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$0$ Introduction

Let $G$ be a connected reductive group over a non-archimedean local field $F$ equipped

with an F-involution $\sigma$ : $Garrow G$ , and $H$ the subgroup of all $\sigma-fixed$ points of G.
The quotient space $G/H$ of F-points $G=G(F)$ by $H=H(F)$ is called a symmetric

space over $F$ . We are interested in representations of $G$ which can be realized in

the space of functions on $G/H$ . Such representations are said to be H-distinguished.

We are concerned especially with representations which can be realized in the space
$L^{2}(G/Z_{G}H)$ (in rough notation) of square integrable functions on $G/Z_{G}H$ , where $Z_{G}$

denotes the center of $G$ . An irreducible representation having such a realization is

said to be in the discrete series for $G/H$ .
We give a criterion for such realizability, i.e., square integrability on $G/H$ , in terms

of exponents of Jacquet modules. The result has already appeared in [KT2]. In

this report we give a brief survey of the main result of [KT2] (and also a part of

our preceding work [KTl] $)$ . It is a symmetric space analogue of Casselman‘s well-

known criterion for the group case ([C], which we recall below in Section 1). In our
symmetric space analogue, we only consider Jacquet modules along $\sigma$ -split parabolics,

and consider exponents on $(\sigma, F)$ -split components (see Section 3). The set of relative

exponents used in our criterion is given in 5.1, and the main theorem is stated in 5.2.
Several examples are included in the final section.
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lCasselman $s$ criterion for the usual square integrability
Let $F$ be a non-archimedean local field with the valuation ring $\mathcal{O}$ and the absolute

value $|\cdot|_{F}$ . Let $G$ be a connected reductive group defined over $F$ and $Z$ the F-split
component of $G$ , that is, the largest F-split torus in the center of G. Let us write
$G=G(F),$ $Z=Z(F)$ .

Let $(\pi, V)$ be a smooth representation of $G$ . Suppose that $\pi|z$ is a unitary character
of $Z$ . Let (fi, $\overline{V}$) denote the contragredient of $(\pi, V)$ . The usual matrix coefficients of
$\pi$ are functions on $G$ of the form

$c_{v,\tilde{v}}(g)=\{\overline{v}, \pi(g^{-1})v\}$ $(g\in G)$

for $v\in V$ and $\tilde{v}\in\overline{V}$ . The representation $\pi$ is said to be square integrable (in the
usual sense) if

$\int_{G/Z}|c_{v,\tilde{v}}(g)|^{2}dg<\infty$

for all $v\in V$ and $\tilde{v}\in\overline{V}$ .
We briefly say that $P$ is a parabolic subgroup of $G$ if $P$ is the group of F-points of

a parabolic F-subgroup $P=P$ of $G$ etc, by abuse of terminology.
For a smooth representation $(\pi, V)$ of $G$ and a parabolic subgroup $P=MU$, let

$(\pi_{P}, V_{P})$ denote the normalized Jacquet module of $(\pi, V)$ along $P$ : The space $V_{P}$ is
the quotient of $V$ by the M-stable subspace

$V(U)=\langle\{\pi(u)v-v|u\in U, v\in V\}\}_{\mathbb{C}}$ .

Let $j_{P}:Varrow V/V(U)=V_{P}$ be the canonical projection. Then $M$ acts on $V_{P}$ by

$\pi_{P}(m)j_{P}(v)=\delta_{P}^{-1/2}(m)j_{P}(\pi(m)v)$

where $\delta_{P}$ is the modulus of $P$ . It is known $([C, \S 3])$ that if $\pi$ is finitely generated
(resp. admissible), then so is the M-module $\pi_{P}$ .

