is a unique discrete series representation $\pi=\pi_{E}$ with the same central character and

infinitesimal character as $E$ . Let us specify $\pi$ by its Harish-Chandra character $\Theta_{\pi}$ , viewed
as a function defined on regular semisimple elements $\gamma\in G(\mathbb{R})$ . Then $\Theta_{\pi}$ is given by the
following formulas:

If $\gamma$ has complex eigenvalues $z\neq\overline{z}$ , then

(2.2) $\Theta_{\pi}(\gamma)=\frac{z^{n}\overline{z}^{m+1}-z^{m+1}\overline{z}^{n}}{z-\overline{z}}$.
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If $\gamma$ has real eigenvalues $\lambda_{1}\neq\lambda_{2}$ , with $|\lambda_{1}|\geq|\lambda_{2}|$ , then

(2.3) $\Theta_{\pi}(\gamma)=\{\begin{array}{l}\frac{2\lambda_{1}^{n}\lambda_{2}^{m+1}}{|\lambda_{1}-\lambda_{2}|}, if \lambda_{1}\lambda_{2}>00, if \lambda_{1}\lambda_{2}<0\end{array}$

Let $\gamma$ be regular semisimple with nonreal eigenvalues. Write $T$ for the centralizer in $G$ of
$\gamma$ , and $T_{r}$ for its reguIar eIements. The restriction of $\Theta_{\pi}$ to $T_{r}(\mathbb{R})$ extends continuously to alI
of $T(\mathbb{R})$ . Moreover, it extends to the union of all conjugates of $T(\mathbb{R})$ . Write $\Phi_{G}(\gamma, \Theta_{\pi})$ for
this extension. For $a\in \mathbb{R}^{\cross}$ , we have
(2.4) $\Phi_{G}(aI, \Theta_{\pi})=-a^{m+n}(m-n+1)$ .

We record $some$ more special values of $\Phi_{G}(\gamma, \Theta_{\pi})$ for later use. Put

$\gamma_{4}=(\begin{array}{ll}0 -11 0\end{array})$

and
$\gamma_{3}=(\begin{array}{l}-1-110\end{array})$ .

Let us define two numerical functions

$t_{4}(j)=\{\begin{array}{ll}0 if j is even1 if j\equiv lmod4-1 if j\equiv 3mod 4\end{array}$

and

$t_{3}(j)=\{\begin{array}{ll}0 if j\equiv Omod31 if j\equiv lmod3-1 if j\equiv 2mod 3.\end{array}$

Then one computes that $\Phi_{G}(\gamma_{4}, \Theta_{\pi})=-t_{4}(m-n+1)$ and $\Phi_{G}(\gamma_{3}, \Theta_{\pi})=-t_{3}(m-n+1)$ .
On the other hand, we see from (2.3) that the restriction of $\Theta_{\pi}$ to $A_{r}(\mathbb{R})$ diverges as

$\gamma$ approaches the scalar matrices in $A(\mathbb{R})$ . Nonetheless we can understand its asymptotic
behavior in this direction. For $\gamma$ as in (2.3), put

$D^{G}(\gamma)=\det$ ($Ad(\gamma)-1$ ; Lie(G)/Lie(A))
(2.5)

$=- \frac{1}{\lambda_{1}\lambda_{2}}(\lambda_{1}-\lambda_{2})^{2}$ .

Here we have written Lie $(G)$ for the Lie algebra of $G$ , and similarly for $A$ . For $\gamma\in A_{r}(\mathbb{R})$

define
(2.6) $\Phi_{A}(\gamma, \Theta_{\pi})=|D^{G}(\gamma)|^{\frac{1}{2}}\Theta_{\pi}(\gamma)$ .

Explicitly,

(2.7) $\Phi_{A}((\begin{array}{ll}\lambda_{1} 00 \lambda_{2}\end{array}),$ $\Theta_{\pi})=\{\begin{array}{l}\frac{2\lambda_{1}^{n}\lambda_{2}^{m+1}}{\sqrt{\lambda_{1}\lambda_{2}}}, if \lambda_{1}\lambda_{2}>00, if \lambda_{1}\lambda_{2}<0\end{array}$
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Note that $\Phi_{A}(\gamma, \Theta_{\pi})$ extends continuously to $A(\mathbb{R})$ . We also write $\Phi_{A}(\gamma, \Theta_{\pi})$ for this exten-
sion. For $a\in \mathbb{R}^{\cross}$ , we have
(2.8) $\Phi_{A}(aI, \Theta_{\pi})=2$ sgn $(a)\cdot a^{m+n}$ .
2.2. General Case. The functions $\Phi_{A}$ and $\Phi_{G}$ of the previous section are instances of a
more general theory due to Arthur and Shelstad. Let $G$ be a connected reductive group over
$\mathbb{R}$ . Write $Z$ for the center of $G$ . Let $K_{\mathbb{R}}$ be a maximal compact subgroup of $G(\mathbb{R})$ , and put
$X=G(\mathbb{R})/K_{\mathbb{R}}Z(\mathbb{R})$ . Write $q(G)$ for half of the dimension of $X$ .
Definition 1. We say that a torus $T\subset G$ is elliptic if $T(\mathbb{R})/Z(\mathbb{R})$ is compact. An element
$\gamma\in G(\mathbb{R})$ is elliptic in $G(\mathbb{R})$ if it is contained in an elliptic torus. We call $G$ cuspidal if it
has a maximal torus which is elliptic.