Let $\mathcal{X}(A)$ be the set of all quasi-characters of the F-split component $A$ of the Levi
subgroup $M$ . For a $\chi\in \mathcal{X}(A)$ , consider the generalized $\chi$-eigenspace

$(V_{P})_{\chi,\infty}=\{\overline{v}\in V_{P}(\pi_{P}(a)-\chi(a))^{d}\cdot=0foralla\in AThereexistsa_{\frac{d}{v}}\in Nsuchthat\}$ .
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A quasi-character $\chi\in \mathcal{X}(A)$ is called an exponent of $\pi_{P}$ if $(V_{P})_{\chi,\infty}\neq\{0\}$ . The set

of all exponents of $\pi_{P}$ is denoted by $\mathcal{E}_{A}(\pi_{P})$ .
The set $\mathcal{E}_{A}(\pi_{P})$ is finite if $\pi$ is finitely generated and admissible. One has a direct

sum decomposition
$V_{P}= \bigoplus_{\chi\in \mathcal{E}_{A}(\pi_{P})}($

怖 $)_{\chi,\infty}$ .

Set
$A^{-}=$ { $a\in A||a^{\alpha}|_{F}\leqq 1$ for all simple roots $\alpha$ }.

Let us take up the following condition imposed on $P$ :

$(b_{P})$ $|\chi(a)|<1$ for all $\chi\in \mathcal{E}_{A}(\pi_{P})$ and all $a\in A^{-}\backslash ZA(\mathcal{O}_{F})$ .

Now the well-known Casselman‘s criterion is stated as follows:

Theorem 1.1 (Casselman $[C,$ $4.4.6]$ ) $A$ finitely generated admissible representation

$\pi$ of $G$ is square integmble if and only if the condition $(b_{P})$ is satisfied for every

pambolic subgroup $P$ of $G$ .

2 H-square integrable representations

From now on we assume that the residual characteristic of $F$ is not equal to 2. Let
$\sigma$ : $Garrow G$ be an F-involution on G. We put

$H=\{h\in G|\sigma(h)=h\}$ , $Z_{0}=(\{z\in Z|\sigma(z)=z^{-1}\})^{0}$ ,

We call $Z_{0}$ the $(\sigma, F)$ -split component of G. We write $G=G(F),$ $H=H(F)$ etc.

A smooth representation $(\pi, V)$ of $G$ is said to be H-distinguished if the space
$Hom_{H}(\pi, \mathbb{C})=(V^{*})^{H}$ of H-invariant linear forms on $V$ is nonzero. For a while,

suppose that $\pi|_{Z_{O}}$ is a unitary character of $Z_{0}$ , say, $\omega_{0}$ : $Z_{0}arrow \mathbb{C}_{1}^{\cross}$ . Let $(\pi, V)$ be H-

distinguished and take a non-zero H-invariant linear forms $\lambda\in(V^{*})^{H}$ . We consider

functions $\varphi_{\lambda,v}$ on $G/H$ for $v\in V$ defined by

$\varphi_{\lambda,v}(g)=\langle\lambda,$ $\pi(g^{-1})v\rangle$ $(g\in G)$ .

Such functions are called $(H, \lambda)$ -matrix coefficients of $\pi$ . Note that these are not the

matrix coefficients in the usual sense, but are generalized matrix coefficients, since
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H-invariant linear forms are not smooth in general. We have an obvious equivariance
for $(H, \lambda)$ -matrix coefficients:

$\varphi_{\lambda,v}(z_{0}gh)=\omega_{0}(z_{0})^{-1}\varphi_{\lambda,v}(g)$ $\forall z_{0}\in Z_{0},$ $g\in G,$ $h\in H$ .

We also have $\varphi_{\lambda,\pi(g)v}=L(g)\varphi_{\lambda,v}$ (where $L(\cdot)\varphi$ denotes the left translation). Thus,
for a fixed $\lambda\in(V^{*})^{H}$ , the set of functions $\{\varphi_{\lambda,v}|v\in V\}$ gives a realization of $\pi$ in
the space of functions on $G/H$.

Since $H$ is reductive, $H$ is unimodular. So the quotient space $G/Z_{0}H$ carries a
unique (up to constant) left G-invariant measure, denoted by $\int_{G/Z_{0}H}\ldots dg$ .

Definition 2.1 We say that $\pi$ is $(H, \lambda)$ -square integmble if $|\varphi_{\lambda,v}(\cdot)|$ is square inte-
grable on $G/Z_{0}H$ for all $v\in V$ , namely, if

$\int_{G/Z_{0}H}|\varphi_{\lambda,v}(g)|^{2}dg<\infty$

for all $v\in V$ .