Let $G$ be cuspidal, and let $E$ be an irreducible finite-dimensional (algebraic) representation
of $G(\mathbb{C})$ . There corresponds to $E$ an “L-packet“ $\Pi=\Pi_{E}$ of representations, comprised of
discrete series representations with the same central character and infinitesimal character as
$E$ . For $\gamma$ a regular semisimple element in $G(\mathbb{R})$ , put

(2.9)
$\Theta_{\Pi}(\gamma)=\sum_{\pi\in\Gamma l}\Theta_{\pi}(\gamma)$

.

Let $T$ be a maximal torus of $G$ . Write $M$ for the centralizer of the maximal split subtorus
of $T$ . Then $M$ is is a Levi subgroup of $G$ , and $T$ is an elliptic maximal torus in $M$ . For
$\gamma\in T(\mathbb{R})$ , put

(2.10) $D_{M}^{G}(\gamma)=\det$ ($Ad(\gamma)-1$ ; Lie(G)/Lie(M)).
It is an important fact (see [1], [2]) that the function

$\gamma\mapsto|D_{M}^{G}(\gamma)|^{\frac{1}{2}}\Theta_{\Pi}(\gamma)$

on $T_{r}(\mathbb{R})$ extends continuously to $T(\mathbb{R})$ . We denote the extension by $\Phi_{M}(\gamma, \Theta_{\Pi})$ . It is called
Arthur ‘ $s\Phi$-function.

For example, it is well-known that $\Phi_{G}(\gamma, \Theta_{\Pi})=(-1)^{q(G)}$ tr $(\gamma;E)$ . Many other cases are
computed in [13], for instance if $A$ is a split torus of G. then $\Phi_{A}(1, \Theta_{\Pi})=|W|$ .

The Harish-Chandra characters may also be viewed as distributions defined on suitable
functions $f$ on $G(\mathbb{R})$ . One has an operator

(2.11) $\pi(f)=\int f(g)\pi(g)dg$

on the space of $\pi$ with a trace tr $\pi(f)$ . For an L-packet $\Pi$ , we define
(2.12) tr $\Pi(f)=\sum_{\pi\in\Pi}$ tr $\pi(f)$ .

For later use, let us write

(2.13)
$S \Phi_{M}’(f)=\sum_{\Pi}\Phi_{M}(\gamma^{-1}, \Theta_{\Pi})$ tr $\Pi(f)$ ,

the sum being over all discrete series L-packets of $G(\mathbb{R})$ . (In this paper we are glossing over
various standard normalizing factors; we use the prime to distinguish this distribution from
the proper one in [6] and [14]. $)$
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3. ORBITAL INTEGRALS, CONSTANT TERMS, AND ENDOSCOPY

Let $G$ be a connected reductive group over $\mathbb{Q}$ . For simplicity, we assume that $G$ is split
and defined over Z. Put $K_{0}=G(\hat{Z})$ . Pick a Borel subgroup $B=AN$ of $G$ , with $A$ a split
torus; then $G(A_{f})=B(A_{f})K_{0}$ .

One picks Haar measures $dg_{f}$ on $G(A_{f})$ and $dg_{f_{\gamma}}$ on centralizers $G_{\gamma}(A_{f})$ of semisimple
elements of $G(A_{f})$ . These and other Haar measures must be picked in a consistent fashion
(using Tamagawa measures). This is explained carefully in [6] and [14], but for this survey
we omit mention of these compatibility requirements. They will be specified for the example
of $GL_{2}$ below.

For $h\in C_{c}^{\infty}(G(A_{f}))$ , and $\gamma\in G(A_{f})$ , the orbital integral $O_{\gamma}^{G}(h)=O_{\gamma}(h)$ is defined by

$O_{\gamma}(h)= \int_{G_{\gamma}(A_{f})\backslash G(A_{f})}h(g^{-1}\gamma g)\frac{dg_{f}}{dg_{f_{\gamma}}}$ .

Given an element $\gamma\in G(A_{f})$ , write $SO_{\gamma}(h)$ for the stable orbital integral given by

(3.1)
$SO_{\gamma}(h)= \sum_{\gamma}O_{\gamma}(h)$

.

Here the sum is taken over conjugacy classes of elements $\gamma’\in G(A_{f})$ with $\gamma_{v}’$ stably conjugate
to $\gamma_{v}$ for each place $v$ . (The definition of “stably conjugate” may be found in [7]. When the
derived group of $G$ is simply connected, two elements of $G(\mathbb{Q}_{v})$ are stably conjugate if and
only if they are conjugate in $G(\overline{\mathbb{Q}}_{v}).)$

Definition 2. Let $M$ be a Levi component of a pambolic subgroup $P$ of $G$ and $h\in C_{c}^{\infty}(G(A_{f}))$ .
Then the “M-constant term” of $h$ is the function $h_{M}\in C_{c}^{\infty}(M(A_{f}))$ defined via

$h_{M}(m)= \delta_{P}^{-\frac{1}{2}}(m)\int_{N(A_{f})}\int_{K_{0}}h(k^{-1}nmk)dkdn$.