Remark 2.2 In our preceding work [KTl], we have defined that $(\pi, V)$ is $(H, \lambda)-$

relatively cuspidal if the support of $\varphi_{\lambda,v}$ is compact modulo $Z_{0}H$ for all $v\in V$ . So,
by definition, $(H, \lambda)$-relatively cuspidal representations are $(H, \lambda)$-square integrable
provided that $\omega_{0}$ is unitary.

3 Tori and parabolics associated to $\sigma$

We recollect some notation and terminology for tori and parabolic subgroups asso-
ciated to the involution $\sigma$ . Basic reference is [HH].

Definition 3.1 (i) A parabolic F-subgroup $P$ of $G$ is said to be $\sigma$-split if $P$ and
$\sigma(P)$ are opposite, i.e., if $P\cap\sigma(P)$ is a ( $\sigma$-stable) Levi subgroup of P.

(ii) An F-split torus $S$ is said to be $(\sigma, F)$-split if $\sigma(s)=s^{-1}$ hold for all $s\in$ S.

Let us fix a maximal $(\sigma, F)$-split torus $S_{0}$ of $G$ and take a maximal F-split torus
$A_{\emptyset}$ containing $S_{0}$ . Then $A_{\emptyset}$ is necessarily $\sigma$-stable, so $\sigma$ acts naturally on $X^{*}(A_{\emptyset})$ .
Let $\Phi\subset X^{*}(A_{\emptyset})$ be the root system of $(G, A_{\emptyset})$ . It is $\sigma$-stable. We can choose a
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$\sigma$ -basis $\Delta$ of $\Phi$ that has the property

$\alpha>0,$ $\sigma(\alpha)\neq\alpha\Rightarrow\sigma(\alpha)<0$

in the corresponding order. The subset of all $\sigma-fixed$ roots in $\Delta$ is denoted by $\triangle_{\sigma}$ .
Let $P_{\emptyset}$ be the minimal parabolic subgroup corresponding to the choice of $\Delta$ . Stan-

dard parabolic subgroups $P_{I}=M_{I}U_{I}$ (i.e., those containing $P_{\emptyset}$ ) correspond to

subsets $I$ of $\Delta$ as usual. We can decide exactly when $P_{I}$ is $\sigma$-split.

Lemma 3.2 ([HH, 2.6], [KTl, 2.5]) (i) $P_{I}$ is $\sigma$ -split if and only if $I\supset\Delta_{\sigma}$ and the

subsystem $\Phi_{I}$ of $\Phi$ genemted by I is $\sigma$-stable. (In such a case we call I a $\sigma$ -split

subset.)

(ii) Any $\sigma$ -split pambolic subgroup of $G$ is written in the form $\gamma^{-1}P_{I}\gamma$ for some
$\sigma$-split subset $I\subset\Delta$ and $\gamma\in(M_{0}H)(F)$ , where $M_{0}=Z_{G}(S_{0})$ denotes the centmlizer

of $S_{0}$ in G.

Therefore, a minimal $\sigma$-split parabolic subgroup $P_{0}$ of $G$ can be given as the one
corresponding to the minimal $\sigma$-split subset $I=\Delta_{\sigma}$ . Alternatively it is given by
$P_{0}=P_{\emptyset}M_{0}$ . Note also that $M_{0}$ is the $\sigma$-stable Levi subgroup of $P_{0}$ .

For a subset $I\subset\Delta$ , let $A_{I}$ be the F-split component of $M_{I}$ . If $I$ is a $\sigma$-split subset,

let $S_{I}$ denote the $\sigma$-split part of $A_{I}$ , i.e., the identity component of $A_{I}\cap S_{0}$ . We call
$S_{I}$ the $(\sigma, F)$ -split component of $P_{I}$ . For a positive real number $\epsilon\leqq 1$ , we put

$S_{I}^{-}(\epsilon)=\{s\in S_{I}=S_{I}(F)||s^{\alpha}|_{F}\leqq\epsilon(\alpha\in\Delta\backslash I)\}$

and
$IS_{0}^{-}(\epsilon)=\{s\in S_{0}=S_{0}(F)$

$|s^{\alpha}|_{F}\leqq\epsilon(\alpha\in\Delta\backslash I)$ ,
$\epsilon<|s^{\alpha}|_{F}\leqq 1(\alpha\in I)$

.