Here $\delta_{P}$ is the modulus hnction on $P(A_{f})$ .
The constant term provides a “matching fUnction” on $M(A_{f})$ in the sense that, if $\gamma\in$

$M(A_{f})$ is regular semisimple, then

(3.2) $|D_{M}^{G}(\gamma)|^{\frac{1}{2}}O_{\gamma}^{G}(h)=O_{\gamma}^{M}(h_{M})$ .
Given an endoscopic group $H$ for $G$ , alocal field $F$ , and a nice function $\varphi$ on $G(F)$ , one has

a “matching fUnction” $\varphi^{H}$ on $H(F)$ , and “transfer factors“ $\triangle(\gamma_{H}, \gamma)$ for regular semisimple
$\gamma\in G(F)$ and $\gamma_{H}\in H(F)$ satisfying

$SO_{\gamma_{H}}’( \varphi^{H})=\sum_{\gamma}\triangle(\gamma_{H}, \gamma)O_{\gamma}(\varphi)$
.

See, for instance ([11], [8], [10]). This is a large topic for which we have no space, but the
basic idea is that one uses these identities to express an unstable distribution on $G(F)$ in
terms of stable distributions on the groups $H(F)$ . The function $\varphi^{H}$ is not unique, but the
difference of any two choices must be in the kernel of any stable distribution. For a function
$f= \prod_{v}f_{v}$ on $G(A)$ , we write $f^{H}$ for a product $\prod_{v}f_{v}^{H}$ of matching functions $f_{v}^{H}$ for $f_{v}$ .
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Given a measure $dg_{f}$ on $G(A_{f})$ , and a compact open subgroup $K$ of $G(A_{f})$ , we define
the normalized characteristic function $e_{K}$ of $K$ to be the product of $vo1_{dg_{f}}(K)^{-1}$ with the
characteristic function of $K$ . Let $M$ be a Levi subgroup of $G$ , and put $K_{M}=M(\hat{Z})$ . We
have $(e_{K_{0}})_{M}=e_{K_{M}}$ . By the Fundamental Lemma [10], we obtain $(e_{K_{0}})^{H}=e_{K_{H}}$ , where
$K_{H}=H(\hat{Z})$ (assuming $H$ is split and defined over Z).

4. CLASSICAL MODULAR FORMS: THE CASE OF $GL_{2}$

4.1. Dimensions of Cusp Forms. Let $G=GL_{2}$ , and $\Gamma\subset G(\mathbb{R})$ be an arithmetic subgroup.
Write $S_{k}(\Gamma)$ for the usual space of cusp forms of weight $k$ and level $\Gamma$ on the upper half plane.
In this section we express $\dim_{\mathbb{C}}S_{k}(\Gamma)$ for $k>2$ in terms of orbital integrals and Arthur’s
$\Phi$-function.

In the case where $\Gamma=\Gamma_{0}=GL_{2}(Z)$ , it is well-known that $\dim_{\mathbb{C}}S_{k}(\Gamma)$ is $0$ if $k=2$ , and
given by the formula

(4.1) $\dim_{\mathbb{C}}S_{k}(\Gamma)=\{\begin{array}{ll}0 if k is odd[\frac{k}{12}] if k is even and k\not\equiv 2 mod12[\frac{k}{12}]-1 if k is even and k\equiv 2 mod12.\end{array}$

when $k\neq 2$ . (Here $[x]$ denotes the greatest integer less than or equal to $x.$ )

4.2. Multiplicity in terms of orbital integrals. Returning to the case of general $\Gamma$ , let
$K\subset G(A_{f})$ be an open compact subgroup with that $K\cap G(\mathbb{Q})=\Gamma$ . Let $k\geq 2$ and take
$E=$ Sym$k-2V$ for our representation of $GL_{2}(\mathbb{C})$ . We now define constants $a(\gamma, M)$ for each
pair $(\gamma, M)i$ where $M=A$ or $G$ and

$\gamma\in M(\mathbb{Q})_{1}is$
elliptic in $M(\mathbb{R})$ . For all $\gamma\in A$ put

$a(\gamma, A)=\overline{8}$ . If $\gamma$ is central in $G$ put $a(\gamma, G)=\overline{24}$ . Finally, suppose that $\gamma\in G(\mathbb{Q})$ has
eigenvalues which generate an imaginary quadratic extension $F$ of $\mathbb{Q}$ . In this case, put

$a(\gamma, G)=|c1(F)||\mathcal{O}_{F}^{\cross}|^{-1}$ ,

where cl $(F)$ is the class group of $F$ and $\mathcal{O}_{F}^{\cross}$ is the group of units in the integers of $F$ . For a
Levi subgroup $M$ of $G$ and a function $h\in C_{c}^{\infty}(M(A_{f}))$ we set

(4.2)
$T_{g}(h, M)= \sum_{\gamma}a(\gamma, M)O_{\gamma}^{M}(h)\Phi_{M}(\gamma^{-1}, \Theta^{E})$

.