We abbriviate $S_{I}^{-}=S_{I}^{-}(1)$ and $S_{0}^{-}=S_{\Delta_{\sigma}}^{-}(1)$ . We note that if $\alpha\in\triangle_{\sigma}$ and $s\in S_{0}$ ,

then $s^{\alpha}=s^{\sigma(\alpha)}=(s^{-1})^{\alpha}$ , so that $|s^{\alpha}|_{F}=1$ .

Lemma 3.3 ([KT2, Lemma 1.6]) For any $\epsilon<1$ , one has

$S_{0}^{-}=$
$\bigcup_{I\subset\Delta:\sigma}$

$IS_{0}^{-}(\epsilon)$ (disjoint).

It will turn out that the behaviors of H-matrix coefficients are determined essentially

on $S_{0}^{-}$ , and furthermore, on the subset $IS_{0}^{-}(\epsilon)$ , they are connected to $M_{I}\cap$ H-matrix
coefficients of the Jacquet module along $P_{I}$ .
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4 Asymptotic behaviors of H-matrix coefficients

Let $(\pi, V)$ be an admissible representation of $G$ . Only when $P=MU$ is a $\sigma$-split
parabolic subgroup, we have defined in [KTl] a linear mapping

$r_{P}:(V^{*})^{H}arrow(V_{P}^{*})^{M\cap H}$

between the spaces of invariant linear forms. If $v\in V$ is a canonical lifting $([C, \S 4])$

of $\overline{v}\in V_{P}$ with respect to a suitable $\sigma$-stable open compact subgroup, then $r_{P}(\lambda)$ for
$\lambda\in(V^{*})^{H}$ is well-defined by the relation

$\langle r_{P}(\lambda),\overline{v}\rangle=\{\lambda, v\}$

(see [KTl, $5.3(2)]$ ). The same mapping was constructed independently by N. Lagier
[L] in a different manner. P. Delorme extended the construction of such mappings to
any smooth representations by using Bernstein $s$ second adjointness theorem in [D].

Now, through the mapping $r_{P}:(V^{*})^{H}arrow(V_{P}^{*})^{M\cap H}$ , the H-matrix coefficients of $\pi$

are related to the $M\cap H$-matrix coefficients of the Jacquet module $\pi_{P}$ as follows:

Proposition 4.1 ([KT2, 3.3]) Let I be a $\sigma$ -split subset of $\Delta$ and $P=P_{I}$ the corre-
sponding $\sigma$-split pambolic subgroup with the $(\sigma, F)$ -split component $S=S_{I}$ . Let $(\pi, V)$

be an H-distinguished admissible representation of $G$ and $v\in V,$ $\lambda\in(V^{*})^{H}$ . There
exists a positive real number $\epsilon\leqq 1$ such that

$\langle\lambda,$ $\pi(s)v\rangle=\delta_{P}^{1/2}(s)\{r_{P}(\lambda), \pi_{P}(s)j_{P}(v)\}$

for all $s\in IS_{0}^{-}(\epsilon)$ .

Remark 4.2 In [KTl, 6.2], we have shown the following criterion for $(H, \lambda)$-relative
cuspidality in terms of $r_{P}$ : The representation $\pi$ is $(H, \lambda)$ -relatively cuspidal if and
only if $r_{P}(\lambda)=0$ for every proper $\sigma$-split pambolic subgroup $P$ .

5 Main theorem

Let $(\pi, V)$ be a finitely generated H-distinguished admissible representation of $G$ ,
with a non-zero H-invariant linear form $\lambda\in(V^{*})^{H}$ . Let $P=MU$ be a $\sigma$-split
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parabolic subgroup of $G$ with the $(\sigma, F)$-split component $S$ . We let $\mathcal{X}(S)$ denote

the set of all quasi-characters of $S$ and for a $\chi\in \mathcal{X}(S)$ , we consider the generalized
$\chi$ -eigenspace $(V_{P})_{\chi,\infty}$ as in section 1.

Definition 5.1 A quasi-character $\chi\in \mathcal{X}(S)$ is called an exponent of $\pi_{P}$ relative
to $r_{P}(\lambda)$ if the induced linear form $r_{P}(\lambda)$ on $V_{P}$ is non-zero on the generalized $\chi-$

eigenspace $(V_{P})_{\chi,\infty}$ . The set of all such exponents is denoted by $\mathcal{E}_{S}(\pi_{P};r_{P}(\lambda))$ :

$\mathcal{E}_{S}(\pi_{P};r_{P}(\lambda))=\{\chi\in \mathcal{X}(S)|r_{P}(\lambda)|_{(V_{P})_{\chi,\infty}}\neq 0\}$ .

Now we consider the following condition imposed on $P$ and $\lambda$ :

$(\#_{P,\lambda})$ $|\chi(s)|<1$ for all $\chi\in \mathcal{E}_{S}(\pi_{P};r_{P}(\lambda))$ and all $s\in S^{-}\backslash Z_{0}S(\mathcal{O}_{F})$ .

The main theorem of [KT2] is the following:

Theorem 5.2 ([KT2, 4.7]) Let $(\pi, V)$ be a finitely genemted H-distinguished admis-

sible representation of $G$ , with a non-zero H-invariant linear form $\lambda\in(V^{*})^{H}$ . Then,

the representation $(\pi, V)$ is $(H, \lambda)$ -square integmble if and only if the condition $(\#_{P,\lambda})$

is satisfied for every $\sigma$ -split pambolic subgroup $P$ of $G$ .

Remark 5.3 By combining our criterion and Casselman $s$ criterion, we have the fol-

lowing (possibly non-trivial) corollary: If $(\pi, V)$ is H-distinguished and is square

integmble in the z-sual sense, then it is $(H, \lambda)$ -square integmble for any $\lambda\in(V^{*})^{H}$ .

6 lngredients of the proof

To evaluate the $L^{2}$-norm of the $(H, \lambda)$ -matrix coefficients, we first decompose

$G/Z_{0}H$ according to the analogue of Cartan decomposition. We fix a $\sigma$-stable open

compact subgroup $K_{0}$ of $G$ which has Iwahori factorization with respect to each
$\sigma$-split parabolic subgroup. This is not a maximal compact subgroup. [BO] and [DS]

gave the following: There is a finite set $\Xi$ of $G$ and a finite set $\Gamma$ of $(M_{0}H)(F)$ such

that
$G=$

$\bigcup_{-,\xi\in_{-}^{-},\gamma\in\Gamma}\bigcup_{s\in S_{0}^{-}}\xi K_{0}s^{-1}\gamma H$

.
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Choose $\epsilon$ so that Proposition 4.1 is valid for all $I$ and put

$G_{I,\gamma}=$ $\cup$ $K_{0}s^{-1}\gamma H$

$s\in I^{S_{0}^{-}(\xi)}/Z_{0}S_{0}(\mathcal{O})$

for each $\sigma$-split subset $I\subset\triangle$ and $\gamma\in\Gamma$ . Then we have

$G/Z_{0}H= \bigcup_{\xi,\gamma,I}\xi G_{I,\gamma}/Z_{0}H$

by Lemma 3.3. Now, the evaluation of the $L^{2}$-norm of $\varphi=\varphi_{\lambda,v}$ starts from

$\int_{G/Z_{0}H}|\varphi(g)|^{2}dg\leqq\sum_{\xi,\gamma,I}(\int_{\xi G_{I,\gamma}/Z_{0}H}|\varphi(g)|^{2}dg)$ .

We may drop $\xi$ by changing vector suitably. To prove the if part of the main theorem,
it is enough to show the following:
Claim. If the condition $(\#_{P,\lambda})$ is satisfied for $P=\gamma^{-1}P_{I}\gamma$ (see Lemma 3.2 $(ii)$), then

$\int_{G_{t,\gamma}/Z_{O}H}|\varphi(g)|^{2}dg<\infty$ .