The sum runs over conjugacy classes of elements $\gamma\in G(\mathbb{Q})$ which are elliptic in $G(\mathbb{R})$ . The
orbital integrals $O_{\gamma}^{G}$ are defined with the measure on $G(A_{f})$ giving $K_{0}$ mass one, and with
the measure on $G_{\gamma}(A_{f})$ giving $K_{0}\cap G_{\gamma}(A_{f})$ mass one. We let the trivial orbital integrals $O_{\gamma}^{A}$

be simply given by $O_{\gamma}^{A}(h_{A})=h_{A}(\gamma)$ .
Finally, we put

(4.3) $T_{g}(h)=T_{g}(h, G)+T_{g}(h_{A}, A)$ .
The following can be extracted from Arthur [1]. We will discuss his more general formula

in the next section.

Proposition 1. Let $k\geq 2$ . Write $e_{K}$ for the chamcteristic function of K. Then
(4.4) $T_{g}(e_{K})=\dim_{\mathbb{C}}S_{k}(\Gamma)$ .
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For $\gamma\in M(\mathbb{Q})$ as above, put
$T_{g}(h, \gamma, M)=a(\gamma, M)O_{\gamma}^{M}(h)\Phi_{M}(\gamma^{-1}, \Theta_{\pi})$ ,

so that
$T_{g}(h)= \sum_{\gamma,M}T_{g}(h_{M}.\gamma, M)$

.

As a warm-up, let’s treat the case of odd $k\geq 3$ .
Corollary 1. $S_{k}(\Gamma)=\{0\}$ when $k$ is odd $and-1\in\Gamma$ .

Proof. Consider a pair $(\gamma, M)$ with $\gamma$ being R-elliptic in $M(\mathbb{Q})$ .
$Since-1\in K$ we have $h_{M}(-m)=h_{M}(m)$ for all $m\in M(A_{f})$ , and so

$O_{-\gamma}^{M}(h_{M})=O_{\gamma}^{M}(h_{M})$ .
Moreover note that $a(-\gamma, IlI)=a(\gamma, M)$ .

But we also have
$\Phi_{M}(-\gamma, \Theta_{\pi})=(-1)^{k}\Phi_{M}(\gamma, \Theta_{\pi})$ .

It follows that $T_{g}(h, -\gamma, M)=(-1)^{k}T_{g}(h, \gamma, \Lambda l)$ , whence the result. $\square$

4.3. Verification. Our next goal is to recover the dimension formula (4.1) in the case of
$K=K_{0}$ . In view of the corollary, we assume $k$ is even. Let $n=k-1=\dim_{\mathbb{C}}E$ . We put
$h=e_{K_{0}}$ .

The central elements of $K_{0}\cap G(\mathbb{Q})$ are merely $\pm 1$ , and so we obtain

(4.5) $T_{g}(h, \pm 1, G)=\frac{n}{24}$ .

Let $\gamma\in G$ be $\mathbb{R}$-elliptic regular semisimple. The condition that $\gamma\in G(\mathbb{Q})\cap K_{0}$ implies
that $E$ is either $\mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$ .

There is a unique $G(\mathbb{Q})$-conjugacy class in $G(Z)$ whose eigenvalues generate $\mathbb{Q}(\sqrt{-1})$ , given
by

$\gamma_{4}=(\begin{array}{ll}0 -1l 0\end{array})$ .

We have $a( \gamma_{4}, G)=\frac{1}{4}$ . The orbital integral $o_{\gamma_{4}}(h)=1$ ; we refer to [5] for the computation
of the orbital integrals which we need.

Thus we obtain
$T_{g}(h, \gamma_{4}, G)=-\frac{1}{4}t_{4}(n)$ .

There are two $G(\mathbb{Q})$-conjugacy classes in $G(Z)$ whose eigenvalues generate $\mathbb{Q}(\sqrt{-3})$ , given
by

$\gamma_{3}=(\begin{array}{l}-1-101\end{array})$ ,

and its negative $-\gamma_{3}$ .
Similarly, $a( \gamma_{4}, G)=\frac{1}{6}$ and $o_{\gamma_{3}}(h)=1$ , and so

$T_{g}(h, \pm\gamma_{3}, G)=-\frac{1}{6}t_{3}(n)$ .
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Since $K_{A}\cap GL_{2}(\mathbb{Q})=\{\pm 1\}$ , we have

$T_{g}(h_{A}, \pm 1, A)=-\frac{1}{4}$ .

Thus
$T_{g}(h)= \frac{n}{12}-\frac{1}{4}t_{4}(n)-\frac{1}{3}t_{3}(n)-\frac{1}{2}$ .

It is elementary to check that this is equal to (4.1). Note that for $n=1$ one has $T_{g}(h)=-1$ .
This is the case for which $E$ is the trivial representation; its highest weight is certainly not
regular.