The integral is bounded by the series

$s \in IS_{0}^{-}\sum_{(\epsilon)/z_{0}s_{0(\mathcal{O})}}\int_{K_{0}s^{-1}\gamma Z_{0}H/Z_{0}H}|\varphi(g)|^{2}dg$

over the lattice $IS_{0}^{-}(\epsilon)/Z_{0}S_{0}(O)$ . Each term can be evaluated as

$\int_{K_{0}s^{-1}\gamma Z_{0}H/Z_{0}H}|\varphi(g)|^{2}dg\leqq C\cdot vol(K_{0}s^{-1}\gamma Z_{0}H/Z_{0}H)\cdot|\varphi(s^{-1}\gamma)|^{2}$

by a constant $C$ . Look at the term where $\gamma=1$ for simplicity. In the right hand side,

$\varphi(s^{-1})=\{\lambda, \pi(s)v\}=\delta_{P}(s)^{1/2}\langle r_{P}(\lambda),$ $\pi_{P}(s)j_{P}(v)\rangle$

by Proposition 4.1. To proceed further, we need the following volume computation.

Lemma 6.1 ([KT2, 2.6]) For each $\gamma\in\Gamma$ , there exist positive real constants $c_{1}$ and
$c_{2}$ such that

$c_{1}\cdot\delta_{P_{0}}(s^{-1})\leqq vol(K_{0}s^{-1}\gamma Z_{0}H/Z_{0}H)\leqq c_{2}\cdot\delta_{P_{0}}(s^{-1})$

for all $s\in S_{0}^{-}$ .
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From this lemma, the volume factor can be replaced by (a constant times) $\delta_{P_{0}}(s^{-1})$ ,

so the problem reduces to the series

$s \in S_{0}^{-}(\epsilon)/Z_{0}S_{0}(\mathcal{O})\sum_{I}|\{r_{P}(\lambda),$

$\pi_{P}(s)j_{P}(v)\rangle|^{2}$ ,

whose convergence will follow from the condition $(\#_{P,\lambda})$ .

7 $E\cross amples$

7.1 The symmetric space $GL_{2}(E)/GL_{2}(F)$ where $E/F$ is quadratic

Let $E/F$ be a quadratic extension of non-archimedean local fields and $\omega_{E/F}$ be the

unique non-trivial character of $F^{\cross}$ trivial on the norm image $N_{E/F}(E^{\cross})$ .
Let $G$ be the group $GL_{2}(E)$ and consider the involution $\sigma$ on $G$ defined by

$\sigma(g)=(_{10}^{01})\overline{g}(_{10}^{01})$ ,

where $\overline{(\cdot)}$ denotes the conjugation over $F$ . Then the subgroup $H$ of $\sigma-fixed$ points in
$G$ is isomorphic to $GL_{2}(F)$ . The standard parabolic subgroup $P=\{(_{0*}^{**})\in G\}$ is $\sigma-$

split, with the $\sigma$-stable Levi subgroup $T=\{(_{0*}^{*0})\in G\}$ . Any proper $\sigma$-split parabolic

subgroup is H-conjugate to $P$ .
Non-cuspidal irreducible H-distinguished representations of $G$ are completely de-

termined in Hakim’s thesis [H]:

1. The irreducible principal series $Ind(\chi_{1}, \chi_{2})$ , with $\chi_{2}=\overline{\chi}_{1}^{-1}$ .
2. The irreducible principal series $Ind(\chi_{1}, \chi_{2})$ , with $\chi_{i}|_{F^{X}}\equiv 1$ and $\chi_{1}\neq\chi_{2}$ .
3. The spacial representation sp $(\chi_{1}, \chi_{2})$ , with $\chi_{1}\chi_{2}^{-1}=|\cdot|_{E}$ and $\chi_{1}|\cdot|_{E}^{-1/2}=$

$\chi_{2}|\cdot|_{E}^{1/2}=\omega_{E/F}$ on $F^{\cross}$ .