5. MORE GENERAL MULTIPLICITY FORMULAS
The problem of computing dimensions of spaces of cusp forms (resp., traces of Hecke

operators on them) is part of computing the discrete spectrum of $X=\Gamma\backslash G(\mathbb{R})$ . To be more
specific, write $R$ for the representation defined by the action of $G(\mathbb{R})$ on $L^{2}(X)$ . Then $R$

decomposes as
$R=R_{disc}\oplus R_{cont}$ ,

where $R_{disc}$ is a direct sum of irreducible representations, and $R_{cont}$ decomposes continuously.
Given an irreducible representation $\pi$ of $G(\mathbb{R})$ , write $R_{disc}(\pi)$ for the $\pi$-isotypic subspace of
$R_{disc}$ . Thus,

$R_{disc}(\pi)\cong\pi^{\oplus m(\pi)}disc$

for some integer $m_{disc}(\pi, \Gamma)$ .
For $G=GL_{2}$ , and $k\geq 2$ , one has $\dim_{\mathbb{C}}S_{k}(\Gamma)=m_{disc}(\pi, \Gamma)$ , where $\pi\in\Pi_{E}$ and

$E=$ Sym$k-2V$ . However this case is very special. If $n>2$ there are no discrete series
representations of $GL_{n}(\mathbb{R})$ . If one considers other reductive groups $G$ besides $GL_{n}$ and its
affiliates, then stably conjugate elements in $G(\mathbb{R})$ are not typically conjugate. Indeed, the
partitioning of representations into packets is the spectral analogue of grouping together con-
jugacy classes into a stable conjugacy class. Stably invariant distributions are much simpler
than unstable ones. It is significantly easier to determine the sum

$m_{disc}( \Pi, \Gamma)=\sum_{\mathcal{T}_{1}\in\Pi}m_{disc}(\pi, \Gamma)$

of multiplicities, rather than the individual $m_{disc}(\pi, \Gamma)$ .
5.1. Arthur’s Formula. Fix an L-packet $\Pi$ . For a Levi subgroup $M$ of $G$ and a function
$\varphi\in C_{c}^{\infty}(M(A_{f}))$ we put

(5.1)
$T_{g}( \varphi, M)=\sum_{\gamma}a(\gamma, M)O_{\gamma}^{M}(\varphi)\Phi_{M}(\gamma^{-1}, \Theta_{\Pi})$

.

The constants $a(\gamma, M)$ are volume-related, and straightforward but subtle. In the notation
of [1], they are given by

(5.2) $a(\gamma, M)=(-1)^{\dim(A_{M}/A_{G})}(n_{M}^{G})^{-1}\iota^{M}(\gamma)^{-1}\tau(M_{\gamma})v(M_{\gamma})^{-1}$ .
For $h\in C_{c}^{\infty}(G(A_{f}))$ , put
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(5.3) $T_{g}(h)= \sum_{M}T_{g}(h_{M}, M)$ .

We say that a discrete series L-packet $\Pi_{E}$ is regular if the highest weight of $E$ is regular.
A discrete series $\pi$ is regular if it is in a regular L-packet. Suppose that $\Gamma$ is an arithmetic
subgroup of $G(\mathbb{Q})$ , and $K$ is an open compact subgroup of $G(A_{f})$ so that $K\cap G(\mathbb{Q})=\Gamma$ .

Theorem 1. (Arthur [1]) Suppose $\Pi$ is a regular L-packet. Then

(5.4) $T_{g}(e_{K})=m_{disc}(\Pi, \Gamma)$ .

Note that this does not yield the individual multiplicities $m_{disc}(\pi, \Gamma)$ , but only their average
over $\Pi_{E}$ . Since for $G=GL_{2}$ the packets are singletons, we obtain Proposition 1. Actually,
this formula generalizes to compute (stable) traces of Hecke operators.

Remark: When making the volume computations for $a(\gamma, M)O_{\gamma}^{M}(h_{M})$ it is prudent to
group together the product $v(M_{\gamma})^{-1}\cdot vol(M_{\gamma}(A_{f})\cap K_{0})^{-1}$ . Such product are closely related to
Euler characteristics of certain symmetric space attached to $M_{\gamma}(\mathbb{R})$ . When $G$ is semisimple
and simply connected, one may compute these using Harder’s formula in [3]. We have
extended his formula to reductive groups (satisfying some mild hypotheses) in [14].

Arthur’s trace formula gives an equality of distributions, one geometric and one spectral.
In this application, the spectral side becomes the (stable) multiplicities of the discrete series
representations that we are considering, and the geometric side gives $T_{g}(h)$ . These expressions
are obtained by evaluating the trace formula distributions at functions $f$ on $G(A)$ of the form
$f=h\cdot f_{\infty}$ . Here $f_{\infty}$ a function on $G(\mathbb{R})$ which is stable cuspidal, meaning that $f_{\infty}$ is a linear
combination of pseudocoefficients of an L-packet. In fact, Arthur uses

(5.5)
$f_{\Pi}= \sum_{\pi\in\Pi_{E}}e_{\pi}$

,

where $e_{\pi}$ is the product of $(-1)^{q(G)}$ with a pseudocoefficient for the contragredient of the
discrete series representation $\pi$ .