Here, for quasi-characters $\chi_{1},$ $\chi_{2}$ of $E^{\cross},$ $Ind(\chi_{1}, \chi_{2})$ stands for the normalized induc-

tion determined by the quasi-character $(_{0d}^{a0})\mapsto\chi_{1}(a)\chi_{2}(d)$ of $T$ . In any case, it is

known that the dimension of the space of H-invariant linear forms is one.
The representations in the second class are $(H, \lambda)$-relatively cuspidal (see Remark

2.2 for the definition, and Remark 4.2 for the criterion). Indeed, the Jacquet module
along $P$ is the direct sum $(\chi_{1}, \chi_{2})\oplus(\chi_{2}, \chi_{1})$ of characters of $T$ . If $\chi_{i}|_{F}\equiv 1$ , then we
have

$\chi_{1}=\overline{\chi}_{1}^{-1}$ , $\chi_{2}=\overline{\chi}_{2}^{-1}$ ,
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so $\chi_{2}\neq\overline{\chi}_{1}^{-1}$ provided that $\chi_{1}\neq\chi_{2}$ . Thus, neither $(\chi_{1}, \chi_{2})$ nor $(\chi_{2}, \chi_{1})$ cannot be
trivial on $T \cap H=\{(_{0}^{a}\frac{0}{a})\}$ .

The representations in the third class provide examples of Remark 5.3.

7.2 The symmetric space $GL_{3}(F)/(GL_{2}(F)\cross GL_{1}(F))$

Let $G$ be the group $GL_{3}(F)$ and $\sigma$ the inner involution $\sigma=$ Int $(\epsilon)$ defined by the

anti-diagonal permutation matrix $\epsilon=(_{1}1^{1})$ . Then the $\sigma-fixed$ point subgroup $H$

is isomorphic to $GL_{2}(F)\cross GL_{1}(F)$ . For this symmetric space, all the irreducible
H-distinguished representations were determined by D. Prasad [P].

Form the normalized induction

$\pi(\rho)=Ind_{P_{1,2}}^{G}(1_{GL_{1}(F)}\otimes\rho)$

from the standard parabolic $P_{1,2}$ of type (1, 2) and an irreducible representation $\rho$ of
$GL_{2}(F)$ . Then $\pi(\rho)$ is irreducible, and is H-distinguished. The Borel subgroup $P_{0}$

consisting of upper triangular matrices is the only proper $\sigma$-split parabolic of $G$ up

to H-conjugacy. It is easy to determine exponents of $\pi(\rho)$ along $P_{0}$ . By using our
criterion, we may conclude that $\pi(\rho)$ belongs to the discrete series for $G/H$ if $\rho$ is the
Steinberg representation of $GL_{2}(F)$ . See [KT2, 5.1] for details.

7.3 The symmetric space $GL_{4}(F)/Sp_{2}(F)$

Let $G$ be the group $GL_{4}(F)$ and $\sigma$ the involution on $G$ defined by

$\sigma(g)=(-1001 -100l){}^{t}g^{-1}(-l00l -l00l)$ $(g\in G)$ .

Then the $\sigma-fixed$ point subgroup $H$ is the symplectic group $Sp_{2}(F)$ . For this sym-

metric space, H-distinguished representations were studied by Heumos-Rallis [HR].

Let $\rho$ be an irreducible admissible representation of $GL_{2}(F)$ and form the normalized

induction
$I(\rho)=Ind_{P_{2,2}}^{G}(\rho\cdot|\det(\cdot)|_{F}^{1/2}\otimes\rho\cdot|\det(\cdot)|_{F}^{-1/2})$ .

where $P_{2,2}$ is the standard parabolic of type (2, 2). Then $I(\rho)$ has the unique irre-

ducible quotient $\pi(\rho)$ which is H-distinguished $($ [HR, $11.1(b)])$ . One can show that
$\pi(\rho)$ belongs to the discrete senes for $G/H$ if $\rho$ is the Steinberg representation of
$GL_{2}(F)$ . See [KT2, 5.2] for details.
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