5.2. Kottwitz‘s Formula. In [6], Kottwitz stabilized Arthur’s formula, at least for functions
which were stable cuspidal at the real place. In other words, he rewrote Arthur’s geometric
expression as a sum of stable distributions on endoscopic groups for $G$ .

For $f=f^{\infty}f_{\infty}$ with $f^{\infty}\in C_{c}^{\infty}(G(A_{f}))$ and $f_{\infty}$ stable cuspidal on $G(\mathbb{R})$ , put

(5.6) $\mathcal{K}(f)=\sum_{H}\iota(G, H)ST_{g}^{H}(f^{\infty H}f_{\infty}^{H})$
,

with the sum running over the (elliptic) endoscopic groups for $G$ . The function $f^{\infty H}\in$

$C_{c}^{\infty}(H(A_{f}))$ is an endoscopic transfer of $f^{\infty}$ . The constant $\iota(G, H)$ is given by

(5.7) $\iota(G, H)=\tau(G)\tau(H)^{-1}|$ Out $(H)|^{-1}$ ,

where $\tau$ denotes the Tamagawa number, and Out $(H)$ is the group of outer automorphisms
of $H$ (or more properly, of the endoscopic data accompanying $H$).
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Remark: Because of the tradition of writing $H$ for endoscopic groups of $G$ , we now favor
the notation $f^{\infty}$ rather than $h$ .

Let us now discuss the distributions $ST_{g}^{H}$ . For $H=G$ one has

(5.8)
$ST_{g}^{G}(f^{\infty}f_{\infty})= \sum_{\gamma,M}k(\gamma, M)SO_{\gamma}(f^{\infty})S\Phi_{M}’(f_{\infty})$

.

Here the sum runs over cuspidal Levi subgroups $M$ of $G$ , and stable conjugacy classes of
elliptic elements $\gamma\in M(\mathbb{Q})$ .

The constants $k(\gamma, i|’\ell)$ are again volume-related and nonzero, being a stable variant of
$a(\gamma.M)$ . We omit the formula; $k(\gamma, M)$ only depends on $\gamma$ and $M$ . As with the constants
$a(\gamma, M)$ , one makes volume computations using Harder’s formula and its generalization in
[14]. For other $H$ , the formula is the same, replacing $G$ with $H$ throughout. Here is the main
result of [6]:

Theorem 2. If $f=f^{\infty}f_{\Pi}$ as above, then
(5.9) $T_{g}(f^{\infty})=\mathcal{K}(f^{\infty}f_{n})$ .

We have studied the distribution $\mathcal{K}$ evaluated instead on functions of the form $f=f^{\infty}e_{\pi}$ .
It is much easier to substitute these functions into Kottwitz‘s formula than into Arthur $s$

formula, because only (unweighted) semisimple orbital integals are involved.

Conjecture 1. Let $\pi$ be a regular discrete series representation of $G(\mathbb{R})$ , and $\Gamma$ an arithmetic
subgmup of $G(\mathbb{Q})$ . Let $K$ be a compact open subgroup of $G(A_{f})$ so that $K\cap G(\mathbb{Q})=\Gamma$ . Write
$e_{K}$ for its normalized chamcteristic function. Then
(5.10) $\mathcal{K}(e_{K}e_{\pi})=m_{disc}(\pi, \Gamma)$ .

Note that, by Theorems 1 and 2, we already have

(5.11)
$\sum_{\pi\in\Pi}\mathcal{K}(e_{K}e_{\pi})=\sum_{\pi\in\Pi}m_{disc}(\pi, \Gamma)$

for any L-packet $\Pi$ .

6. CASE OF $GSp_{4}$

In this section we would like to show evidence which led us to the conjecture. Details
may be found in [14]. Earlier we had evaluated the identity terms of $\mathcal{K}(e_{K}e_{\pi})$ for the group
$G=$ SO5 and $\Gamma=G(Z)$ as part of [12]. Then Wakatsuki noted that the resulting expressions
matched up with the terms in his formulas for $m_{disc}(\pi, \Gamma)$ which corresponded to unipotent
elements (although his computations were for the $4\cross 4$ symplectic group). Moreover, as we
will see, the contribution to $\mathcal{K}(e_{K_{0}}e_{\pi})$ from the endoscopic group accounted for the difference
in these multiplicity formulas, while the stable part corresponded to the sum. We then redid
the computations, which we now discuss, for $G=GSp_{4}$ and $\Gamma=G(Z)$ . Write $A$ for the
group of diagonal matrices in $G$ . As usual, let $K_{0}=G(\hat{Z})$ and $f^{\infty}=e_{K_{0}}$ , so that $f=f^{\infty}e_{\pi}$ .

There are two elliptic endoscopic groups for $G$ . One has $G$ itself, and the group $H$ defined
by

$1arrow G_{m}arrow GL_{2}\cross GL_{2}arrow Harrow 1$ .

9
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Here $t\mapsto tI\cross t^{-1}I$ .

6.1. Discrete Series for $G$ . We need to specify our discrete series packets. There are three
approaches here. One could use finite-dimensional representations $E$ , which are themselves
parametrized by their highest weights. Alternatively, one could specify the discrete series
themselves by their minimal $K_{\mathbb{R}}$-types, via Harish-Chandra parameters. Instead of these,
we prefer to use Langlands parameters, because then the endoscopic transfer from $H(\mathbb{R})$ to
$G(\mathbb{R})$ is defined in terms of these.

Write $W_{\mathbb{R}}$ for the Weil group of $\mathbb{R}$ , and $W_{\mathbb{C}}$ for the canonical image of $\mathbb{C}^{x}$ in $W_{\mathbb{R}}$ . There is
an exact sequence

$1arrow W_{\mathbb{C}}arrow W_{\mathbb{R}}arrow\Gamma_{\mathbb{R}}arrow 1$ .

The Weil group $W_{\mathbb{R}}$ is generated by $W_{\mathbb{C}}$ and a fixed element $\tau$ satisfying $\tau^{2}=-1$ and
$\tau z\tau^{-1}=\overline{z}$ for $z\in W_{\mathbb{C}}$ . Write $LG$ for the L-group of $G$ , which in this case is $GSp_{4}(\mathbb{C})\cross W_{\mathbb{R}}$ .

Let $a_{Z}b$ be odd integers with $a>b>0$ . Let $t$ be an even integer. For $z\in \mathbb{C}^{\cross}$ , let

$\theta(z)=\overline{|z|}$ . Our Langlands parameter $\varphi c:W_{\mathbb{R}}arrow LG$ is given by

$\varphi_{G}(z)=|z|^{t}(\theta(z)^{a} \theta(z)^{b} \theta(z)^{-b} \theta(z)^{-a})\cross z$ ,

and $\varphi_{G}(\tau)=J\cross\tau$ .
The L-packet defined by this parameter corresponds to the finite-dimensional representa-

tion $E$ of $G(\mathbb{C})$ whose highest weight is the character on $A$ given by

(6.1) $(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4})\mapsto\lambda^{\frac{1}{12}(a+b-4)}\lambda^{\frac{1}{22}(t-a+3)}\lambda^{\frac{1}{42}(t-b+1)}$.

Then $\Pi_{E}=\{\pi^{Ho1}, \pi^{Lar}\}$ . Here $\pi^{Ho1}$ is the “holomorphic discrete series”, and $\pi^{Lar}$ is the
“large discrete series“.

6.2. Transfer from $H$ to $G$ . Next we set up the Langlands parameters for discrete series
representations of $H(\mathbb{R})$ , and describe how they transfer to L-packets for $G(\mathbb{R})$ . Here the
dual group to $H$ is $\hat{H}=\{(g, h)\in GL_{2}(\mathbb{C})\cross GL_{2}(\mathbb{C})|\det(g)=\det(h)\}$ , and $LH=\hat{H}\cross W_{R}$ .

Define the Langlands parameter $\varphi_{H}:W_{\mathbb{R}}arrow LH$ by

$\varphi_{H}(z)=|z|^{t}(\theta(z)^{a} \theta(z)^{-a})\cross|z|^{t}(\theta(z)^{b} \theta(z)^{-b})\cross z$

for $z\in W_{\mathbb{C}}$ , and

$\varphi_{H}(\tau)=(-1 1)\cross(1 -1)\cross\tau$ .

The L-packet associated to $\varphi_{H}$ is a singleton $\{\pi_{H}\}$ .

10
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There is another Langlands parameter $\varphi_{H}^{l}$ given by switching the first two factors, i.e.,

$\varphi_{H}’(z)=|z|^{t}(\theta(z)^{b} \theta(z)^{-b})\cross|z|^{t}(\theta(z)^{a} \theta(z)^{-a})\cross z$ ,

and with $\varphi_{H}’(\tau)=\varphi_{H}(\tau)$ as above. The new L-packet is another singleton $\{\pi_{H}’\}$ . In fact
both L-packets $\{\pi_{H}\}$ and $\{\pi_{H}^{l}\}$ transfer to $\Pi_{E}$ , and we may take $e_{\pi^{Ho1}}^{H}=e_{\pi_{H}}+e_{\pi_{H}’}$ and
$e_{\pi^{Lar}}^{H}=-e_{\pi^{Ho1}}^{H}$ .

Remark: Actually, the theory of transfer depends on some intricate calibrations which
we do not display here. In any case, the first equality is true up to a sign, and the second is
true regardless of the convention.

6.3. Unipotent terms. Let us write $H_{1,\Gamma}^{Ho1}$ and $H_{1,\Gamma}^{Lar}$ for the contribution to each multiplicity
from unipotent $\gamma$ . These were computed by Wakatsuki [18] to be

$H_{1}^{Ho1}=2^{-9}3^{-3}5^{-1}ab(a-b)(a+b)-2^{-5}3^{-2}ab+2^{-4}3^{-1}b$

and
$H_{1}^{Lar}=2^{-9}3^{-3}5^{-1}ab(a-b)(a+b)+2^{-5}3^{-2}ab-2^{-3}3^{-1}b+2^{-2}$ .

(To translate from his notation to ours, use $j=b-1$ and $k= \frac{1}{2}(a-b)+2.$ )
Now consider the contribution to $\mathcal{K}(e_{K_{0}}e_{\pi})$ from the central terms (STAB) of $G(\mathbb{Q})$ and

the central terms (UNSTAB) of $H(\mathbb{Q})$ . Here $\pi=\pi^{Ho1}$ . We have

(STAB) $= \sum_{z,M}ST_{g}(f, z, M)$

$=2^{-9}3^{-3}5^{-1}ab(a+b)(a-b)-2^{-4}3^{-1}(a-b)-2^{-4}3^{-1}b+2^{-3}$,

(UNSTAB)
$= \iota(G, H)\sum_{z,M_{H}}ST_{g}(f^{H}, z, M_{H})$

$=-2^{-5}3^{-2}ab+2^{-4}3^{-1}(a+b)-2^{-3}$ .
We find that

(STAB) $+$ (UNSTAB) $=H_{1,\Gamma}^{Ho1}$ ,
and

(STAB)–(UNSTAB) $=H_{1,\Gamma}^{Lar}$ .
Thus the central-unipotent terms agree, as predicted by the conjecture, for $\pi=\pi^{Ho1}$ . In view
of the relation $e_{\pi^{Lar}}^{H}=-e_{\pi^{Ho1}}^{H}$ , the central-unipotent terms agree for $\pi=\pi^{Lar}$ as well.

7. APPLICATION To HARMONIC ANALYSIS
Of the ingredients in the formula, the most troublesome to compute are the orbital integrals

of the various $f^{\infty H}$ and their constant terms. The constants $k(\gamma, M)$ and $\Phi(\gamma, \Theta_{\Pi})$ are
comparatively straightforward. When $\Gamma=G(\hat{Z})$ , one may use the Fundamental Lemma to
find $f^{\infty H}$ explicitly. For parahoric $\Gamma$ one may use [4], but beyond that not much is known.

On the other hand, the multiplicity $m_{disc}(\pi^{Ho1}, \Gamma)$ is equal to the dimension of a space of
(vector-valued) Siegel cusp forms, and these have been extensively tabulated. For instance,
when $\Gamma=Sp_{4}(Z)$ and $G=Sp_{4}$ , the dimensions of these spaces of cusp forms were calculated

11
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in Tsushima [15], [16] using the Riemann-Roch-Hirzebruch formula, and later in Wakatsuki
[17] using the Selberg trace formula and the theory of prehomogeneous vector spaces. Many
cases of $\Gamma$ are treated. Wakatsuki then evaluated Arthur’s formula in [18] to compute

$m_{disc}(\pi^{Ho1}, \Gamma)+m_{disc}(\pi^{Lar}, \Gamma)$

in each case, thereby deducing formulas for $m_{disc}(\pi^{Lar}, \Gamma)$ as well.
This preponderance of formulas for the $4\cross 4$ symplectic groups suggests another point

of view on the matter: to approach the conjecture as a method to calculate these orbital
integrals and related quantities.

To illustrate this, we return to $G=GL_{2}$ and the discrete series $\pi$ from Section 4. This
time fix a prime $p$ and let $\Gamma=\Gamma_{p}$ be the matrices in $GL_{2}(Z)$ whose (2, 1)-entry is a multiple
of $p$ . Let $K_{p}$ be the group of matrices in $GL_{2}(\hat{Z})$ whose (2, 1)-entry is a multiple of $p$ , and
write $h=e_{K_{p}}$ . Recall that Arthur’s formula gives

(7.1) $T_{g}(h)= \frac{n}{12}O_{1}(h)+\frac{1}{4}t_{4}(n)O_{\gamma_{4}}(h)+\frac{1}{3}t_{3}(n)O_{\gamma_{3}}(h)-\frac{1}{2}h_{A}(1)$ .

On the other hand it is known (see [9]) that, when $k>1$ ,

(7.2) $m_{disc}( \pi, \Gamma_{p})=\frac{n}{12}(p+1)+\frac{1}{4}(1+(\frac{-1}{p}))\cdot t_{4}(n)+\frac{1}{3}(1+(\frac{-3}{p}))\cdot t_{3}(n)-1$ .

Since the functions $\{1, k, t_{3}(k), t_{4}(k)\}$ of $k$ are linearly independent it follows that

(7.3) $o_{1}(h)=p+1,$ $O_{\gamma_{4}}(h)=1+( \frac{-1}{p}),$ $O_{\gamma_{3}}(h)=1+( \frac{-3}{p})$ , and $h_{A}(1)=2$ .

We thus regard the many intricate multiplicity formulas as encoding values of orbital
integrals of normalized characteristic functions, their matching functions, and their constant
terms. We believe it is a worthwhile project to express these multiplicity formulas directly
as such.
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